8 research outputs found

    Formal Verification of HotStuff

    Get PDF
    HotStuff is a recent algorithm for repeated distributed consensus used in permissioned blockchains. We present a simplified version of the HotStuff algorithm and verify its safety using both Ivy and the TLA Proof Systems tools. We show that HotStuff deviates from the traditional view-instance model used in other consensus algorithms and instead follows a novel tree model to solve this fundamental problem. We argue that the tree model results in more complex verification tasks than the traditional view-instance model. Our verification efforts provide initial evidence towards this claim.acceptedVersio

    Parameterized Verification of Systems with Global Synchronization and Guards

    Get PDF
    Inspired by distributed applications that use consensus or other agreement protocols for global coordination, we define a new computational model for parameterized systems that is based on a general global synchronization primitive and allows for global transition guards. Our model generalizes many existing models in the literature, including broadcast protocols and guarded protocols. We show that reachability properties are decidable for systems without guards, and give sufficient conditions under which they remain decidable in the presence of guards. Furthermore, we investigate cutoffs for reachability properties and provide sufficient conditions for small cutoffs in a number of cases that are inspired by our target applications.Comment: Accepted at CAV 202

    TLA+ Model Checking Made Symbolic

    Get PDF
    International audienceTLA + is a language for formal specification of all kinds of computer systems. System designers use this language to specify concurrent, distributed, and fault-tolerant protocols, which are traditionally presented in pseudo-code. TLA + is extremely concise yet expressive: The language primitives include Booleans, integers, functions, tuples, records, sequences, and sets thereof, which can be also nested. This is probably why the only model checker for TLA + (called TLC) relies on explicit enumeration of values and states. In this paper, we present APALACHE-a first symbolic model checker for TLA +. Like TLC, it assumes that all specification parameters are fixed and all states are finite structures. Unlike TLC, APALACHE translates the underlying transition relation into quantifier-free SMT constraints, which allows us to exploit the power of SMT solvers. Designing this translation is the central challenge that we address in this paper. Our experiments show that APALACHE outperforms TLC on examples with large state spaces

    Tools and Algorithms for the Construction and Analysis of Systems

    Get PDF
    This open access book constitutes the proceedings of the 28th International Conference on Tools and Algorithms for the Construction and Analysis of Systems, TACAS 2022, which was held during April 2-7, 2022, in Munich, Germany, as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2022. The 46 full papers and 4 short papers presented in this volume were carefully reviewed and selected from 159 submissions. The proceedings also contain 16 tool papers of the affiliated competition SV-Comp and 1 paper consisting of the competition report. TACAS is a forum for researchers, developers, and users interested in rigorously based tools and algorithms for the construction and analysis of systems. The conference aims to bridge the gaps between different communities with this common interest and to support them in their quest to improve the utility, reliability, exibility, and efficiency of tools and algorithms for building computer-controlled systems

    Computer Aided Verification

    Get PDF
    This open access two-volume set LNCS 11561 and 11562 constitutes the refereed proceedings of the 31st International Conference on Computer Aided Verification, CAV 2019, held in New York City, USA, in July 2019. The 52 full papers presented together with 13 tool papers and 2 case studies, were carefully reviewed and selected from 258 submissions. The papers were organized in the following topical sections: Part I: automata and timed systems; security and hyperproperties; synthesis; model checking; cyber-physical systems and machine learning; probabilistic systems, runtime techniques; dynamical, hybrid, and reactive systems; Part II: logics, decision procedures; and solvers; numerical programs; verification; distributed systems and networks; verification and invariants; and concurrency

    Tools and Algorithms for the Construction and Analysis of Systems

    Get PDF
    This open access book constitutes the proceedings of the 28th International Conference on Tools and Algorithms for the Construction and Analysis of Systems, TACAS 2022, which was held during April 2-7, 2022, in Munich, Germany, as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2022. The 46 full papers and 4 short papers presented in this volume were carefully reviewed and selected from 159 submissions. The proceedings also contain 16 tool papers of the affiliated competition SV-Comp and 1 paper consisting of the competition report. TACAS is a forum for researchers, developers, and users interested in rigorously based tools and algorithms for the construction and analysis of systems. The conference aims to bridge the gaps between different communities with this common interest and to support them in their quest to improve the utility, reliability, exibility, and efficiency of tools and algorithms for building computer-controlled systems
    corecore