4 research outputs found

    Reducing Multi-Secret Sharing Problem to Sharing a Single Secret Based on Cellular Automata

    Get PDF
    The aim of a secret sharing scheme is to share a secret among a group of participants in such a way that while authorized subsets of participants are able to recover the secret, non-authorized subsets of them obtain no information about it. Multi-secret sharing is the natural generalization of secret sharing for situations in which the simultaneous protection of more than one secret is required. However, there exist some secret sharing schemes for which there are no secure or efficient multi-secret sharing counterparts. In this paper, using cellular automata, an efficient general method is proposed to reduce the problem of sharing k secrets (all assigned with the same access structure and needed to be reconstructed at once) under a certain secret sharing scheme (S), to the problem of sharing one secret under S such that none of the properties of S are violated. Using the proposed approach, any secret sharing scheme can be converted to a multi-secret sharing scheme. We provide examples to show the applicability of the proposed approach

    Data security and trading framework for smart grids in neighborhood area networks

    Get PDF
    Due to the drastic increase of electricity prosumers, i.e., energy consumers that are also producers, smart grids have become a key solution for electricity infrastructure. In smart grids, one of the most crucial requirements is the privacy of the final users. The vast majority of the literature addresses the privacy issue by providing ways of hiding user’s electricity consumption. However, open issues in the literature related to the privacy of the electricity producers still remain. In this paper, we propose a framework that preserves the secrecy of prosumers’ identities and provides protection against the traffic analysis attack in a competitive market for energy trade in a Neighborhood Area Network (NAN). In addition, the amount of bidders and of successful bids are hidden from malicious attackers by our framework. Due to the need for small data throughput for the bidders, the communication links of our framework are based on a proprietary communication system. Still, in terms of data security, we adopt the Advanced Encryption Standard (AES) 128bit with Exclusive-OR (XOR) keys due to their reduced computational complexity, allowing fast processing. Our framework outperforms the state-of-the-art solutions in terms of privacy protection and trading flexibility in a prosumer-to-prosumer design
    corecore