
University of Windsor University of Windsor 

Scholarship at UWindsor Scholarship at UWindsor 

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers 

1-1-2019 

An SOA-Based Framework of Computational Offloading for Mobile An SOA-Based Framework of Computational Offloading for Mobile 

Cloud Computing Cloud Computing 

Rajasi D. Upadhyay 
University of Windsor 

Follow this and additional works at: https://scholar.uwindsor.ca/etd 

Recommended Citation Recommended Citation 
Upadhyay, Rajasi D., "An SOA-Based Framework of Computational Offloading for Mobile Cloud Computing" 
(2019). Electronic Theses and Dissertations. 8185. 
https://scholar.uwindsor.ca/etd/8185 

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor 
students from 1954 forward. These documents are made available for personal study and research purposes only, 
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution, 
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder 
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would 
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or 
thesis from this database. For additional inquiries, please contact the repository administrator via email 
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208. 

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F8185&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/8185?utm_source=scholar.uwindsor.ca%2Fetd%2F8185&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca


 

 

An SOA-Based Framework of Computational Offloading for Mobile 

Cloud Computing 

 

By 

 

Rajasi Upadhyay 

 

 

A Thesis 

Submitted to the Faculty of Graduate Studies 

Through Computer Science 

In Partial Fulfilment of the Requirements for 

The Degree of Master of Science at the 

University of Windsor 

 

Windsor, Ontario, Canada 

2019 

 

© 2019 Rajasi Upadhyay 

 

 

 

 



An SOA-Based Framework of Computational Offloading for Mobile Cloud 

Computing 

by 

Rajasi Upadhyay 

APPROVED BY: 

_______________________________________ 

M. Monfared

Department of Mathematics and Statistics 

______________________________________________ 

J. Lu

School of Computer Science 

______________________________________________ 

X. Yuan, Advisor

School of Computer Science 

December 16th 2019



 

iii 
 

DECLARATION OF ORIGINALITY 

I hereby confirm that I am the sole creator of this theory, and no piece of this 

proposition has been distributed or submitted for production. 

I approve to the best of my insight, my proposition does not encroach upon 

anybody's copyright nor damage any restrictive rights and their thoughts, methods, 

citations, or some other material crafted by other individuals incorporated into my 

postulation, circulation or something else, and are entirely recognized as per the 

standard referencing hone. Moreover, I have included copyrighted material that 

outperforms the limits of reasonable managing inside the significance of the Canada 

Copyright Act. I affirm to acquire a composed consent from the copyright owner(s) 

to incorporate such material(s) in my postulation and have included duplicates of 

such copyright clearances to my reference section.  

I pronounce that this is a genuine copy of my thesis, including any last updates, 

as affirmed by my thesis advisory group and the Graduate Studies office, and this 

theory has not been submitted for a higher degree to some other University or 

Institution. 

  



 

iv 
 

ABSTRACT 

Mobile Computing is a technology that allows transmission of audio, video, and 

other types of data via a computer or any other wireless-enabled device without 

having to be connected to a fixed physical link. Despite increasing usage of mobile 

computing, exploiting its full potential is difficult due to its inherent problems such 

as resource scarcity, connection instability, and limited computational power. In 

particular, the advent of connecting mobile devices to the internet offers the 

possibility of offloading computation and data intensive tasks from mobile devices 

to remote cloud servers for efficient execution. This proposed thesis develops an 

algorithm that uses an objective function to adaptively decide strategies for 

computational offloading according to changing context information. By following 

the style of Service-Oriented Architecture (SOA), the proposed framework brings 

cloud computing to mobile devices for mobile applications to benefit from remote 

execution of tasks in the cloud. This research discusses the algorithm and 

framework, along with the results of the experiments with a newly developed system 

for self-driving vehicles and points out the anticipated advantages of Adaptive 

Computational Offloading.  

 

 

 

 

 

 

 

 

 

 



 

v 
 

DEDICATION 

Dedicated to God, my grandparents, my beloved mummy and papa without whose 

support, I would not have made it this far, my loving sister, my supportive brother-

in-law, my adorable nephew, my dear cousins and the rest of my family and friends. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

vi 
 

ACKNOWLEDGEMENTS 

First and foremost, I would like to express profound thankfulness to my supervisor, 

Dr. Xiaobu Yuan, who has supported me throughout my thesis with his knowledge 

and expertise in this exciting field of research. His ideas and suggestions have helped 

me become more creative, without which I would not have been able to complete 

this research.  

I want to offer my sincere gratitude to the advisory group members, Dr. Jianguo Lu 

and Dr. Mehdi Monfared, for their significant remarks and recommendations for my 

research. 

I want to thank all my friends, especially Saurav Agrawal, Rachit Tomar, and 

Chandini Nair, who have supported and helped me throughout my studies here in 

Canada. I also thank my parents and family for their blessings and financial support, 

which enabled me to complete my studies successfully. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

vii 
 

TABLE OF CONTENTS 

 

DECLARATION OF ORIGINALITY .................................................................... iii 

ABSTRACT ............................................................................................................. iv 

DEDICATION .......................................................................................................... v 

ACKNOWLEDGEMENTS ..................................................................................... vi 

LIST OF TABLES ................................................................................................... ix 

LIST OF ABBREVIATIONS/SYMBOLS ............................................................... x 

LIST OF FIGURES ................................................................................................ xii 

 CHAPTER 1 INTRODUCTION .......................................................................... 1 

1.1 Mobile Computing ............................................................................................... 1 

1.2 Mobile Cloud Ecosystem ..................................................................................... 2 

1.2.1 Applications ................................................................................................. 3 

1.2.2 Network........................................................................................................ 3 

1.2.3 Execution Platform ...................................................................................... 3 

1.3 Mobile Cloud Computing .................................................................................... 4 

1.3.1 Mobile Cloud Computing: Service-Oriented Architecture .......................... 4 

1.3.2 Mobile Cloud Computing: Computational Offloading ................................ 5 

1.4 Challenges in Computational Offloading for Mobile Cloud Computing ............. 6 

1.5 Problem statement ............................................................................................ 7 

1.6 Motivation ............................................................................................................ 7 

1.7 Thesis contribution ........................................................................................... 8 

1.8 Structure of the thesis ........................................................................................... 8 

CHAPTER 2 LITERATURE REVIEW ............................................................... 9 

2.1 Techniques for Computational Offloading .......................................................... 9 

2.1.1 Code Migration ............................................................................................ 9 

2.1.2 Offloading by Replication ............................................................................ 9 

2.1.3 Placement and Scheduling ......................................................................... 10 

2.1.4 Cuckoo Design ........................................................................................... 10 

2.2 Background Study .............................................................................................. 11 

2.3 Related works..................................................................................................... 19 

CHAPTER 3 PROPOSED METHODOLOGY ................................................. 23 

3.1 General System Structure ........................................................................................ 23 

3.2 Proposed Computational Offloading System ........................................................... 24 



 

viii 
 

3.2.1 Service-Oriented Architecture .......................................................................... 24 

3.2.2 Computational Offloading for Mobile Cloud Computing Architecture ............ 25 

3.3 Overall Flowchart .............................................................................................. 30 

CHAPTER 4 IMPLEMENTATION AND EXPERIMENTS ........................... 33 

4.1 Software information ............................................................................................... 33 

4.2 Datasets used in the implementation ........................................................................ 33 

4.3 A New System for Self-Driving Vehicles ................................................................ 34 

4.3.1 Code Partitioning .............................................................................................. 36 

4.3.2 Implementation of the SOA System ................................................................. 36 

4.4 Implementation of Context Monitor ........................................................................ 40 

4.5 Implementation of Decision Making Engine ........................................................... 42 

4.6 Implementation of Communication Manager and Offloading Planner .................... 49 

4.7 Comparison and Discussion ..................................................................................... 50 

CHAPTER 5 CONCLUSION AND FUTURE WORK ..................................... 52 

5.1 Conclusion ............................................................................................................... 52 

5.2 Future work .............................................................................................................. 53 

REFERENCES ...................................................................................................... 54 

VITA AUCTORIS ................................................................................................ 59 

 

 

 

 

 

 

 

 

 

 

 



 

ix 
 

LIST OF TABLES 

Table 2.1: Review of research work based on offloading …………………………22  

Table 4.1: List of tools used for implementation and experiments ………………..33 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

x 
 

 

LIST OF ABBREVIATIONS/SYMBOLS 

QoS Quality of Service 

MCC Mobile Cloud Computing 

SOA Service-Oriented Architecture 

SLA Service Level Agreement 

ILP Integer Linear Programming 

LP Linear Programming 

COSMOS Computation Offloading as a Service for Mobile devices 

CPU Central Processing Unit 

UI User Interface 

OBU On-board Unit 

MACS Mobile Augmentation Cloud Services 

EEQoSA Energy-Efficient and Quality-of-Service Architecture 

HSS Home Subscriber Server 

IPMS Internet Protocol Multimedia Subsystem 

SRI Subscription-Related Information 

LU Location Update 

PRR Periodic Re-Registration 

RRCC Re-Registration for Change Capabilities 

MRA Media Resource Agent 

MRFC Media Resource Function Controller 

WP Weight value of Performance 

WM Weight value of Memory 



 

xi 
 

WE Weight value of Economic Cost 

3D 3-Dimensional 

2D 2-Dimensional 

VGI Volunteered Graphic Information 

API Application Programming Interface 

HTTP HyperText Transfer Protocol 

XML Extensible Markup Language 

RCNN Region Convolutional Neural Network 

SSID Service Set Identifier 

AWS Amazon Web Services 

URL Uniform Resource Locator 

CAD Canadian Dollar 

EC2 Elastic Cloud Compute 

AMI Amazon Machine Image 

RDP Remote Desktop Protocol 

TCP Transmission Control Protocol 

 

 

 

 

 

 

 

 

 



 

xii 
 

 

LIST OF FIGURES 

 

Figure 1.1: Mobile Computing ……………………………………………..….…..1 

Figure 1.2 Applications of Mobile Computing…………………………………….2 

Figure 1.3: Mobile Cloud Ecosystem …………………………………..…...……...3 

Figure 1.4: Mobile Cloud Computing ……………………….……………………..4 

Figure 1.5: Computational Offloading ……………………..………………………5 

Figure 2.1: CloneCloud Execution model ……………………..………………….10 

Figure 2.2: Offloading using Cuckoo Framework ………………………………..11 

Figure 2.3: Taxonomy of computation augmentation techniques ………….……..16 

Figure 2.4: Taxonomy of Mobile Storage Augmentation …………….…………..17 

Figure 3.1: General System Structure for Offloading …………..…………………24  

Figure 3.2: Proposed System Structure for Offloading ……………………………25 

Figure 3.3: Context Monitor ………………………………………………………27 

Figure 3.4: Decision Making Engine ……………………………………………..29 

Figure 3.5: Communication Manager and Offloading Planner ……………………30 

Figure 3.6: Overall Flowchart of the Offloading System .……………………...….31 

Figure 4.1: Constructed 3D Virtual World ……………….……………………….34 

Figure 4.2: Constructed 3D Objects ……………………………………...……….34 

Figure 4.3: Overall system ……………………………………………………..…35 

Figure 4.4: Service Interaction among self-driving car modules…………………38 

Figure 4.5: Project’s Web Config file snapshot ……………………………….…..39 

Figure 4.6: Input image to fast algorithm…………………………………….……39 

Figure 4.7: Output of fast algorithm ……………………………………………....40 

Figure 4.8: Context Monitor Output UI …………………………………………..41 

Figure 4.9: Context Monitor Output in file ……………………………………….42 

Figure 4.10: Pop up for user’s consent..……………………………….…………..42 

Figure 4.11: Decision Making Engine Scenario 1………..……..…………...........43 

Figure 4.12: Decision Making Engine Scenario 2……………………………....…45 

Figure 4.13: Decision Making Engine Scenario 3………………………………...46 



 

xiii 
 

Figure 4.14: Code for cost calculation ……………………………………………47 

Figure 4.15: Decision Making Engine Scenario 4…...............................................48 

Figure 4.16: Decision Making Engine Scenario 5.………………………………...49 

Figure 4.17: AWS EC2 Windows Server Creation …………..……………………50 

Figure 4.18: Security Groups Configuration …………………………………...…50 

 



 

1 
 

 

CHAPTER 1 

INTRODUCTION 

 

The use and deployment of smartphone platforms and apps have increased phenomenally, around 

the globe. We use mobile devices for various tasks like communicating in different ways, sending 

emails, online banking, browsing internet, watching videos, using social media and navigating 

using online maps. Different applications are available for performing these tasks. Due to the 

increasing growth of mobile applications and demands of users, the Quality of Service (QoS) is 

obstructed by restrictions at the mobile end such as resource limitations, finite energy, limited 

available connectivity and shared wireless medium. Since the resources of the mobile devices are 

not enough for performing computation-intensive and resource-intensive tasks like image 

recognition and natural language processing, the concept of Mobile Cloud Computing is used. 

Mobile Cloud Computing (MCC) addresses these resource constraints by incorporating cloud 

computing into the mobile environment. This is done by using Computational Offloading, which 

involves enabling resource-intensive applications to be executed on remote cloud servers. 

1.1 Mobile Computing 

Mobile Computing is a technology that enables data, voice, and video to be transmitted using a 

device like a laptop without connecting to a fixed physical connection [1].  

 

Figure 1.1: Mobile Computing 



 

2 
 

 

There are three basic concepts of mobile computing - portable hardware, mobile software, and 

mobile communication. Portable hardware includes mobile phones, and other gadgets available in 

the market that can support mobile computing on devices. Some examples of such portable 

hardware are smart phones, tablet PCs, laptops, etc. Mobile software includes various applications 

like web browsers, maps, and games. Mobile communication includes communication channels 

like Wi-Fi, Bluetooth, and cellular networks. There are numerous applications of Mobile 

Computing as shown in Figure 1.2, when used with wireless networks. However, there are various 

constraints on mobile computing like resource limitations, mobile connectivity, finite energy, and 

security.  

 

 

Figure 1.2 Applications of Mobile Computing [49] 

1.2 Mobile Cloud Ecosystem 

We explain mobile cloud ecosystem and its different components, in this section. We also discuss 

the Quality of Experience (QoE) of a user to study the impact of mobile cloud ecosystem. In this 

ecosystem, the mobile system and the cloud system are connected by network. Hence, the 

ecosystem consists of three distinct components [2]:  

1. Mobile System  

2. Network  



 

3 
 

3. Cloud System 

The QoE of a user is affected by the three above-mentioned components of the mobile cloud 

ecosystem as shown in Figure 1.3. The QoE, in turn, has four components – memory usage, energy 

consumption, monetary cost, and data transmission rate. The environmental parameters in mobile 

cloud ecosystem are categorized into following three components based on the source of variation 

– applications, network, and execution platform. 

1.2.1 Applications 

Some mobile applications are computation and resource-intensive e.g., Object Recognition, Map 

Reconstruction, Image Search, etc. while other applications like Text Editor, Web Browser, etc. 

are not. These applications impose varying requirements on the mobile system. Handling these 

variations for a mobile system is a major challenge. 

 

Figure 1.3: Mobile Cloud Ecosystem 

1.2.2 Network 

There are several types of wireless networks (cellular network, Wi-Fi, Bluetooth) available today. 

However, wireless networks are not reliable and stable since the location of mobile devices keeps 

changing from time to time. Also, the signal strength is different when mobile devices are moving. 

Mobile systems are required to adapt to these changes and continue to function seamlessly. 

1.2.3 Execution Platform    

The executing platform refers to the mobile devices and the remote cloud servers. Organization 

and hardware of mobile devices, and the cloud systems have a number of variations. A mobile 



 

4 
 

system should be adaptive to these changes since it is not feasible to develop a separate system for 

each configuration. 

1.3 Mobile Cloud Computing 

It is hard to exploit the complete potential of mobile computing despite its growing use. This is 

due to its intrinsic issues such as resource scarcity, frequent disconnections, and mobility. These 

issues can be addressed using Mobile Cloud Computing by executing mobile applications on 

external resources i.e. the cloud. By extending the storage and computing capabilities of mobile 

devices, cloud resources are utilized, and hence, mobile cloud computing is used to expand the 

mobile cloud ecosystem [3]. 

 

Figure 1.4: Mobile Cloud Computing 

1.3.1 Mobile Cloud Computing: Service-Oriented Architecture 

Service-Oriented Architecture (SOA) is an architecture used for developing distributed and 

interoperable applications [4]. A distributed application has application components that run in 

various nodes of the computer. In other words, an application (desktop or internet) that runs at one 

place in one system and utilizes some features or business logic from another system somewhere 

in the world. An interoperable application means one application developed in one language; for 

example, Python, can communicate with another application developed using another language 

such as C#. The service-oriented approach can provide a reduction in network cost. 

Communication overhead can also be decreased considerably as the network transactions mainly 



 

5 
 

contain only information related to the task and not all of its code. Hence, SOA can be used to 

provide cloud computing services to mobile applications, where task functionalities are provided 

as services [5]. 

1.3.2 Mobile Cloud Computing: Computational Offloading 

As mentioned earlier, the user expects the mobile system to run a variety of applications. However, 

a mobile system is constrained by different parameters at any point in time, such as memory 

limitation, the limited computation power of existing mobile processors, etc. Computation 

offloading aims to enable memory or computation-intensive applications on mobile systems by 

distributed execution of mobile applications. This is achieved by running a portion of the 

application from the mobile device to remote computation resources such as a cloud server. To 

enable distributed execution of a mobile application, the offloading framework must determine 

how to partition any application for scheduling on a mobile device and the cloud servers [2]. 

Even though Computational Offloading originated around the 1970s, its potential was widely 

explored only after wireless communication and Internet speed were improved sufficiently and 

were able to support it [53]. The offloading capacity depends primarily on technology such as 

cellular and WiFi networks, because these networks determine the feasibility of computational 

offloading. In today’s age, it has been seen in various scenarios where the Wi-Fi is able to deliver 

high bandwidth connections. Moreover, 5G network is receiving a lot of attention, as it can support 

increased network capacity and low latency and it paves the way for MCC to solve the problem of 

computing offloading.  

 

Figure 1.5: Computational Offloading 



 

6 
 

Hence, by using these wireless networks, offloading of the applications is performed to the cloud 

resources. Figure 1.5 represents the general architecture for computational offloading. Variations 

mentioned earlier in Section 1.2 such as applications, network, and execution platform should be 

handled while offloading. Also, the Quality of Experience of the user should be supported. 

1.4 Challenges in Computational Offloading for Mobile Cloud Computing 

Following challenges are taken into consideration based on the requirements of mobile devices 

[12]: 

1. Network Connectivity and Fault Tolerance 

As the mobile devices are constantly moving, freedom of movement and communication 

autonomy during the use of mobile cloud services are key criteria for the satisfaction of users. 

However, while on the move, there are some constraints that prevent seamless connectivity and 

uninterrupted access to cloud services. Data exchange rates and network bandwidth differ as 

mobile users travel. In addition, when sending or receiving data, users lose their connection in 

some locations; thus, appropriate fault-tolerant strategies should be provided for offloading 

approaches to resend the lost components and to reduce the response time.  

2. Automatic Mechanism 

There is still a need to automate the existing computing offloading frameworks. The automation 

makes the offloading process to be carried out seamlessly while taking the surrounding 

environment into consideration. It is not an easy task to perform this type of automation as it 

requires a protocol to define and discover services in accordance with the current context and its 

constraints. 

3. Diverse Platform  

The diversity and heterogeneity of mobile device architectures and operating systems are some of 

the issues in the current computing offloading frameworks. Consistent access to cloud services is 

required where mobile devices can access cloud computing services irrespective of the operating 

system installed or the hardware used. A standardized offloading system for various mobile 

platforms is still a challenging problem in the field of MCC. 



 

7 
 

4. Offloading Cost 

The usage of cloud resources imposes financial costs on end-users who are required to pay in 

compliance with the Service Level Agreement (SLA) decided with the cloud provider supporting 

them. Content offloading and data transfer operations between cloud providers typically incur 

additional costs for end-users. Economic factors should, therefore, be taken into account when 

making offloading decisions.  

1.5 Problem statement 

Since the context of a mobile device is varying from time to time, the computational offloading 

strategy should adjust itself dynamically in order to achieve the best energy-efficiency, get the best 

performance consumption and reduce the monetary cost according to the change of these context 

information. Besides, because of the inherent intricacy of the context on which mobile devices are 

executing, the computational offloading strategy should adapt itself automatically, rather than 

adjust itself manually. As to be discussed in the literature survey (Chapter 2), various methods are 

used in offloading. However, some of them are manual, some are not flexible, and some are just 

surveys which do not provide specific formulas that can be used for offloading. For solving these 

problems caused by changes in the context of mobile devices, an SOA based offloading framework 

is proposed using Mobile Cloud Computing (MCC). This framework adapts itself and make a 

proper decision of the offloading strategy according to the changes in the context information. 

There is a service selection mechanism which selects the required service from several services. 

1.6 Motivation 

The introduction of the connectivity of the mobile device to the Internet offers the possibility of 

offloading computation-intensive and resource-intensive tasks from the mobile device to remote 

cloud servers for efficient execution. However, as mentioned in Section 1.4, there are several 

challenges in Computational Offloading for Mobile Cloud Computing, such as  Network 

Connectivity and Fault Tolerance, Automatic Mechanism, Diverse Platform, and Offloading Cost. 

Due to these limitations, none of the existing approaches are able to solve all the issues, hence, not 

allowing the users to the exploit full potential of the devices. Hence, this thesis covers the problems 

mentioned above by creating an SOA-based system of Computational Offloading for Mobile 

Cloud Computing. This novel system for bringing Mobile Cloud Computing to mobile devices 



 

8 
 

creates benefits by remote execution of various application tasks that are provided as services. This 

system is advantageous to the end-users in terms of cost reduction, faster, and better performance. 

1.7 Thesis contribution 

Major contributions of this research work can be summarized as follows: 

1. Created an Objective Function for deciding the executing location of a service:   

OF = P(s1,s2,…,sn)*WP + M(s1,s2,…,sn)*WM + E(s1,s2,…,sn)*WE,  

where s represents the services, P represents Performance(computation), M represents 

Memory, E represents Economic Cost, WP represents the weight value of Performance, 

WM represents the weight value of Memory and WE represents the weight value of 

Economic Cost. 

2. Created an offloading framework. Depending on the adaptive objective function and the 

changing context information, this offloading framework generates a most appropriate 

offloading strategy at a certain time. 

3. Converted different self-driving modules to an SOA based system for better maintenance 

and easier expansion.  

4. Performed number of experiments on the SOA based system to verify that the adaptive 

offloading framework, the adaptive objective function, and an adaptive service selection 

mechanism achieve the best power consumption efficiency, get the satisfying performance 

and reduce the monetary cost according to the changing context on which mobile device 

such as mobiles, cars, etc. are executing. 

1.8 Structure of the thesis 

Chapter 2 extensively discusses the background study and related works about Computational 

Offloading in Mobile Cloud Computing. Chapter 3 explains the proposed system thoroughly with 

the overall working of the Offloading System. In Chapter 4, we explore the details about the 

implementation, different scenarios that were considered during the implementation of the 

proposed idea, and the experimental results. Finally, in Chapter 5 we conclude the thesis and 

provide our future work. 

 



 

9 
 

 

CHAPTER 2 

LITERATURE REVIEW 

 

This chapter explains the different methods which can be used to implement computational 

offloading. The chapter further discusses the various works done so far using the computational 

offloading technique. 

2.1 Techniques for Computational Offloading 

2.1.1 Code Migration 

Code Migration is a computational offloading method where the source code is offloaded to remote 

machines at run time. There are several works which have adopted this method. MAUI [6] is one 

among them. In MAUI, the specific annotated parts of the code are offloaded to a middlebox. For 

making the decision of identifying the partitions that are needed to be offloaded, MAUI uses the 

concept of Integer Linear Programming (ILP). Linear Programming is a mathematical model used 

for solving decision problems having many decision variables that are limited by a set of 

constraints. ILP is a subbranch of Linear Programming (LP) where the decision variables are 

constrained to hold integer values. Another work which uses Code Migration is ThinkAir [7], in 

which, the author has allotted virtual machines for executing the application code partitions at run 

time. However, it causes high management overhead if the virtual machines are commissioned at 

runtime. In COSMOS: computation offloading as a service for mobile devices [8], task allocation 

is managed and offloaded to cloud instance on virtual machines. This method, however, is 

customized for Android x86 processor only.  

2.1.2 Offloading by Replication 

Offloading by Replication is the method in which the characteristics of the mobile device are 

cloned to the remote machines. CloneCloud [9] proposed this method for optimizing the 

computation of the mobile device. It mainly focuses on improving the performance and battery 

life. For partitioning of applications, they used thread-level granularity in this framework. Static 

program analysis for discovery of migration constraints and program profiling for building cost 



 

10 
 

models are combined to find the offloadable components. In this work, the offloading decision is 

taken at run time, and cloning is performed by migrating the threads from mobile devices to the 

cloud. However, it is an inefficient process to clone the already existing components. Another 

work that replicates the code execution on remote server or cloud and mobile device is Tango [10]. 

It replicates and then selects the one which has the minimum response time. Although replicating 

the same is an impractical process.  

 

Figure 2.1: CloneCloud Execution model 

2.1.3 Placement and Scheduling 

Another technique for offloading is Placement and Scheduling. In this technique, Mahmoodi et al. 

[11] has designed an analytical framework towards scheduling for offloading, but the practicality 

is in question based on the assumptions about the network conditions. Considering those unfeasible 

assumptions, we can say that it is better to address the problem from a system point of view and 

build mechanisms that are practically viable.  

2.1.4 Cuckoo Design 

The cuckoo design was proposed for offloading from smartphones that run on the android platform 

to the cloud [12]. In this method, the author has used Java stub model for offloading, which 

integrates the Eclipse development tool with the open-source Android framework. This model 

supports both local and on-cloud execution of the code and works on an already existing 

activity/service model in android. By using that, it distinguishes between intensive and non-



 

11 
 

intensive components of the application. In this design, static code partitioning is done in which a 

part of the code that is needed to be offloaded to the remote server is pre-set by the mobile devices. 

However, it can be said that this method is a failure in today’s heterogeneous network environment. 

Therefore, to handle this heterogeneity, dynamic code partitioning was introduced.  

 

Figure 2.2: Offloading using Cuckoo Framework 

2.2 Background Study 

Many previous works have focused on Computational Offloading for Mobile Cloud Computing. 

Some of the papers use a function/formula to decide the location where the tasks need to be 

executed. For example, Kovachev et al. [20] provide a middleware MACS (Mobile Augmentation 

Cloud Services) that enables adaptive extension of Android application execution from a mobile 

device into cloud. Middleware is responsible for heavy lifting of application partitioning, resource 

monitoring, and computation offloading. The mobile applications are elastic, which can run as 

standard mobile applications and can also reach transparently remote computing resources. In a 

MACS application, there is an application core, which cannot be offloaded, and there are multiple 

services (Si) that encapsulate separate application functionality which can be offloaded (SRi). The 

following metadata is profiled for each service:  

Memory cost – memory consumption of the service, 

Type – can be offloaded or not, 



 

12 
 

Transfer size – amount of data to be transferred, 

Send size – amount of data to be sent, 

Receive size – amount of data to be received, 

Code size – size of compiled code. 

For offloading, this approach considers k offloadable modules. For those modules, transfer size is 

tr1, tr2, … trk. Send size is send1, send2, … sendk and receive size is rec1, rec2, … reck. The cost 

function is depicted as follows: 

min
0,1

𝑥 (𝑐𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 ∗ 𝑤𝑡𝑟 + 𝑐𝑚𝑒𝑚𝑜𝑟𝑦 ∗ 𝑤𝑚𝑒𝑚 + 𝑐𝑐𝑝𝑢 ∗ 𝑤𝑐𝑝𝑢)  

The cost function is used to make the decision of executing the module locally or remotely. This 

framework, however, does not consider minimizing the execution cost and the network 

uncertainty. 

Considering the limitations of the MACS, Deng et al. [17] proposes the offloading framework in 

which services in workflows are invoked, and a decision is made on whether to offload the services 

or not. In this paper, an offloading system is proposed to address the issue of unstable network 

connectivity of mobile devices. This approach focusses on optimizing the energy consumption and 

execution time of mobile services. The offloading system is based on genetic algorithm. In the 

class of evolutionary algorithms, genetic algorithms are based on the concept of "survival of the 

fittest" [21]. By recombining a population's finest alternatives and mutating them now and then, 

one can solve extremely challenging issues for which writing programs would otherwise be 

hopelessly difficult. It uses a mobility enabled and fault-tolerance offloading system for making 

computation offloading decisions. The main goal of the offloading planner is to propose an optimal 

offloading strategy that will minimize energy consumption and execution time for the executing 

mobile applications (workflows). Function F(m) is used in the offloading strategy to make 

decisions. F(m) for each mobile device m is defined as: 

F(m) = 𝑤𝑚 ×  𝐿𝑚 + (1 − 𝑤𝑚) × 𝐸𝑚  



 

13 
 

Here,  𝑤𝑚 is the weight coefficient, 𝐿𝑚 is the overall execution time and 𝐸𝑚 is overall energy 

consumed when a workflow is executing.  

The author has covered the drawbacks of MACS and has also proposed an algorithm for optimized 

fault tolerance offloading. However, the algorithm presumes the user’s moving path, but there are 

other possibilities. 

As there are several assumptions made in the previous work, Ashok et al. [5] has proposed an 

architecture where the vehicular applications are remotely executed on the cloud, and the tasks are 

provided as services. Authors of this paper has also considered the network instability, which was 

a shortcoming of MACS framework. In this paper, firstly, the challenges are identified for cloud 

computing in vehicles. Challenges are a heterogeneous environment of the wireless network; 

different software and hardware architecture of the vehicle’s on-board unit (OBU) and cloud; 

seamless offloading of tasks. In this approach, the service-oriented approach is used to provide 

cloud computing services to the applications. Computation and data-intensive tasks are identified, 

and then an offloading framework is used in which the tasks marked as offloadable are executed 

as services and provided in the cloud. The online placement framework is used to make decisions 

of offloading the tasks to cloud, based on a set of variables and a set of costs. Variables are network 

speed, availability of the server, offloadable modules, and other optimization parameters. Costs 

include execution time of modules, storage space, CPU Usage, and energy expensed. For 

offloading, the framework follows two steps: Profiling and Conditioning. In profiling step, the 

information such as input (output) data sizes to (from) each module, depicted as din (dout), network 

uplink (Wup) and downlink (Wdown) speeds, the execution time of the module on the vehicle (e) 

and the cloud (e*) and the storage size of the module application code, depicted as s is obtained. 

In Conditioning step, those parameters are used to obtain Module Execution Time ratio, E, which 

is as follows: 

E = 
𝑒∗ +

𝑑𝑖𝑛

𝑊𝑢𝑝
+

𝑑𝑜𝑢𝑡

𝑊𝑜𝑢𝑡
 

𝑒
 

Based on the value of E, the decision for marking a module as offloadable is made. However, the 

modules to be offloaded are statically marked by the developer. Hence, the offloading is not 

dependent upon the actual context information.  



 

14 
 

This paper by Chen et al. [13] proposed a framework for context-aware Computation Offloading 

in Mobile Cloud Computing, which tries to provide a solution for the previous paper. As the 

previous paper by Ashok et al. [5] did not perform offloading based on the context information, 

this paper supports applications with the context-aware computation offloading capability. It is 

based on the working of mobile applications. In this approach, to enable an application to be 

offloaded, a design pattern is proposed. Then, for selecting the cloud resource, an estimation model 

is shown. After that, a framework is presented, which is implemented at the client-side and server-

side to support the previously mentioned design pattern and estimation model. In this framework, 

during the development of an application, the methods are classified into different categories. The 

first category is Anchored applications, which interact with input or output devices and external 

services, or which implement applications UI (User Interface). The second category is Movable 

applications, which can run either on different execution platforms like mobile device or cloud 

server. The parameters considered for evaluation are battery power consumption and execution 

time of the applications. The disadvantage of this method is that service-oriented architecture is 

not used. Hence, distributed and interoperable applications will not be supported. 

To take advantage of SOA’s benefits, Hani et al. [18] introduced a secure energy-efficient and 

quality-of-service architecture (EEQoSA) for mobile cloud handover. This is a service-oriented 

architecture, and consists of four layers: 

1. Application layer 

This layer consists of the home subscriber server (HSS) that interconnects with the cloud 

computing servers as an enterprise server. To maintain data communication, HSS links to 

Internet protocol multimedia subsystem (IPMS) layer. It includes subscription-related 

information (SRI) server, role manager server, and location update (LU) server. Before 

transferring the cloud data to a legitimate mobile cloud user, encryption is performed for 

secure data communication 

2. IPMS layer  

This layer provides utility services, like web browsing, email, video-on-demand, 

videoconferencing and Internet service. It includes a registration process that helps to 



 

15 
 

obtain updated location information from the mobile cloud user. IPMS uses a call session 

control function to bind a public user identity to the IP address of a mobile cloud user.  

3. Communication layer 

It routes the data and synchronizes the media and IPMS layers. The LU server starts the re-

registration process, comprising of two levels - periodic re-registration (PRR) and re-

registration for change capabilities (RRCC). These levels required the messaging process 

to complete the re-registration. Therefore, at the end of the handover process, the energy 

for registration should be calculated to determine the remaining power of the mobile 

device.  

4. Media with connectivity layer 

It consists of a media resource agent (MRA) and a media resource function controller 

(MRFC). MRA controls existing media resource function information and transmits the 

suitable information to the authentication server. MRFC combines the streams of media 

and manages the shared resources. It allows only authentic users to complete the re-

registration process after starting the handover and reduces the occurrence of extended 

delays during the handover. 

This architecture ensures the security of the data handover and guarantees Quality of Service; 

however, it only considers energy efficiency for the performance. 

Since all these previous works, which use different objective functions and algorithms for decision 

making has many limitations, we have designed a framework that considers all the parameters and 

can perform in a robust manner. Following are the survey papers that we reviewed for our research 

to obtain the information about various techniques used for offloading, the issues faced, and the 

solutions. 

In the paper by Bhattacharya et al. [2], a survey of state-of-the-art adaptive algorithms which are 

used for Computational Offloading is presented. The entities are described using a mobile-cloud 

ecosystem. Those are then used to define different sources of variation in the system. Due to the 

mobility of the mobile device, parameters change during the run time. Hence, the mobile-cloud 

ecosystem is used to define the parameters and the effect of those changing parameters. Different 

solutions are classified for adaptive offloading based on different parameters and their adaptable 



 

16 
 

solutions. For various offloading environments, there is a Quality of Experience metrics, including 

energy saved, monetary cost, etc. Finally, the effect of those parameters on the user’s Quality of 

Experience is provided.  

Another paper by Zhou et al. [15] provides a survey and future directions of the augmentation 

techniques that can be used for Mobile Cloud Computing. Augmentation techniques are computing 

models and solutions for outsourcing mobile device computing and storage to more strong 

computing resources that can improve the computing capacity and energy efficiency of a mobile 

device. Hence, these techniques are used to increase, enhance, and optimize the computing 

capabilities of mobile devices. It offers an extensive taxonomy and survey of current mobile cloud 

augmentation methods and frameworks for computing and storage. Taxonomy of computation 

augmentation techniques is provided, as shown in Figure 2.3. 

 

Figure 2.3: Taxonomy of computation augmentation techniques 



 

17 
 

This taxonomy addressed the methods and approaches used in mobile cloud augmentation to 

merge hybrid cloud resources into a shared mobile device resource pool that will provide reliable 

and energy-efficient computing outsourcing through a mobile cloud-as-a-service. 

Next is the taxonomy of storage augmentation, which is shown in Figure 2.4 in which data-oriented 

architecture for storing data on clouds and the mobile device cloud is discussed. It also studies 

various vital issues, like data protection and data interoperability. 

 

Figure 2.4: Taxonomy of Mobile Storage Augmentation 

The survey also analyzed different significant technical gaps for further study. 

The paper by Boukerche et al. [14] focusses on Sustainable Offloading in Mobile Cloud 

Computing. This survey provides a comparison of state-of-the-art works related to energy-aware 

offloading in the scope of MCC based offloading. They have gathered the existing studies and 

have classified those according to the perspective of the mobile device and the Cloud Performance. 

These aspects are observed in terms of the energy-aware offloading processing and the trade-off 

between energy reservation and execution efficiency. It includes information on algorithmic 

design and the implementation of various techniques. Critical analysis of the offloading techniques 

shows that the following three functionalities can be used for categorizing open issues:  

1. Task Partitioning 



 

18 
 

Task Partitioning functionality is based on compatibility and usability. Since the hardware 

of mobile device and cloud are different, it is difficult to process the mobile applications 

on cloud. Additionally, as the performance of task offloading is not officially defined, it is 

estimated by the developers, and the task partitioning is done by supportive Application 

programming interfaces (APIs). For using the traditional applications to execute on Mobile 

Cloud Computing flow, a remarkable amount of work is required. 

2. Profiling 

Profiling functionality gathers the profile information of the device like CPU Usage, 

battery value, network information, etc. which keeps changing continuously. In most cases 

the profile information is not accurate as the average of the specific interval is taken. 

3. Decision Making  

For any offloading system, decision making is the most critical and challenging part. The 

operation of decision making is dependent on the profiling step mentioned earlier. For the 

actual execution, the decision-making process uses the profiling information and provides 

result based on that.  

This paper then explains how these open issues are handled in various offloading techniques. 

Following that is the comparison between Grid Computing and Cloud Computing. Additionally, 

the network aspects are investigated, as it is an essential factor that affects the performance. Hence, 

all this information is gathered, and various solutions from existing studies are provided in terms 

of energy-aware offloading.  

Parsa et al. [19] proposes an approach to wrap the existing programs into web service layers, such 

that the component can be accessed through web services. In this approach, first, the code is 

analyzed, and then it is wrapped into a web service. The analysis phase determines a way of using 

the functions of the analyzed program into a web environment. It is done in four steps: Evaluation, 

Conversion, Reengineering, and Web Service Generation. A new code is obtained after the 

completion of these steps, which contains the valuable functions of the program. In the next step, 

the important functions are wrapped into web services by using Service Bus Class. The Service 

Bus Class acts as an intermediate between the existing system and web service. Its primary duty 



 

19 
 

is to migrate obtained functions to the external environment. These two steps are performed to 

create a tool which can be installed in a programming environment to wrap a program into service. 

2.3 Related works 

The table below gives the information about the work done so far by researchers in the area closely 

related to this research work; also, mentioned are year and contributions. 

 Research Paper Contributions Limitations 

Framework for 

context-aware 

computation 

offloading in 

mobile cloud 

computing by 

Chen X., Chen S., 

Zeng X., Zheng 

X., Zhang Y., and 

Rong C. (2017). 

- Proposes a design pattern for 

Computational Offloading 

- Presents estimation model to calculate 

reduced execution time and network 

delay then selects cloud resource for 

offloading 

- Implements a framework to support 

the design pattern and estimation model 

- The framework does not include 

resource-intensive applications. 

It only considers computation-

intensive applications. 

- Only execution time and power 

consumption are the considered 

parameters. Monetary Cost, 

Memory Consumption, and 

Economic Cost are not 

considered. 

- Service-oriented Architecture is 

not used in this approach; hence, 

the benefits of SOA, as discussed 

in Section 1.3.1, are not 

applicable.  

A survey of 

adaptation 

techniques in 

computation 

offloading by 

- Adaptive algorithms used for 

computation offloading are surveyed  

- Parameters that influence the mobile 

systems and offloading system are 

identified 

- This is a survey paper that just 

provides the information about 

different algorithms that are 

already developed. 

- It does not provide a new idea 

for Computational Offloading. 



 

20 
 

Bhattacharya A. 

and De P. (2017).  

- Solutions are classified for adaptive 

offloading based on the parameters that 

the system can adapt to 

 

Energy-efficient 

service-oriented 

architecture for 

mobile cloud 

handover by Hani 

Q. B. and Dichter 

J. P. (2017).  

- Introduces a secure energy-efficient 

and quality-of-service architecture 

(EEQoSA) for the handover process in 

the mobile cloud computing 

environment 

- It handles parameters like energy-

efficiency, security and QoS 

- Security parameter is 

considered in this paper, 

however, the experiments are not 

performed, so solutions for 

possible malicious attacks are not 

provided. 

- Parameters like Memory and 

Cost are not considered which 

shows that resource limitations of 

mobile devices are not taken into 

account. 

 

Augmentation 

techniques for 

mobile cloud 

computing: A 

taxonomy, 

survey, and future 

directions by 

Zhou B., and 

Buyya R. (2018). 

- This paper studies the augmentation 

techniques to increase, enhance, and 

optimize computing capabilities of 

mobile devices 

- It aims at execution of computation-

intensive and resource-intensive 

mobile applications 

- It mainly provides a guide on what 

available augmentation techniques can 

be adopted in mobile cloud computing 

systems 

- It only gives the information on 

existing taxonomies in the field 

and augmentation techniques that 

are already available for mobile 

cloud computing systems. 

- It does not provide any new 

Augmentation technique. 



 

21 
 

Computation 

offloading for 

service workflow 

in mobile cloud 

computing by 

Deng S., Huang 

L., Taheri J., and 

Zomaya A. Y. 

(2014). 

- This paper proposes a mobility 

enabled and fault-tolerance offloading 

system for making computation 

offloading strategies 

- The proposed offloading algorithm is 

based on genetic algorithm 

- This paper is considered mainly due 

to its fault-tolerance technique, in the 

case of lost connectivity 

- In this paper, user’s moving 

path is presumed. But since there 

are other possibilities, it will not 

perform accurately in all 

scenarios. 

- The signal strength is also 

assumed to be persistent in some 

part of the path. 

 

 

Enabling 

vehicular 

applications using 

cloud services 

through adaptive 

computation 

offloading by 

Ashok A., 

Steenkiste P., and 

Bai, F. (2015). 

- This paper proposes a service-based 

architecture and designs a framework 

for computation offloading of vehicular 

applications. 

- It prototypes an end to end offloading 

system which uses the proposed service 

driven framework. 

- Experiments are performed on real 

world vehicular settings.   

- In this paper, the modules to be 

offloaded are statically marked 

by the developer. Hence, the 

offloading is not dependent upon 

the context information. 

Sustainable 

Offloading in 

Mobile Cloud 

Computing: 

Algorithmic 

Design and 

Implementation 

by Boukerche A., 

Guan S., and 

- In this survey, a comparison of state-

of-the-art works related to energy-

aware offloading in the scope of MCC 

based offloading is provided 

- The existing studies are gathered and 

classified according to the perspective 

of the mobile device and the Cloud 

Performance aspects in terms of the 

energy-aware offloading processing 

and the tradeoff between energy 

- This is a survey paper that just 

provides the information about 

existing energy-aware offloading 

algorithms. 

- It does not include other 

important parameters like 

computation power, memory and 

cost. 



 

22 
 

Grande R. E. D. 

(2019). 

reservation, and execution efficiency is 

observed. 

Table 2.1: Review of research work based on offloading  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

23 
 

 

CHAPTER 3 

PROPOSED METHODOLOGY 

 

This chapter firstly discusses about the general structure of an offloading system and further dives 

into the detailed explanation of the structure used in our Computational Offloading System. The 

General Structure of Offloading System consists of different modules like Client Proxy, Profiler 

and Solver. These modules are responsible for executing the method on the server side. 

Alternatively, our Computational Offloading System is based on Service-oriented Architecture, 

hence the methods are converted into services and then the offloading is performed. Our 

Offloading System consists of modules like Context Monitor, Decision Making Engine, 

Communication Manager and Offloading Planner.  

In the upcoming section, the structure of general offloading system is discussed followed by the 

overall flowchart of the offloading system. 

3.1 General System Structure 

In this method, initially two requirements are taken into consideration:  

1. The compiled code is on both, the mobile side and the server side  

2. The client proxy, profiler and solver are installed on mobile and server side [22].  

The profiler collects information about the network characteristics from the beginning and 

monitors that information after that. Every time a method is called, the profiler measures its energy 

saving potential and profiles the device and the network to get the status information. The solver 

then works on the results provided by the profiler and determines where the method will be 

executed remotely. The proxy is responsible for the server-device control and data transmission.  



 

24 
 

 

Figure 3.1: General System Structure for Offloading 

Figure 3.1 shows the general system structure for Offloading in which code migration is 

performed.  

3.2 Proposed Computational Offloading System  

Since the proposed Computation Offloading System is based on Service-Oriented Architecture, 

we will first discuss the working and importance of SOA.  

3.2.1 Service-Oriented Architecture 

In the proposed system, the components are converted to services and the interaction of services 

is performed using Service-Oriented Architecture. SOA is a software design style in which 

services are provided by application components to the other components via a network 

communication protocol [23]. By using SOA, the components can be described more clearly, 

which makes it possible to structure the services. Hence, in a system, some components are service 

providers, who provides the required service, and some are the service consumers, who requests 

and receives the service. SOA architecture has a middleware, which is the intermediator between 

the provider and the consumer. The middleware controls the communication between the provider 



 

25 
 

and the consumer. SOA is particularly useful in the proposed system because of its loosely coupled 

nature i.e. the service interface is independent of the implementation. Different developers can 

build different applications by creating one or more services without knowing underlying 

implementations of the services. For example, a service can be implemented in python or .Net, and 

the application consuming the service can be on a different platform or language. It also helps 

systems to adapt while keeping service consumers separate from changes that occur while service 

implementation [24]. Finally, by utilizing existing software infrastructure to build new services, 

SOA provides better flexibility in building applications and processes in an agile manner.  

3.2.2 Computational Offloading for Mobile Cloud Computing Architecture 

Our proposed system includes the mobile device that consists of the applications and the cloud 

server that provides the functionalities of the applications as services. The communication between 

the service provider and service consumer is performed by the middleware. The middleware is the 

main part of our Offloading System. Figure 3.2 shows the proposed Offloading System structure. 

 

Figure 3.2: Proposed System Structure for Offloading 

 



 

26 
 

In this system, the middleware consists of four different modules: 

1. Context Monitor 

2. Decision Making Engine 

3. Communication Manager 

4. Offloading Planner 

The next sections provide detailed information about the modules of the middleware for the 

Offloading System: 

1. Context Monitor 

The context monitor is responsible for collecting the context information and providing these 

values to the decision-making engine when service is executing. This context information includes: 

a. The profile of mobile device: the computation power, the average CPU usage, the available 

memory size;  

b. Mobility model at runtime: location of the car; 

c. Network Condition: the availability of cell network(4G,3G) and its signal strength, the 

availability of Wireless network (WiFi) and signal strength 

For any mobile device that the service is executing on, Context Monitor gathers this information 

(mentioned above) and it also updates the information from time to time. This information is then 

provided to the Decision Making Engine. In Figure 3.3, we have displayed the flowchart for the 

Context Monitor. 



 

27 
 

 

Figure 3.3: Context Monitor 

2. Decision Making Engine 

The Decision Making Engine first analyzes the context information, like the available network 

connections, computation power, the state of the vehicle, available memory size, upload speed and 

download speed. It then leverages the result of analysis of the context information for decision-

making. For making the decision about the executing location of the service. Objective Function 

is used. The Objective Function is defined as follows: 

OF = P(s1,s2,…,sn)*WP + M(s1,s2,…,sn)*WM + E(s1,s2,…,sn)*WE, 

where s represents the services, P represents Performance(computation), M represents Memory, E 

represents Economic Cost, WP represents the weight value of Performance, WM represents the 

weight value of Memory and WE represents the weight value of Economic Cost. 



 

28 
 

The objective function is calculated as the weighted sum of Performance, Memory, and Economic 

Cost. The weight values are set according to the context of the mobile device. For example, if the 

device’s memory is less than the threshold value then we increase the weight value in the objective 

function. So, the weight values are set according to the preference of any parameter at that time. 

The weight values are adjusted in this way to handle different units of the parameters. The sum of 

the weight values will always be 1. 

So, for each service p.local and p.cloud is calculated, where p = p.local = W/C, where W is the 

workload of the service and C is the CPU capacity, 

p.cloud = TR +RT +TO, 

where RT is the response time of a cloud service; 

TR is the time of uploading input data = input data size /data transferring rate; 

TO is the time of downloading output data = output data size /data transferring rate;  

Following that, is the calculation if Memory and Economic Cost.  

Economic Cost for a service si  is defined as: 

E(si) = E.Cloud(si) * IsOffloading, 

where IsOffloading is value which either 0 or 1. 0 represents that si is executed by a local service 

while 1 represents that it is executed by a cloud service.  

E.Cloud(si) = DI + DO, 

where DI is input data size of a service invocation;  

DO is output data size of a service invocation. 

Decision Making Engine then makes the decision of changing (if required) the weight values of 

computation power, memory and monetary cost in Objective Function according to varying 

context information. For example, if the memory on the local system is below the threshold point, 

the weight value of memory (WM), which indicates the priority of that parameter, will be increased. 

Finally, if the result of analysis of the current context information suggests that executing on local 



 

29 
 

is better, the Decision Making Engine makes the decision that the service should run locally, 

otherwise, it makes the decision to offload the service on the cloud. Hence, the decision is taken 

based on the Objective Function value. Figure 3.4 shows the flowchart of Decision Making Engine. 

 

Figure 3.4: Decision Making Engine  

3. Communication Manager  

Communication manager is responsible for transferring the information between local and cloud. 

It encapsulates the tedious details of serializing data and deserializing data from one format to 

another. It also synchronizes the offloading plan between the mobile device and cloud.  

4. Offloading planner  

Offloading planner is in charge of offloading the service to the cloud. Offloading planner also 

selects one service, in the situation when there are more than one candidate services. It should be 



 

30 
 

noted that, as the decision of where the service runs is dependent on the context information at a 

certain time, an offloading plan for a certain workflow model will also vary from time to time due 

to the change of context information. So, the offloading planner executes the plan based on the 

decision and the context information. Figure 3.5 displays the flow of Communication Manager 

and Offloading Planner 

 

Figure 3.5: Communication Manager and Offloading Planner 

 

3.3 Overall Flowchart 

Figure 3.5 shows the overall flowchart of our Offloading System. As shown in the figure, first, the 

user’s data plan expiration is checked. If it is expired, then the user’s preference will be asked on 

whether user wants to allow additional charges on their account or not. If the data plan is not 

expired, then the process goes to next step otherwise the service is executed locally. 



 

31 
 

 

Figure 3.6: Overall Flowchart of the Offloading System 

Then the Context Monitor collects all the required information like network connections, 

computation power, longitude and latitude of the device location, memory size available, upload 



 

32 
 

speed, download speed, etc. From the Context Monitor, the information of whether the network 

connection is available or not, is obtained. If it is not available, then the service will be executed 

locally but if it is available then the information is passed to the Decision Making Engine. The 

Decision Making Engine analyzes the information and obtains the values of different parameters 

like performance, memory and economic cost, as discussed in the previous section. Then, in the 

Objective Function, it adjusts the weight value of any parameter if required. Following that is the 

calculation of the Objective Function. Based on the result of the Objective Function, the decision 

of executing location (local or cloud) is obtained. If the decision is local, then the service is 

executed locally otherwise the information is passed to Communication Manager and Offloading 

Planner. Communication Manager synchronizes the offloading plan between the mobile device 

and cloud. Offloading Planner manages the offload plan and executes the service on cloud. Then 

the cost is calculated in case the data plan was expired and the user needs to be charged additionally 

for data usage. 

 

 

 

 

 

 

 

 

 

 

 

 



 

33 
 

 

CHAPTER 4 

IMPLEMENTATION AND EXPERIMENTS 

 

The proposed approach is implemented on Windows OS using C# programming language and 

.NET Framework. For the experiments, the approach is used on autonomous car modules. The list 

of software and tools used is given in Table 4.1. 

4.1 Software information 

The implementation of proposed methodology was performed on Dell Laptop with Intel(R) 

Wireless-AC 9560. 

ITEM DETAILS 

Operating System Windows  

Languages C# 

IDE Visual Studio 2017 

Application Framework ASP.NET 

Cloud Server Amazon Web Services 

Table 4.1: List of tools used for implementation and experiments 

4.2 Datasets used in the implementation 

For different autonomous car modules, various datasets are used for experimentation. ShapeNet 

dataset [25] is used, which is a repository with the keypoint information for the different rendered 

views of 3D car models. DensePose [26] model which has its own manually collected ground truth 

dataset called the COCO-DensePose dataset is adopted and integrated into our system for 3D pose 

estimation of pedestrians on the road. For object verification and object elimination, the 3D virtual 

world has been produced using OpenStreetMap data (VGI/crowdsourced) and the façade texture 

from Google street view images (2D street views and satellite images) [26][27]. This 3D 



 

34 
 

environment comprises stationary (e.g. Buildings), and variable (e.g. Trees) objects. Figure 4.1 

and 4.2 below displays an example of a constructed 3D virtual world. 

 

Figure 4.1: Constructed 3D Virtual World 

 

Figure 4.2: Constructed 3D Objects 

4.3 A New System for Self-Driving Vehicles 

As mentioned in the beginning of Chapter 4, experiments for our offloading system are performed 

on autonomous car modules. There are basically six different modules for this system which are 

interconnected with each other, as shown in Figure 4.3. Those six modules are: 

1. Construction on virtual 3D environment 

2. Rendered images of real-time video 



 

35 
 

3. 3D feature and keypoint extraction 

4. Removal of static and variable objects 

5. Dynamic object recognition 

6. Dynamic object detection  

 

Figure 4.3: Overall system 

Following is the description of the overall system in reference to Figure 4.3: the overall system 

first deals with the construction of a virtual 3D environment with the use of OpenStreetMap data 

(VGI/crowdsourced) and the façade texture from Google street view images. The virtual 3D city 

model consists of static objects, such as buildings, and some of the variable objects, such as trees. 

Apart from this, there is a separate repository which contains 3D models of dynamic objects, such 

as cars. The module marked in the blue-colored box in Figure 4.3 shows the real-time video (image 

sequences) passed as input to the system. The virtual environment is rendered, and keypoint 



 

36 
 

features and 3D features are stored in a repository; this work is performed in the module colored 

in pink. The module marked in yellow is the static and variable object elimination module. In this 

module, the keypoint features of the input image (blue module) and keypoint features of the virtual 

environment (pink module) are matched. Matching the keypoint features of the virtual 

environment and real-time image confirms the location of the car in the real-world; this solves the 

problem of geo-localization of the self-driving car. With the matching, location of the static objects 

is also confirmed, and they are eliminated from the object identification process; which provides 

more time for the identification and prediction of dynamic objects such as human beings or animals 

on the road, as those are the ones which have impact on the navigation of the self-driving system. 

The module marked in cyan deals with the object recognition and pose estimation of dynamic 

objects present in the real-time input image, such as cars. Additionally, this module tracks the 

recognized objects from multiple frames of the video and calculates the speed of the dynamic 

object. The recognized object with the pose information along with the object speed and location 

is used to update dynamic objects into the 3D virtual environment. The module marked in grey 

color updates the dynamic objects’ information into the virtual environment.  

4.3.1 Code Partitioning  

Offloading is the process of transferring a computation or resource intensive tasks from a mobile 

device to a remote server or cloud resources, as discussed earlier. As this approach uses a Service-

Oriented Architecture, the modules that are discussed in the previous section are wrapped as 

services and those services are offloaded to the cloud. Before offloading a service, the process of 

code partition is required on the modules. Firstly, the code is partitioned by simply marking some 

parts of the code as non-offloadable. Those parts are the ones that interact with any input or output 

device or it can be the part that implements application’s UI (user interface). Then, source code 

analysis is performed for individual modules. During the source code analysis, if there are some 

sub modules that are common among different modules, then those are identified, and only single 

service is created for them. That service can then be shared between those modules. The final 

offloading is done based on the Decision Making Engine, as discussed in Chapter 3.  

4.3.2 Implementation of the SOA System 

After performing initial code partitioning, the modules like 3D feature and keypoint extraction, 

Removal of static and variable objects and Dynamic object recognition and Pose Estimation are 



 

37 
 

used for getting the sub modules. Sub modules such as Finding Key Point List, Matched Key 

Points, Object Detection, Pose Estimation, etc. are created and then are wrapped as services.  

Following are the services created for different modules and the flow: 

1. A service is created to obtain the 3D object, which has the previously constructed virtual 

3D environment. 

2. Then, a service (FasterRCNN) is created for object detection for static and variable objects 

like buildings, benches, and trees. 

3. Then the feature points extraction service (CrtFeatExtraction) is created for various 

buildings and car models. 

4. Following the object detection is the object verification service (ObjVerification), again 

for static and variable objects. 

5. Then service (HeatmapGeneration) is created to generate the heatmaps for buildings and 

trees. 

6. Then, object elimination service (ObjElimination) is created, which includes the heatmap 

information. 

7. For object recognition and pose estimation of dynamic objects like cars and pedestrians, 

Finding Key Point List, Matched Key Points, Object Detection and Pose Estimation 

services are created. 

The interaction of these modules as services in shown in Figure 4.4. Parallelogram represents our 

identified services, the services in dotted box are the common services that are shared among 

modules, ellipse indicates input or output data, and the different colored lines demonstrates flow 

of individual modules. 



 

38 
 

 

Figure 4.4: Service Interaction among self-driving car modules 

For wrapping the code as service, Restful APIs are created. This means that the API is designed to 

allow to get, create, update, & delete objects with the Http verbs GET, POST, PUT, PATCH, & 

DELETE.  

Http is used for communication and ASP.NET core has a middleware pipeline that is invoked for 

each request. For flexibility, all the paths are added in project’s Web config file, so that any file 

can be added at that path and can be run as service. In the case that a service provides text result 

for e.g. the list of key points, those are displayed in XML format, following the SOA standard. In 

the case that image is provided as a result, it is saved/downloaded, and the path of resulting image 

is saved in the Web config file so that the requesting service can access the image from that path, 

as shown in Figure 4.5. As per industry standards (considering Uber and Tesla), the concept of 

Web API has been used. Important data repositories (i.e. images of car models, humans, etc.) from 

the modules of other students are kept in local. Less important images like wild animals are kept 

on the cloud so that it will not acquire memory on local. 

 



 

39 
 

 

Figure 4.5: Project’s Web Config file snapshot 

As mentioned in Section 4.3.1 and earlier in Section 4.3.2, some sub modules in the code has 

common functionalities. For this, it is redundant to create same service for different modules. 

Hence, a single service is created which can be used in various modules. For example, faster rcnn 

method is used for object detection of real time images and for images from the virtual world as 

well. So, a service is created named fasterRcnn, which can be shared for both the sub modules. 

The only difference is the input images but since the code is dynamic, the image file name is 

specified in the web config and then the service is called according to the requirement. Another 

similar example is for corner detection of the buildings code, in which, the same method is 

followed. Figure 4.6 displays the input image for corner detection and Figure 4.7 displays the 

output image which has corner points detected by fast algorithm. 32 points close to the corners are 

selected by this algorithm. 

 

Figure 4.6: Input image to fast algorithm 



 

40 
 

 

Figure 4.7: Output of fast algorithm 

 

4.4 Implementation of Context Monitor 

As mentioned in Chapter 3, the context monitor is responsible for collecting the context 

information which includes the profile of mobile device: the computation power, the average CPU 

usage, the used memory size; mobility model at runtime: location of the car and network condition: 

the availability of cell network(4G,3G) and its signal strength, the availability of Wireless network 

(Wi-Fi) and signal strength.  

For obtaining this information, a form application has been created in C# and by using ASP.NET 

framework. Also, the information that is collected is saved in a file so that it can be monitored 

from time to time. 

Following are the classes or methods that are used to get the relevant information: 

Location: longitude and latitude using GeoCoordinate class of System.Device.Location 

Wireless: wireless information using WlanClient of Managed Wifi library 

Computation Power: Get computation power/cpu usage using processor information 



 

41 
 

Memory: information of RAM memory using PerformanceCounter 

Economic Cost: input data size using request.ContentLength and output data size using 

response.GetResponseStream() 

Cost: data rate from the telecom operator based on usage (per MB) 

 

Figure 4.8: Context Monitor Output UI 

 

Figure 4.8 shows the UI part of the Context Monitor output which includes the information 

mentioned above. Figure 4.9 shows the information saved in a file for monitoring purposes. 



 

42 
 

 

Figure 4.9: Context Monitor Output in file 

4.5 Implementation of Decision Making Engine 

In the Decision Making Engine, as discussed earlier, firstly we will find out if the user allows for 

additional charges in case the data limit is exhausted, or Wi-Fi is disconnected. Figure 4.10 shows 

the pop up which is displayed to the users. 

 

Figure 4.10: Pop up for user’s consent 

If the user selects ‘No’ then the service will be executed locally when the Wi-Fi is disconnected, 

or the data limit is exhausted. 



 

43 
 

 

We have considered following scenarios based on the working of self-driving cars: 

Scenario 1: Default Scenario – This is considered for a normal situation, considering the car has 

just started. So, at this time, less memory is used, Wi-Fi is also connected at that time and the 

service executed is regarding obtaining the input images and getting the key point based on those 

images. 

 

Figure 4.11: Decision Making Engine Scenario 1 

As we know, there are three parameters Memory, Performance and Economic Cost. Figure 4.11 

shows the result of the Decision Making Engine implementation, which has three weighted values 



 

44 
 

WM, WP and WE, representing weight values of Memory, Performance and Economic Cost 

respectively. The weight values indicate the priority of each parameter, by default we have 

considered Performance to be of highest priority i.e. 70% then the priority of Memory i.e. 20% 

and then Economic Cost i.e. 10%. However, if there is a requirement of changing the priority on 

basis of the context information of the device, then the Decision Making Engine will do that 

dynamically. In this way, the weight values are modified to handle different units of the 

parameters. The sum of the weight values will always be 100%. 

Figure 4.11 also has information like Wi-Fi connectivity (bottom left corner), the user’s selection 

in previous step (bottom left corner), Wireless SSID and the Memory used on the device. Local 

endpoint is the local (on the device) URL of the service. Cloud endpoint is the AWS (Amazon 

Web Service) URL of the service. The information about AWS will be provided in later section.  

The values plocal and pcloud are obtained after clicking on the buttons Test Local and Test Cloud 

respectively. 

Here, p.local = W/C, where W is the workload of the service and C is the CPU capacity, 

p.cloud = TR +RT +TO, 

where RT is the response time of a cloud service; 

TR is the time of uploading input data = input data size /data transferring rate; 

TO is the time of downloading output data = output data size /data transferring rate; 

Economic Cost for cloud is E.Cloud = DI + DO, 

where DI is input data size of a service invocation;  

DO is output data size of a service invocation. 

As the Memory available in the given scenario is 30%, the weight values are not changed. 

All this information is placed in the Objective Function: 

OF = P(s1,s2,…,sn)*WP + M(s1,s2,…,sn)*WM + E(s1,s2,…,sn)*WE, 



 

45 
 

Based on this, the decision is obtained whether to offload the service to cloud or not. Here, the 

local endpoint value indicates the URL of a service, for which we are taking the decision. The 

URL is for an individual service in this situation, but if required, we can add a semicolon and write 

another URL to make the offloading decision. In that scenario, it will first execute the service one 

by one. After that it will calculate the decision for each individual service. Hence, after obtaining 

the information for local and cloud, the decision is provided.  

In the given scenario, Wi-Fi connection is available, so the cost is not calculated. From the 

objective function results, we can see that the result indicates that service should be executed 

locally. 

Scenario 2: Wi-Fi connected, Memory Priority – To make real-time decisions based on complex 

datasets, a self-driving car's AI system requires a constant, uninterrupted stream of data and 

instructions. This results in reduction of available memory. Hence, in the second scenario, we are 

considering that the memory is less than the threshold value. So, the priority is provided to weight 

value of Memory and decision is made based on that weight value.  

 



 

46 
 

Figure 4.12: Decision Making Engine Scenario 2  

Scenario 2 is shown in Figure 4.12, where Wi-Fi is connected, so cost will not be calculated. The 

value of Memory available is only 17% and as it is below the threshold (25%), the weight values 

are changed. In this case, the priority is given to WM and hence its value is 0.6 and the value of 

WP is 0.3. After the calculation of all the values, the result indicates that it is better to offload the 

service and execute it on the cloud. 

Scenario 3: Wi-Fi not connected, use Mobile Data – Since self-driving cars travel through different 

regions, network connectivity is not always available. In a situation when the car is driving into a 

tunnel, connectivity will not be available for the system. Therefore, we must consider such 

situations and be prepared for the proper execution of services and for safety of users. In these 

situations, mobile data is used to run the services.  

 



 

47 
 

Figure 4.13: Decision Making Engine Scenario 3  

In scenario 3 (Figure 4.13), the Memory available is above threshold so the weight values are not 

affected. However, the Wi-Fi connection is not available so cost for offloading is calculated. Based 

on the user’s selection, we have a variable IsCarrierChargesAllowed which has value true or false. 

Here, the label ‘Carrier charges are going to be applied’ on bottom left corner indicates that the 

value of IsCarrierChargesAllowed = true. So, charges are calculated as per the code shown in 

Figure 4.14. According to the data used in MB, the cost calculated is 0.4 CAD and the decision 

for executing the service is cloud. Hence, the charges will be added for the user and service will 

be executed on cloud. 

 

Figure 4.14: Code for cost calculation 

Scenario 4: Wi-Fi not connected, execute locally – As the services and important data are saved 

on car’s on board unit, the services can be executed locally without the usage of internet even when 

the Wi-Fi connectivity is not available. In these cases, the performance is checked by the Decision 

Making Engine. If the performance is better on local, then service is executed locally, and mobile 

data will not be used. 

Scenario 4 shown in Figure 4.15, is much similar to Scenario 3. The only difference is that the 

performance on local is better which indicates that the service will be executed locally. So, the 

charges will not be added for the user. 



 

48 
 

 

Figure 4.15: Decision Making Engine Scenario 4  

Scenario 5: User declined addition of data charges – As mentioned earlier in this section that 

initially the user will be asked if they want to allow the addition or data charges in case of network 

disconnection. If the Wi-Fi or data is available then service can be executed on cloud (based on 

context information), but if it is not available and the user has declined the addition of charges then 

the service will be executed locally only. 

In Scenario 5, the user declined for including additional charges, so the value of 

IsCarrierChargesAllowed is false. Hence, the label indicates that ‘Carrier charges will not be 

applied’ and the calculate cost button is disabled. Additionally, the Wi-Fi connection is not 

available. Based on both conditions, the service will be executed locally.  



 

49 
 

 

Figure 4.16: Decision Making Engine Scenario 5 

These were some of the scenarios that can occur during the execution. The next section describes 

the process that will take place if the result of the Decision Making Engine is to execute the service 

on cloud. 

4.6 Implementation of Communication Manager and Offloading Planner 

For offloading of the service, a cloud resource Elastic Compute Cloud (EC2) of AWS is used. It 

provides a resizable compute capacity by allowing users to create server on the cloud. An AWS 

Educate account was created for this thesis, since AWS Educate is free for a year for students. A 

Windows AMI was used to create an EC2 instance as shown in Figure 4.17. 



 

50 
 

 

Figure 4.17: AWS EC2 Windows Server Creation 

IIS (Internet Information Services) is installed and configured so that the services can be executed 

on the EC2 instance. For security in AWS, no incoming requests (except RDP) to this server are 

allowed by default. RDP is allowed for the connection to the server so that modifications can be 

made when required. Hence, after the creation of instance, Security Groups are needed to be 

configured. As shown in Figure 4.18, HTTP and HTTPS ports are added so that the APIs can be 

called using their URLs.  

 

Figure 4.18: Security Groups Configuration 

The Communication Manager is responsible for mobile-cloud interactions through a TCP socket 

connection over Wi-Fi or cellular network. After the information is obtained from the Decision 

Making Engine, if the service is needed to be offloaded to the cloud then communication takes 

place between the device and the cloud. Then the Offloading Planner selects the service that is 

needed to be offloaded.  

4.7 Comparison and Discussion 

Many modern researches on computational offloading for mobile cloud computing focuses on the 

techniques of code partitioning and offloading, however, when the self-driving car is moving, the 



 

51 
 

context information like location, available cloud resources and the network conditions changes. 

Therefore, it is crucial for these vehicles to be able to dynamically offload the applications and, 

hence perform in an effective and safe manner. Adiththan et al. [50] presents an approach for 

adaptive offloading for automated-driving. The author has considered network conditions and 

application requirements to leverage remote resources. The parameters considered in this method 

are the network characteristics, data transfer requirements and computation requirements. 

However, the important factor, i.e. Monetary Cost is not taken into account in this paper. Since the 

offloading of service is performed to the cloud, it is important to consider cost to understand its 

effect on Quality of Experience (QoE) for the user. There are various other interesting literatures 

[51,52], which use learning methods like reinforcement learning or adaptive learning, but in case 

of autonomous cars, there are new situations occurring on the roads constantly. Hence, it is not 

always safe to use these learning techniques. Overall, from the experimental results and 

comparison it can be deduced that our framework is a robust way for providing computational 

offloading for self-driving car applications. 

 

 

 

 

 

 

 

 

 

 

 



 

52 
 

 

 

CHAPTER 5 

CONCLUSION AND FUTURE WORK 

 

5.1 Conclusion 

There is a great increase in the use of mobile devices like smartphones, tablets and laptops in 

various domains like gaming, information systems, e-learning and health-care [12]. However, 

there are various limitations on such devices such as processor potential, battery life, memory 

capacity and network connection. Even though mobile devices nowadays are having large memory 

and fast processors, those are not enough to perform computation and resource intensive tasks such 

as image recognition, natural language processing and object detection. Hence, Mobile Cloud 

Computing is used to bridge the gap between the mobile device limitations and the requirements 

of applications. MCC is an infrastructure that can extend the storage and computing capabilities 

of mobile devices by employing required cloud resources. MCC can be achieved using 

Computational Offloading, which allows the execution of computation and resource intensive 

tasks on remote server or cloud resources. Although there are various frameworks addressing 

computational offloading, some approaches use static offloading, some lack the standard 

architecture, and some are inefficient because of cloning and high management overhead. 

Hence, the aim of the proposed system is to have a wholistic architecture using Service-Oriented 

Architecture in which individual applications’ computing and data-intensive tasks are offloaded 

from a mobile device to a cloud server. In this method, tasks are remotely executed as an individual 

service on the cloud server. Additionally, a framework is designed for making offloading decisions 

based on the context of the device. The implementation of the application tasks as services is 

performed on AWS EC2 instance which can be used by any application on the client. Factors like 

Memory, Performance, Economic Cost and Cost are considered in this system. However, other 

frameworks consider some of these factors but not all in the same system. 



 

53 
 

Sections 4.4, 4.5 and 4.6 clearly depicts how different scenarios can be handled by using the 

proposed formula. 

5.2 Future work 

This research work provides some more possibilities for further improvement: 

1. As it is an autonomous car system, for better performance and safety of the individuals, 

optimization can be performed on the system.  

2. A Service Level Agreement can be negotiated between service provider and consumer, so 

that the Quality of Service can be improved. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

54 
 

REFERENCES 

[1] Rahimi, M. R., Ren, J., Liu, C. H., Vasilakos, A. V., & Venkatasubramanian, N. (2014). 

Mobile cloud computing: A survey, state of art and future directions. Mobile Networks and 

Applications, 19(2), 133-143.  

[2] Bhattacharya, A., & De, P. (2017). A survey of adaptation techniques in computation 

offloading. Journal of Network and Computer Applications, 78, 97-115. 

[3] Kumar, R., & Rajalakshmi, S. (2013, December). Mobile cloud computing: Standard 

approach to protecting and securing of mobile cloud ecosystems. In 2013 International 

Conference on Computer Sciences and Applications (pp. 663-669). IEEE. 

[4] Khandelwal, G. Introduction to Service Oriented Architecture. Retrieved from 

https://www.c-sharpcorner.com/UploadFile/govind77/introduction-to-service-oriented-

architecture/  

[5] Ashok, A., Steenkiste, P., & Bai, F. (2015, September). Enabling vehicular applications 

using cloud services through adaptive computation offloading. In Proceedings of the 6th 

International Workshop on Mobile Cloud Computing and Services (pp. 1-7). ACM. 

[6] Cuervo, E., Balasubramanian, A., Cho, D. K., Wolman, A., Saroiu, S., Chandra, R., & Bahl, 

P. (2010, June). MAUI: making smartphones last longer with code offload. In Proceedings 

of the 8th international conference on Mobile systems, applications, and services (pp. 49-

62). ACM. 

[7] Kosta, S., Aucinas, A., Hui, P., Mortier, R., & Zhang, X. (2012, March). Thinkair: Dynamic 

resource allocation and parallel execution in the cloud for mobile code offloading. In 2012 

Proceedings IEEE Infocom (pp. 945-953). IEEE.  

[8] Shi, C., Habak, K., Pandurangan, P., Ammar, M., Naik, M., & Zegura, E. (2014, August). 

Cosmos: computation offloading as a service for mobile devices. In Proceedings of the 15th 

ACM international symposium on Mobile ad hoc networking and computing (pp. 287-296). 

ACM.  

[9] Chun, B. G., Ihm, S., Maniatis, P., Naik, M., & Patti, A. (2011, April). Clonecloud: elastic 

execution between mobile device and cloud. In Proceedings of the sixth conference on 

Computer systems (pp. 301-314). ACM.  



 

55 
 

[10] Gordon, M. S., Hong, D. K., Chen, P. M., Flinn, J., Mahlke, S., & Mao, Z. M. (2015). Tango: 

accelerating mobile applications through flip-flop replication. GetMobile: Mobile 

Computing and Communications, 19(3), 10-13.  

[11] Mahmoodi, S. E., Uma, R. N., & Subbalakshmi, K. P. (2016). Optimal joint scheduling and 

cloud offloading for mobile applications. IEEE Transactions on Cloud Computing. 

[12] Akherfi, K., Gerndt, M., & Harroud, H. (2018). Mobile cloud computing for computation 

offloading: Issues and challenges. Applied computing and informatics, 14(1), 1-16. 

[13] Chen, X., Chen, S., Zeng, X., Zheng, X., Zhang, Y., & Rong, C. (2017). Framework for 

context-aware computation offloading in mobile cloud computing. Journal of Cloud 

Computing, 6(1), 1. 

[14] Boukerche, A., Guan, S., & Grande, R. E. D. (2019). Sustainable Offloading in Mobile 

Cloud Computing: Algorithmic Design and Implementation. ACM Computing Surveys 

(CSUR), 52(1), 11. 

[15] Zhou, B., & Buyya, R. (2018). Augmentation techniques for mobile cloud computing: A 

taxonomy, survey, and future directions. ACM Computing Surveys (CSUR), 51(1), 13. 

[16] Chen, X., Jiao, L., Li, W., & Fu, X. (2015). Efficient multi-user computation offloading for 

mobile-edge cloud computing. IEEE/ACM Transactions on Networking, 24(5), 2795-2808. 

[17] Deng, S., Huang, L., Taheri, J., & Zomaya, A. Y. (2014). Computation offloading for service 

workflow in mobile cloud computing. IEEE Transactions on Parallel and Distributed 

Systems, 26(12), 3317-3329. 

[18] Hani, Q. B., & Dichter, J. P. (2017). Energy-efficient service-oriented architecture for mobile 

cloud handover. Journal of Cloud Computing, 6(1), 9. 

[19] Parsa, S., & Ghods, L. (2008, December). A new approach to wrap legacy programs into 

web services. In 2008 11th International Conference on Computer and Information 

Technology (pp. 442-447). IEEE. 

[20] Kovachev, D., Yu, T., & Klamma, R. (2012, July). Adaptive computation offloading from 

mobile devices into the cloud. In 2012 IEEE 10th International Symposium on Parallel and 

Distributed Processing with Applications (pp. 784-791). IEEE. 

[21] How Do Genetic Algorithms Work? | Two Minute Papers #32 .... 

https://www.youtube.com/watch?v=ziMHaGQJuSI  

https://www.youtube.com/watch?v=ziMHaGQJuSI


 

56 
 

[22] Akherfi, K., Gerndt, M., & Harroud, H. (2018). Mobile cloud computing for computation 

offloading: Issues and challenges. Applied computing and informatics, 14(1), 1-16. 

[23] Wikipedia contributors. (2019, September 24). Service-oriented architecture. In Wikipedia, 

The Free Encyclopedia. Retrieved 11:53, October 26, 2019, 

from https://en.wikipedia.org/w/index.php?title=Serviceoriented_architecture&oldid=9176

81137 

[24] Kodali, R. R. (2005, June 13). What is service-oriented architecture? Retrieved from 

https://www.javaworld.com/article/2071889/soa/what-is-service-oriented-architecture.html 

[25] Chang, A. X., Funkhouser, T., Guibas, L., Hanrahan, P., Huang, Q., Li, Z., ... & Xiao, J. 

(2015). Shapenet: An information-rich 3d model repository. arXiv preprint 

arXiv:1512.03012. 

[26] Alp Güler, R., Neverova, N., & Kokkinos, I. (2018). Densepose: Dense human pose 

estimation in the wild. In Proceedings of the IEEE Conference on Computer Vision and 

Pattern Recognition (pp. 7297-7306). 

[27] Goetz, M.; Zipf, A. (2012). Towards defining a framework for the automatic derivation of 

3D CityGML models from volunteered geographic information. Int.  

[28] Over, M., Schilling, A., Neubauer, S. & Zipf, A. (2010). Generating web-based 3D City 

Models from OpenStreetMap: The current situation in Germany. Computer Environment 

and Urban System (CEUS), vol. 34(6), pp. 496–507. 

[29] Ashok, A., Steenkiste, P., & Bai, F. (2018). Vehicular cloud computing through dynamic 

computation offloading. Computer Communications, 120, 125-137. 

[30] Chen, L., Mislove, A., & Wilson, C. (2015, October). Peeking beneath the hood of uber. 

In Proceedings of the 2015 Internet Measurement Conference (pp. 495-508). ACM. 

[31] Clement, S. J., McKee, D. W., & Xu, J. (2017, April). Service-oriented reference architecture 

for smart cities. In 2017 IEEE symposium on service-oriented system engineering 

(SOSE)(pp. 81-85). IEEE. 

[32] Helmlin, M. (2017). Service-oriented Architectures and Ethernet in Vehicles: Towards Data 

Centers on Wheels with Model-based Methods. PREEvision technical Article. 

[33] MicroVision. (2016, November 28). MEMS and Sensors in Automotive Applications on the 

Road to Autonomous... Retrieved from https://www.slideshare.net/MicroVision/mems-and-

sensors-in-automotive-applications-on-the-road-to-autonomous-vehicles-hud-and-adas 

https://en.wikipedia.org/w/index.php?title=Serviceoriented_architecture&oldid=917681137
https://en.wikipedia.org/w/index.php?title=Serviceoriented_architecture&oldid=917681137
https://www.javaworld.com/article/2071889/soa/what-is-service-oriented-architecture.html
https://www.slideshare.net/MicroVision/mems-and-sensors-in-automotive-applications-on-the-road-to-autonomous-vehicles-hud-and-adas
https://www.slideshare.net/MicroVision/mems-and-sensors-in-automotive-applications-on-the-road-to-autonomous-vehicles-hud-and-adas


 

57 
 

[34] https://developer.uber.com/docs/riders/references/api 

[35] Ahmed, E., Gani, A., Sookhak, M., Hamid, S. H., & Xia, F. (2015). Application optimization 

in mobile cloud computing: Motivation, taxonomies, and open challenges. Journal of 

Network and Computer Applications, 52, 52-68. 

[36] Yeshodara, N. S., Nagojappa, N. S., & Kishore, N. (2014). Cloud Based Self Driving Cars. 

2014 IEEE International Conference on Cloud Computing in Emerging Markets (CCEM).  

[37] Bajpai, A., & Nigam, S. (2017). A Study on the Techniques of Computational Offloading 

from Mobile Devices to Cloud. Advances in Computational Sciences and Technology, 10(7), 

2037-2060. 

[38] Long, C. A. I., Kunasekaran, K. K. H., Ramakrishnan, V., & Rajan, P. Task Offloading to 

the Cloud by Using Cuckoo Model for Minimizing Energy Cost. 

[39] Vinnamala, S. (2018). Challenges and Future Research Directions in Mobile Cloud 

Computing. International Journal of Technical Innovation in Modern Engineering & 

Science (IJTIMES). 

[40] Noor, T. H., Zeadally, S., Alfazi, A., & Sheng, Q. Z. (2018). Mobile cloud computing: 

Challenges and future research directions. Journal of Network and Computer 

Applications, 115, 70-85. 

[41] Mohalik, S. K., D'Souza, M., & Jayaraman, M. B. (2017, February). Developmental aspects 

of Intelligent Adaptive Systems (DIAS). In Proceedings of the 10th Innovations in Software 

Engineering Conference (pp. 221-222). ACM. 

[42] Feljan, A. V., Mohalik, S. K., Jayaraman, M. B., & Badrinath, R. (2015, December). SOA-

PE: a service-oriented architecture for planning and execution in cyber-physical systems. 

In 2015 International Conference on Smart Sensors and Systems (IC-SSS) (pp. 1-6). IEEE. 

[43] Yogesh Dumbare, Kahate(2017). Computational Offloading Framework for Mobile Cloud 

Computing. International Journal of Current Research 

[44] Nawrocki, P., & Sniezynski, B. (2017). Autonomous Context-Based Service Optimization 

in Mobile Cloud Computing. Journal of Grid computing, 15(3), 343-356. 

[45] Xu, H., Lin, J., & Yu, W. (2017). Smart Transportation Systems: Architecture, Enabling 

Technologies, and Open Issues. SpringerBriefs in Computer Science Secure and 

Trustworthy Transportation Cyber-Physical Systems, 23-49. 

https://developer.uber.com/docs/riders/references/api


 

58 
 

[46] Kumar, K., Liu, J., Lu, Y. H., & Bhargava, B. (2013). A survey of computation offloading 

for mobile systems. Mobile Networks and Applications, 18(1), 129-140. 

[47] Shiraz, M., & Gani, A. (2014). A lightweight active service migration framework for 

computational offloading in mobile cloud computing. The Journal of 

Supercomputing, 68(2), 978-995. 

[48] Helmlin, M. (2017). Service-oriented Architectures and Ethernet in Vehicles: Towards Data 

Centers on Wheels with Model-based Methods. PREEvision technical Article. 

[49] Pierre, S. (2001). Mobile computing and ubiquitous networking: concepts, technologies and 

challenges. Telematics and Informatics, 18(2-3), 109-131. 

[50] Adiththan, A., Ramesh, S., & Samii, S. (2018, March). Cloud-assisted control of ground 

vehicles using adaptive computation offloading techniques. In 2018 Design, Automation & 

Test in Europe Conference & Exhibition (DATE) (pp. 589-592). IEEE. 

[51] Ning, Z., Dong, P., Wang, X., Rodrigues, J. J., & Xia, F. (2019). Deep reinforcement 

learning for vehicular edge computing: An intelligent offloading system. ACM Transactions 

on Intelligent Systems and Technology (TIST), 10(6), 60. 

[52] Sun, Y., Guo, X., Song, J., Zhou, S., Jiang, Z., Liu, X., & Niu, Z. (2019). Adaptive Learning-

Based Task Offloading for Vehicular Edge Computing Systems. IEEE Transactions on 

Vehicular Technology, 68(4), 3061-3074. 

[53] K. Yang, S. Ou, H.-H. Chen, On effective offloading services for resource-constrained 

mobile devices running heavier mobile internet applications, Commun. Mag. IEEE 46 (1) 

(2008) 56–63. 

 

 

 

 

 

 

 

 



 

59 
 

VITA AUCTORIS  

 

NAME:  Rajasi Dhiman Upadhyay 

PLACE OF BIRTH: Mumbai, India 

YEAR OF BIRTH: 1993 

EDUCATION: 

 

 

 

Bachelor of Engineering, 2011-2015 

Gujarat Technological University, Ahmedabad, 

Gujarat, India 

Master of Science in Computer Science, co-op, 2017-

2019 

University of Windsor, Windsor, ON 

 


	An SOA-Based Framework of Computational Offloading for Mobile Cloud Computing
	Recommended Citation

	tmp.1579487043.pdf.n0uUp

