9 research outputs found

    Simulation of WLAN Based V2X Signal Models Using Deterministic Channel

    Get PDF
    Vehicle to everything (V2X) communication is one of the important topics in the telecommunication field aiming to provide a great improvement in the transport sector by increasing safety and comfort while driving as well as reducing traffic congestion and as a result there are a lot of researches , developments and investments made in this field. This thesis presents the use of Unity 3D game engine program for the creation of a deterministic channel model through which we can analyse and study the performance of the WLAN based signal models that are used in the vehicle to everything (V2X) technology.AN open source V2X simulator was used for the process of channel creation and performance assessment making use of its real time stochastic measurements .Two different methods were used to assess the performance of both the IEEE 802.11p and 802.11bd signal models with different calculations but eventually the latter proved to be the superior since it is considered the most advanced and latest version of the IEEE 802.11 family

    Adaptive Transmission Power with Vehicle Density for Congestion Control

    Get PDF
    The Intelligent Transport Systems (ITS) employs the Vehicular Ad-hoc Networks (VANET) technology to prevent and reduce accidents on highways. VANET uses wireless communication technology that includes protocols and applications that provides safety and non-safety features for a safe and comfortable driving experience. A major problem with VANET is that the network channel utilized for the transmission of network packets for awareness becomes congested due to vehicles competing to use the channel leading to packet loss, high transmission delay and unfair resource usage. These problems would eventually lead to the periodic exchange of Basic Safety Messages not being delivered on time, thereby making VANET unreliable. Researchers have focused on numerous approaches for controlling congestion on the network channel such as adapting the rate of transmission of packets i.e. the number of packets that can be sent per second or adjusting the transmission power which is the distance a packet can travel. An approach is proposed in this thesis to adapt the transmission power, based on the vehicle density state of the network, with the aim of reducing congestion on the network channel and improving the performance of VANET. Results indicate that this can lead to improved performance in terms of reduced packet loss and inter-packet delay

    Context-Aware Data-Driven Intelligent Framework for Fog Infrastructures in Internet of Vehicles

    Get PDF
    Internet of Vehicles (IoV) is the evolution of VANET (Vehicular Ad-hoc Networks) and Intelligent Transportation Systems (ITS) focused on reaping the benefits of data generated by various sensors within these networks. The IoV is further empowered by a centralized cloud and distributed fog-based infrastructure. The myriad amounts of data generated by the vehicles and the environment have the potential to enable diverse services. These services can benefit from both variety and velocity of the generated data. This paper focuses on the data at the edge nodes to enable fog-based services that can be consumed by various IoV safety and non-safety applications. The paper emphasizes the challenges involved in offering the context-aware services in a IoV environment. In order to overcome these challenges, the paper proposes a data analytics framework for fog infrastructures at the fog layer of traditional IoV architecture that offers context-aware real time, near real-time and batch services at the edge of a network. Finall

    A comprehensive survey on congestion control techniques and the research challenges on VANET

    Get PDF
    The nature of vehicular mobility and high speed of vehicular ad hoc network (VANET) with dynamic change in the network topology let the vehicular remain as one of the most challenging problems in vehicular-to-vehicular (V2V) communications. Information dissemination is the major problem in VANET with a fixed bandwidth which is causing congestion on the resources, such as channels and affects the performance of the important application, especially when the emergency or secure transmission of messages is exchanged between the vehicles-to-vehicles communication. To mitigate these problems and introduce a safe vehicular environment in urban and highway, congestion detection and control has been considered and with various strategies and techniques which is take the attention of researchers in VANET. In our survey we mentioned recent techniques and approaches which is used in congestion detection and control and applied different matrices and parameters which is used to evaluate these approaches. In addition, the study also explained the limitation and problems that face the current congestion detection and control schemes, finally we present various solution approach and future expectations in vehicular communication

    Cloud Based IP Multimedia Subsystem (IMS) Architecture to Integrate Vehicular Ad Hoc Network (VANET) and IMS

    Get PDF
    RÉSUMÉ Les réseaux Ad Hoc véhiculaires (VANET) représentent une technologie spéciale, dans la catégorie des réseaux ad hoc sans fils. Ils visent la sécurité routière, une plus grande efficacité et une meilleure organisation au sein des systèmes de transport. Ils favorisent l’avènement de nouvelles applications relatives à l’ingénierie, la gestion de trafic, la dissémination d’informations d’urgence pour éviter les situations critiques, le confort et le divertissement, ainsi que plusieurs autres «applications utilisateur». Le sous-système multimédia IP (IP Multimedia Subsystem, IMS), a été standardisé par le projet «Third Generation Partnership Project» (3GPP) pour les réseaux hétérogènes avec un support de la qualité de service. Cette plateforme a été proposée dans le but d’offrir aux utilisateurs finaux des services multimédia tels que la voix, les données et la vidéo, la facturation ainsi que l’intégration des services tout-IP. Avec l’avènement de IMS, il est désirable d’offrir aux utilisateurs des réseaux véhiculaires (VANET), un accès aux services de ce sous-système. Cependant, les caractéristiques de ces réseaux posent des difficultés majeures pour le contrôle des performances des services IMS. Par ailleurs, le «réseau cœur » de IMS présente aussi des limitations telles que le contrôle centralisé, la faible efficacité et une faible évolutivité au niveau des équipements du réseau cœur en comparaison aux infrastructures de réseau utilisant le Cloud Computing. Le Cloud Computing est un nouveau paradigme des technologies de l’information, offrant des ressources extensibles dynamiquement, souvent au moyen de machines virtuelles et accessibles en tant que services sur Internet. La migration de l’IMS au sein du Cloud peut permettre d’améliorer les performances de l’infrastructure IMS. Ce projet propose une architecture novatrice d’intégration des réseaux VANET, IMS et le Cloud Computing.----------ABSTRACT Vehicular Ad Hoc network (VANET) is a special technology in wireless ad hoc networks. It can be used to provide road safety, efficiency and traffic organization in transportation system. Thus, new applications arise in several fields such as traffic engineering, traffic management, dissemination of emergency information in order to avoid critical situations, comfort, entertainment and other user applications. IP multimedia Subsystem (IMS) is a subsystem, standardized with Third Generation Partnership Project (3GPP). The IMS supports heterogeneous networking with Quality-of-Service (QoS) policy. The goal of this platform is to integrate All-IP services and to provide final user with multimedia services such as voice, data and video with appropriate billing mechanisms. With the advent of the IP Multimedia Subsystem, it is desirable to provide VANET end-users with IMS services. However, characteristics of VANET cause major challenges to control the performance of IMS services. On the other hand, the traditional IMS core network faces a set of problems such as centralized control, low efficiency and poor scalability of core equipment, compared with the IT environment using Cloud Computing. Cloud Computing is an emerging paradigm in the field of information technology. In this new paradigm, dynamically scalable and often virtualized resources are provided as services over the Internet. The migration of IMS to cloud can improve its performance. This project proposes an innovative architecture in order to integrate VANET, IMS and Cloud Computing

    (VANET IR-CAS): Utilizing IR Techniques in Building Context Aware Systems for VANET

    Get PDF
    Most of the available context aware dissemination systems for the Vehicular Ad hoc Network (VANET) are centralized systems with low level of user privacy and preciseness. In addition, the absence of common assessment models deprives researchers from having fair evaluation of their proposed systems and unbiased comparison with other systems. Due to the importance of the commercial, safety and convenience services, three IR-CAS systems are developed to improve three applications of these services: the safety Automatic Crash Notification (ACN), the convenience Congested Road Notification (CRN) and the commercial Service Announcement (SA). The proposed systems are context aware systems that utilize the information retrieval (IR) techniques in the context aware information dissemination. The dispatched information is improved by deploying the vector space model for estimating the relevance or severity by calculating the Manhattan distance between the current situation context and the severest context vectors. The IR-CAS systems outperform current systems that use machine learning, fuzzy logic and binary models in decentralization, effectiveness by binary and non-binary measures, exploitation of vehicle processing power, dissemination of informative notifications with certainty degrees and partial rather than binary or graded notifications that are insensitive to differences in severity within grades, and protection of privacy which achieves user satisfaction. In addition, the visual-manual and speech-visual dual-mode user interface is designed to improve user safety by minimizing distraction. An evaluation model containing ACN and CRN test collections, with around 500,000 North American test cases each, is created to enable fair effectiveness comparisons among VANET context aware systems. Hence, the novelty of VANET IR-CAS systems is: First, providing scalable abstract context model with IR based processing that raises the notification relevance and precision. Second, increasing decentralization, user privacy, and safety with the least distracting user interface. Third, designing unbiased performance evaluation as a ground for distinguishing significantly effective VANET context aware systems

    Congestion Control in Vehicular Ad Hoc Networks

    Get PDF
    RÉSUMÉ Les réseaux Véhiculaires ad hoc (VANets) sont conçus pour permettre des communications sans fil fiables entre les nœuds mobiles à haute vitesse. Afin d'améliorer la performance des applications dans ce type de réseaux et garantir un environnement sûr et confortable pour ses utilisateurs, la Qualité de Service (QoS) doit être supportée dans ces réseaux. Le délai ainsi que les pertes de paquets sont deux principaux indicateurs de QoS qui augmentent de manière significative en raison de la congestion dans les réseaux. En effet, la congestion du réseau entraîne une saturation des canaux ainsi qu’une augmentation des collisions de paquets dans les canaux. Par conséquent, elle doit être contrôlée pour réduire les pertes de paquets ainsi que le délai, et améliorer les performances des réseaux véhiculaires. Le contrôle de congestion dans les réseaux VANets est une tâche difficile en raison des caractéristiques spécifiques des VANets, telles que la grande mobilité des nœuds à haute vitesse, le taux élevé de changement de topologie, etc. Le contrôle de congestion dans les réseaux VANets peut être effectué en ayant recours à une stratégie qui utilise l'un des paramètres suivants : le taux de transmission, la puissance de transmission, la priorisation et l’ordonnancement, ainsi que les stratégies hybrides. Les stratégies de contrôle de congestion dans les réseaux VANets doivent faire face à quelques défis tels que l'utilisation inéquitable des ressources, la surcharge de communication, le délai de transmission élevé, et l'utilisation inefficace de la bande passante, etc. Par conséquent, il est nécessaire de développer de nouvelles approches pour faire face à ces défis et améliorer la performance des réseaux VANets. Dans cette thèse, dans un premier temps, une stratégie de contrôle de congestion en boucle fermée est développée. Cette stratégie est une méthode de contrôle de congestion dynamique et distribuée qui détecte la congestion en mesurant le niveau d'utilisation du canal. Ensuite, la congestion est contrôlée en ajustant la portée et le taux de transmission qui ont un impact considérable sur la saturation du canal. Ajuster la portée et le taux de transmission au sein des VANets est un problème NP-difficile en raison de la grande complexité de la détermination des valeurs appropriées pour ces paramètres. Considérant les avantages de la méthode de recherche Tabou et son adaptabilité au problème, une méthode de recherche multi-objective est utilisée pour trouver une portée et un taux de transmission dans un délai raisonnable. Le délai et la gigue, fonctions multi-objectifs de l'algorithme Tabou, sont minimisés dans l'algorithme proposé. Par la suite, deux stratégies de contrôle de congestion en boucle ouverte sont proposées afin de réduire la congestion dans les canaux en utilisant la priorisation et l'ordonnancement des messages. Ces stratégies définissent la priorité pour chaque message en considérant son type de contenu (par exemple les messages d'urgence, de beacon, et de service), la taille des messages, et l’état du réseau (par exemple, les métriques de la vélocité, la direction, l'utilité, la distance, et la validité). L'ordonnancement des messages est effectué sur la base des priorités définies. De plus, comme seconde technique d'ordonnancement, une méthode de recherche Tabou est employée pour planifier les files d'attente de contrôle et de service des canaux de transmission dans un délai raisonnable. A cet effet, le délai et la gigue lors de l'acheminement des messages sont minimisés. Enfin, une stratégie localisée et centralisée qui utilise les ensembles RSU fixés aux intersections pour détecter et contrôler de la congestion est proposée. Cette stratégie regroupe tous les messages transférés entre les véhicules qui se sont arrêtés à une lumière de signalisation en utilisant les algorithmes de Machine Learning. Dans cette stratégie, un algorithme de k-means est utilisé pour regrouper les messages en fonction de leurs caractéristiques (par exemple la taille des messages, la validité des messages, et le type de messages, etc.). Les paramètres de communication, y compris le portée et le taux de transmission, la taille de la fenêtre de contention, et le paramètre AIFS (Arbitration Inter-Frame Spacing) sont déterminés pour chaque grappe de messages en vue de minimiser le délai de livraison. Ensuite, les paramètres de communication déterminés sont envoyés aux véhicules par les RSUs, et les véhicules opèrent en fonction de ces paramètres pour le transfert des messages. Les performances des trois stratégies proposées ont été évaluées en simulant des scénarios dans les autoroutes et la circulation urbaine avec les simulateurs NS2 et SUMO. Des comparaisons ont aussi été faites entre les résultats obtenus à partir des stratégies proposées et les stratégies de contrôle de congestion communément utilisées. Les résultats révèlent qu’avec les stratégies de contrôle de congestion proposées, le débit du réseau augmente et le taux de perte de paquets ainsi que de délai diminuent de manière significative en comparaison aux autres stratégies. Par conséquent, l'application des méthodes proposées aide à améliorer la performance, la sureté et la fiabilité des VANets.----------ABSTRACT Vehicular Ad hoc Networks (VANets) are designed to provide reliable wireless communications between high-speed mobile nodes. In order to improve the performance of VANets’ applications, and make a safe and comfort environment for VANets’ users, Quality of Service (QoS) should be supported in these networks. The delay and packet losses are two main indicators of QoS that dramatically increase due to the congestion occurrence in the networks. Indeed, due to congestion occurrence, the channels are saturated and the packet collisions increase in the channels. Therefore, the congestion should be controlled to decrease the packet losses and delay, and to increase the performance of VANets. Congestion control in VANets is a challenging task due to the specific characteristics of VANets such as high mobility of the nodes with high speed, and high rate of topology changes, and so on. Congestion control in VANets can be carried out using the strategies that can be classified into rate-based, power-based, CSMA/CA-based, prioritizing and scheduling-based, and hybrid strategies. The congestion control strategies in VANets face to some challenges such as unfair resources usage, communication overhead, high transmission delay, and inefficient bandwidth utilization, and so on. Therefore, it is required to develop new strategies to cope with these challenges and improve the performance of VANets. In this dissertation, first, a closed-loop congestion control strategy is developed. This strategy is a dynamic and distributed congestion control strategy that detects the congestion by measuring the channel usage level. Then, the congestion is controlled by tuning the transmission range and rate that considerably impact on the channel saturation. Tuning the transmission range and rate in VANets is an NP-hard problem due to the high complexity of determining the proper values for these parameters in vehicular networks. Considering the benefits of Tabu search algorithm and its adaptability with the problem, a multi-objective Tabu search algorithm is used for tuning transmission range and rate in reasonable time. In the proposed algorithm, the delay and jitter are minimized as the objective functions of multi-objective Tabu Search algorithm. Second, two open-loop congestion control strategies are proposed that prevent the congestion occurrence in the channels using the prioritizing and scheduling the messages. These strategies define the priority for each message by considering the content of messages (i.e. types of the messages for example emergency, beacon, and service messages), size of messages, and state of the networks (e.g. velocity, direction, usefulness, distance and validity metrics). The scheduling of the messages is conducted based on the defined priorities. In addition, as the second scheduling technique, a Tabu Search algorithm is employed to schedule the control and service channel queues in a reasonable time. For this purpose, the delay and jitter of messages delivery are minimized. Finally, a localized and centralized strategy is proposed that uses RSUs set at intersections for detecting and controlling the congestion. These strategy clusters all the messages that transferred between the vehicles stopped before the red traffic light using Machine Learning algorithms. In this strategy, a K-means learning algorithm is used for clustering the messages based on their features (e.g. size of messages, validity of messages, and type of messages, and so on). The communication parameters including the transmission range and rate, contention window size, and Arbitration Inter-Frame Spacing (AIFS) are determined for each messages cluter based on the minimized delivery delay. Then, the determined communication parameters are sent to the vehicles by RSUs, and the vehicles operate based on these parameters for transferring the messages. The performances of three proposed strategies were evaluated by simulating the highway and urban scenarios in NS2 and SUMO simulators. Comparisons were also made between the results obtained from the proposed strategies and the common used congestion control strategies. The results reveal that using the proposed congestion control strategies, the throughput, packet loss ratio and delay are significantly improved as compared to the other strategies. Therefore, applications of the proposed strategies help improve the performance, safety, and reliability of VANets

    Towards intelligent transport systems: geospatial ontological framework and agent simulation

    Get PDF
    In an Intelligent Transport System (ITS) environment, the communication component is of high significance as it supports interactions between vehicles and the roadside infrastructure. Existing studies focus on the physical capability and capacity of the communication technologies, but the equally important development of suitable and efficient semantic content for transmission has received notably less attention. Using an ontology is one promising approach for context modelling in ubiquitous computing environments. In the transport domain, an ontology can be used both for context modelling and semantic contents for vehicular communications. This research explores the development of an ontological framework implementing a geosemantic messaging model to support vehicle-to-vehicle communications. To develop an ontology model, two scenarios (an ambulance situation and a breakdown on the motorway) are constructed to describe specific situations using short-range communication in an ITS environment. In the scenarios, spatiotemporal relations and semantic relations among vehicles and road facilities are extracted and defined as classes, objects, and properties/relations in the ontology model. For the ontology model, some functions and query templates are also developed to update vehicles’ movements and to provide some logical procedures that vehicles need to follow in emergency situations. To measure the effects of the vehicular communication based on the ontology model, an agent-based approach is adopted to dynamically simulate the moving vehicles and their communications following the scenarios. The simulation results demonstrate that the ontology model can support vehicular communications to update each vehicle’s context model and assist its decision-making process to resolve the emergency situations. The results also show the effect of vehicular communications on the efficiency trends of traffic in emergency situations, where some vehicles have a communication device, and others do not. The efficiency trends, based on the percentage of vehicles having a communication device, can be useful to set a transition period plan for implanting communication devices onto vehicles and the infrastructure. The geospatial ontological framework and agent simulation may contribute to increase the intelligence of ITS by supporting data-level and application-level implementation of autonomous vehicle agents to share knowledge in local contexts. This work can be easily extended to support more complex interactions amongst vehicles and the infrastructure
    corecore