6 research outputs found

    Distributed All-IP Mobility Management Architecture Supported by the NDN Overlay

    Get PDF
    Two of the most promising candidate solutions for realizing the next-generation all-IP mobile networks are Mobile IPv6 (MIPv6), which is the host-based and global mobility supporting protocol, and Proxy MIPv6 (PMIPv6), which is the network-based and localized mobility supporting protocol. However, the unprecedented growth of mobile Internet traffic has resulted in the development of distributed mobility management (DMM) architecture by the Internet engineering task force DMM working group. The extension of the basic MIPv6 and PMIPv6 to support their distributed and scalable deployment in the future is one of the major goals of the DMM working group. We propose an all-IP-based mobility management architecture that leverages the concept of Named Data Networking (NDN), which is a distributed content management and addressing architecture. In the proposed solution, mobility support services are distributed among multiple anchor points at the edge of the network, thereby enabling a flat architecture that exploits name-based routing in NDN. Our approach overcomes some of the major limitations of centralized IP mobility management solutions, by extending existing routing protocol and mobility management architecture, to distribute the mobility management function of anchor points in the IP network and optimize the transmission path of mobile traffic

    Trust Management for Vehicular Networks: An Adversary-Oriented Overview

    Full text link
    © 2016 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more informationCooperative Intelligent Transportation Systems, mainly represented by vehicular ad hoc networks (VANETs), are among the key components contributing to the Smart City and Smart World paradigms. Based on the continuous exchange of both periodic and event triggered messages, smart vehicles can enhance road safety, while also providing support for comfort applications. In addition to the different communication protocols, securing such communications and establishing a certain trustiness among vehicles are among the main challenges to address, since the presence of dishonest peers can lead to unwanted situations. To this end, existing security solutions are typically divided into two main categories, cryptography and trust, where trust appeared as a complement to cryptography on some specific adversary models and environments where the latter was not enough to mitigate all possible attacks. In this paper, we provide an adversary-oriented survey of the existing trust models for VANETs. We also show when trust is preferable to cryptography, and the opposite. In addition, we show how trust models are usually evaluated in VANET contexts, and finally, we point out some critical scenarios that existing trust models cannot handle, together with some possible solutions.This work was supported by the Ministerio de Economia y Competitividad, Programa Estatal de Investigacion, Desarrollo e Innovacion Orientada a los Retos de la Sociedad, Proyectos I+D+I 2014, Spain, under Grant TEC2014-52690-R.Kerrache, CA.; Tavares De Araujo Cesariny Calafate, CM.; Cano Escribá, JC.; Lagraa, N.; Manzoni, P. (2016). Trust Management for Vehicular Networks: An Adversary-Oriented Overview. IEEE Access. 4:9293-9307. https://doi.org/10.1109/ACCESS.2016.2645452S92939307

    TEAM: A Trust Evaluation and Management Framework in Context-Enabled Vehicular Ad-Hoc Networks

    Get PDF
    Vehicular ad-hoc network (VANET) provides a unique platform for vehicles to intelligently exchange critical information, such as collision avoidance messages. It is, therefore, paramount that this information remains reliable and authentic, i.e., originated from a legitimate and trusted vehicle. Trust establishment among vehicles can ensure security of a VANET by identifying dishonest vehicles and revoking messages with malicious content. For this purpose, several trust models (TMs) have been proposed but, currently, there is no effective way to compare how they would behave in practice under adversary conditions. To this end, we propose a novel trust evaluation and management (TEAM) framework, which serves as a unique paradigm for the design, management, and evaluation of TMs in various contexts and in presence of malicious vehicles. Our framework incorporates an asset-based threat model and ISO-based risk assessment for the identification of attacks against critical risks. The TEAM has been built using VEINS, an open source simulation environment which incorporates SUMO traffic simulator and OMNET++ discrete event simulator. The framework created has been tested with the implementation of three types of TMs (data oriented, entity oriented, and hybrid) under four different contexts of VANET based on the mobility of both honest and malicious vehicles. Results indicate that the TEAM is effective to simulate a wide range of TMs, where the efficiency is evaluated against different quality of service and security-related criteria. Such framework may be instrumental for planning smart cities and for car manufacturers

    StabTrust-A Stable and Centralized Trust-Based Clustering Mechanism for IoT Enabled Vehicular Ad-Hoc Networks

    Get PDF
    Vehicular Ad-hoc Network (VANET) is a modern era of dynamic information distribution among societies. VANET provides an extensive diversity of applications in various domains, such as Intelligent Transport System (ITS) and other road safety applications. VANET supports direct communications between vehicles and infrastructure. These direct communications cause bandwidth problems, high power consumption, and other similar issues. To overcome these challenges, clustering methods have been proposed to limit the communication of vehicles with the infrastructure. In clustering, vehicles are grouped together to formulate a cluster based on certain rules. Every cluster consists of a limited number of vehicles/nodes and a cluster head (CH). However, the significant challenge for clustering is to preserve the stability of clusters. Furthermore, a secure mechanism is required to recognize malicious and compromised nodes to overcome the risk of invalid information sharing. In the proposed approach, we address these challenges using components of trust. A trust-based clustering mechanism allows clusters to determine a trustworthy CH. The novel features incorporated in the proposed algorithm includes trust-based CH selection that comprises of knowledge, reputation, and experience of a node. Also, a backup head is determined by analyzing the trust of every node in a cluster. The major significance of using trust in clustering is the identification of malicious and compromised nodes. The recognition of these nodes helps to eliminate the risk of invalid information. We have also evaluated the proposed mechanism with the existing approaches and the results illustrate that the mechanism is able to provide security and improve the stability by increasing the lifetime of CHs and by decreasing the computation overhead of the CH re-selection. The StabTrust also successfully identifies malicious and compromised vehicles and provides robust security against several potential attacks.This work was supported by the Deanship of Scientific Research, King Saud University through the Vice Deanship of Scientific Research Chairs. The authors are grateful to the Deanship of Scientific Research, King Saud University for funding through Vice Deanship of Scientific Research Chairs

    On the realization of VANET using named data networking: On improvement of VANET using NDN-based routing, caching, and security

    Get PDF
    Named data networking (NDN) presents a huge opportunity to tackle some of the unsolved issues of IP-based vehicular ad hoc networks (VANET). The core characteristics of NDN such as the name-based routing, in-network caching, and built-in data security provide better management of VANET proprieties (e.g., the high mobility, link intermittency, and dynamic topology). This study aims at providing a clear view of the state-of-the-art on the developments in place, in order to leverage the characteristics of NDN in VANET. We resort to a systematic literature review (SLR) to perform a reproducible study, gathering the proposed solutions and summarizing the main open challenges on implementing NDN-based VANET. There exist several related studies, but they are more focused on other topics such as forwarding. This work specifically restricts the focus on VANET improvements by NDN-based routing (not forwarding), caching, and security. The surveyed solution herein presented is performed between 2010 and 2021. The results show that proposals on the selected topics for NDN-based VANET are recent (mainly from 2016 to 2021). Among them, caching is the most investigated topic. Finally, the main findings and the possible roadmaps for further development are highlighted

    Named Data Networking in Vehicular Ad hoc Networks: State-of-the-Art and Challenges

    Get PDF
    International audienceInformation-Centric Networking (ICN) has been proposed as one of the future Internet architectures. It is poised to address the challenges faced by today's Internet that include, but not limited to, scalability, addressing, security, and privacy. Furthermore, it also aims at meeting the requirements for new emerging Internet applications. To realize ICN, Named Data Networking (NDN) is one of the recent implementations of ICN that provides a suitable communication approach due to its clean slate design and simple communication model. There are a plethora of applications realized through ICN in different domains where data is the focal point of communication. One such domain is Intelligent Transportation System (ITS) realized through Vehicular Ad hoc NETwork (VANET) where vehicles exchange information and content with each other and with the infrastructure. To date, excellent research results have been yielded in the VANET domain aiming at safe, reliable, and infotainment-rich driving experience. However, due to the dynamic topologies, host-centric model, and ephemeral nature of vehicular communication, various challenges are faced by VANET that hinder the realization of successful vehicular networks and adversely affect the data dissemination, content delivery, and user experiences. To fill these gaps, NDN has been extensively used as underlying communication paradigm for VANET. Inspired by the extensive research results in NDN-based VANET, in this paper, we provide a detailed and systematic review of NDN-driven VANET. More precisely, we investigate the role of NDN in VANET and discuss the feasibility of NDN architecture in VANET environment. Subsequently, we cover in detail, NDN-based naming, routing and forwarding, caching, mobility, and security mechanism for VANET. Furthermore, we discuss the existing standards, solutions, and simulation tools used in NDN-based VANET. Finally, we also identify open challenges and issues faced by NDN-driven VANET and highlight future research directions that should be addressed by the research community
    corecore