5 research outputs found

    Vehicular Edge Cloud Computing: Depressurize the Intelligent Vehicles Onboard Computational Power

    Full text link
    Recently, with the rapid development of autonomous vehicles and connected vehicles, the demands of vehicular computing keep continuously growing. We notice a constant and limited onboard computational ability can hardly keep up with the rising requirements of the vehicular system and software application during their long-term lifetime, and also at the same time, the vehicles onboard computation causes an increasingly higher vehicular energy consumption. Therefore, we suppose to build a vehicular edge cloud computing (VECC) framework to resolve such a vehicular computing dilemma. In this framework, potential vehicular computing tasks can be executed remotely in an edge cloud within their time latency constraints. Simultaneously, an effective wireless network resources allocation scheme is one of the essential and fundamental factors for the QoS (quality of Service) on the VECC. In this paper, we adopted a stochastic fair allocation (SFA) algorithm to randomly allocate minimum required resource blocks to admitted vehicular users. The numerical results show great effectiveness of energy efficiency in VECC.Comment: 2018 IEEE 21st International Conference on Intelligent Transportation Systems (ITSC

    On the Optimality of Task Offloading in Mobile Edge Computing Environments

    Get PDF
    Mobile Edge Computing (MEC) has emerged as new computing paradigm to improve the QoS of users' applications. A challenge in MEC is computation (task/data) offloading, whose goal is to enhance the mobile devices' capabilities to face the requirements of new applications. Computation offloading faces the challenges of where and when to offload data to perform computing (analytics) tasks. In this paper, we tackle this problem by adopting the principles of Optimal Stopping Theory contributing with two time-optimized sequential decision making models. A performance evaluation is provided using real world data sets compared with baseline deterministic and stochastic models. The results show that our approach optimizes such decision in single user and competitive users scenarios

    Delay-tolerant sequential decision making for task offloading in mobile edge computing environments

    Get PDF
    In recent years, there has been a significant increase in the use of mobile devices and their applications. Meanwhile, cloud computing has been considered as the latest generation of computing infrastructure. There has also been a transformation in cloud computing ideas and their implementation so as to meet the demand for the latest applications. mobile edge computing (MEC) is a computing paradigm that provides cloud services near to the users at the edge of the network. Given the movement of mobile nodes between different MEC servers, the main aim would be the connection to the best server and at the right time in terms of the load of the server in order to optimize the quality of service (QoS) of the mobile nodes. We tackle the offloading decision making problem by adopting the principles of optimal stopping theory (OST) to minimize the execution delay in a sequential decision manner. A performance evaluation is provided using real world data sets with baseline deterministic and stochastic offloading models. The results show that our approach significantly minimizes the execution delay for task execution and the results are closer to the optimal solution than other offloading methods

    An SOA-Based Framework of Computational Offloading for Mobile Cloud Computing

    Get PDF
    Mobile Computing is a technology that allows transmission of audio, video, and other types of data via a computer or any other wireless-enabled device without having to be connected to a fixed physical link. Despite increasing usage of mobile computing, exploiting its full potential is difficult due to its inherent problems such as resource scarcity, connection instability, and limited computational power. In particular, the advent of connecting mobile devices to the internet offers the possibility of offloading computation and data intensive tasks from mobile devices to remote cloud servers for efficient execution. This proposed thesis develops an algorithm that uses an objective function to adaptively decide strategies for computational offloading according to changing context information. By following the style of Service-Oriented Architecture (SOA), the proposed framework brings cloud computing to mobile devices for mobile applications to benefit from remote execution of tasks in the cloud. This research discusses the algorithm and framework, along with the results of the experiments with a newly developed system for self-driving vehicles and points out the anticipated advantages of Adaptive Computational Offloading

    The Challenges of Adopting Cloud Computing in Nigerian Government Organizations

    Get PDF
    Several technical challenges prevent the adoption of cloud computing by government organizations in Nigeria. Information technology (IT) leaders in the Nigerian government are concerned about this problem because the lack of cloud computing adoption may prevent the Nigerian government from taking advantage of cloud-based information systems to improve its service delivery to citizens and businesses. Grounded in the technology acceptance model, the purpose of this quantitative correlational study was to examine if IT administrators’ perception of data security and perception of fault tolerance can predict their intentions to adopt cloud computing. Data were collected from 79 IT administrators in government organizations in Nigeria. The results of the multiple regression were significant, F(2, 76) = 31.58, p \u3c .001, R2 = 0.45, with IT administrators’ perception of data security (β = .72, p \u3c .001) being the only significant predictor of IT administrators’ intention to adopt cloud computing; IT administrators’ perception of fault tolerance (β = .09, p = .37) was not a significant predictor of IT administrators’ intention to adopt cloud computing. The Nigerian government may use this study as a pedestal to measure cloud computing practice and maturity in all its organizations, improve existing cloud computing policies, and increase cloud computing training programs for its IT administrators. This study’s results might contribute to positive social change by helping the Nigerian government improve its service delivery to citizens and businesses through the increased adoption of cloud computing-based information systems
    corecore