1,463 research outputs found

    Development and Flight Testing of a Wireless Avionics Network Based on the IEEE 802.11 Protocols

    Get PDF
    This report describes the development and flight testing of the IEEE 802.11 protocol-based Wireless Flight Management System (WFMS) using low cost Commercial-Off-The-Shelf (COTS) equipment and software. The unlicensed spectrum allocation in the 2.4 GHz and 5 GHz bands by the FCC has encouraged the industry to develop new standards for short-range communication that are commercially viable. This has resulted in new short-range communication technologies like Bluetooth and the Wireless Local Area Network (WLAN). The new modulation techniques developed for wireless communication support wired equivalent data rates. The commercial success of these technologies and their wide market adaptation has resulted in reduced costs for the devices that support these technologies. Applications of wireless technology in aerospace engineering are vast, including development, testing, manufacturing, prognostics health management, ground support equipment and active control. The high data rates offered by technologies like WLAN (IEEE 802.11 a/b/g) are sufficient to implement critical and essential data applications of avionics systems. A wireless avionics network based on IEEE 802.11a/b/g protocols will reduce the complexity and cost of installation and maintenance of the avionics system when compared to the existing wired system. The proposed WFMS imitates the flight management system of any commercial aircraft in terms of functionality. It utilizes a radio frequency for the transmission of the sensor data to the Cockpit Display Unit (CDU) and the Flight Management Computer (FMC). WFMS consists of a FMC, data acquisition node, sensor node and a user interface node. The FMC and the data acquisition nodes are built using PC/104 standard modules. The sensor node consists of an Attitude and Heading Reference System (AHRS) and a GPS integrated with a serial device server. The user interface node is installed with moving map software which receives data from the AHRS and GPS to display flight information including topographic maps, attitude, heading, velocity, et cetera. This thesis demonstrates the performance evaluation of the WFMS both on the ground and in flight, and its advantages over a wired system. This thesis focuses on the evaluation of IEEE 802.11a/b/g protocols for avionics application. Efforts taken to calibrate the available bandwidth of the WLAN network at different operating conditions and varying ranges using different network analysis tools are explained briefly. Considerable research on issues like electromagnetic interference and network security critical to the development of a wireless network for avionics has also been done. This report covers different aspects of the implementation of wireless technology for aircraft systems. This work is a successful starting point for the new fly-by-wireless concept with extensions to active wireless flight control

    Future strategic plan analysis for integrating distributed renewable generation to smart grid through wireless sensor network: Malaysia prospect

    Get PDF
    AbstractIntegration of Distributed Renewable Generation (DRG) to the future Smart Grid (SG) is one of the important considerations that is highly prioritized in the SG development roadmap by most of the countries including Malaysia. The plausible way of this integration is the enhancement of information and bidirectional communication infrastructure for energy monitoring and controlling facilities. However, urgency of data delivery through maintaining critical time condition is not crucial in these facilities. In this paper, we have surveyed state-of-the-art protocols for different Wireless Sensor Networks (WSNs) with the aim of realizing communication infrastructure for DRG in Malaysia. Based on the analytical results from surveys, data communication for DRG should be efficient, flexible, reliable, cost effective, and secured. To meet this achievement, IEEE802.15.4 supported ZigBee PRO protocol together with sensors and embedded system is shown as Wireless Sensor (WS) for DRG bidirectional network with prospect of attaining data monitoring facilities. The prospect towards utilizing ZigBee PRO protocol can be a cost effective option for full integration of intelligent DRG and small scale Building-Integrated Photovoltaic (BIPV)/Feed-in-Tariff (FiT) under SG roadmap (Phase4: 2016–2017) conducted by Malaysia national utility company, Tenaga Nasional Berhad (TNB). Moreover, we have provided a direction to utilize the effectiveness of ZigBee-WS network with the existing optical communication backbone for data importing from the end DRG site to the TNB control center. A comparative study is carried out among developing countries on recent trends of SG progress which reveals that some common projects like smart metering and DRG integration are on priority

    LoRaWAN communication implementation platforms

    Get PDF
    A key role in the development of smart Internet of Things (IoT) solutions is played by wireless communication technologies, especially LPWAN (Low-Power Wide-Area Network), which are becoming increasingly popular due to their advantages: long range, low power consumption and the ability to connect multiple edge devices. However, in addition to the advantages of communication and low power consumption, the security of transmitted data is also important. End devices very often have a small amount of memory, which makes it impossible to implement advanced cryptographic algorithms on them. The article analyzes the advantages and disadvantages of solutions based on LPWAN communication and reviews platforms for IoT device communication in the LoRaWAN (LoRa Wide Area Network) standard in terms of configuration complexity. It describes how to configure an experimental LPWAN system being built at the Department of Computer Science and Telecommunications at Poznan University of Technology for research related to smart buildings

    Spectrum Sharing, Latency, and Security in 5G Networks with Application to IoT and Smart Grid

    Get PDF
    The surge of mobile devices, such as smartphones, and tables, demands additional capacity. On the other hand, Internet-of-Things (IoT) and smart grid, which connects numerous sensors, devices, and machines require ubiquitous connectivity and data security. Additionally, some use cases, such as automated manufacturing process, automated transportation, and smart grid, require latency as low as 1 ms, and reliability as high as 99.99\%. To enhance throughput and support massive connectivity, sharing of the unlicensed spectrum (3.5 GHz, 5GHz, and mmWave) is a potential solution. On the other hand, to address the latency, drastic changes in the network architecture is required. The fifth generation (5G) cellular networks will embrace the spectrum sharing and network architecture modifications to address the throughput enhancement, massive connectivity, and low latency. To utilize the unlicensed spectrum, we propose a fixed duty cycle based coexistence of LTE and WiFi, in which the duty cycle of LTE transmission can be adjusted based on the amount of data. In the second approach, a multi-arm bandit learning based coexistence of LTE and WiFi has been developed. The duty cycle of transmission and downlink power are adapted through the exploration and exploitation. This approach improves the aggregated capacity by 33\%, along with cell edge and energy efficiency enhancement. We also investigate the performance of LTE and ZigBee coexistence using smart grid as a scenario. In case of low latency, we summarize the existing works into three domains in the context of 5G networks: core, radio and caching networks. Along with this, fundamental constraints for achieving low latency are identified followed by a general overview of exemplary 5G networks. Besides that, a loop-free, low latency and local-decision based routing protocol is derived in the context of smart grid. This approach ensures low latency and reliable data communication for stationary devices. To address data security in wireless communication, we introduce a geo-location based data encryption, along with node authentication by k-nearest neighbor algorithm. In the second approach, node authentication by the support vector machine, along with public-private key management, is proposed. Both approaches ensure data security without increasing the packet overhead compared to the existing approaches
    • …
    corecore