1,982 research outputs found

    RFID based automatic speed limit warning system

    Get PDF
    Speeding is one of the major causes of road accidents. As drivers usually claim they exceed the speed limit unintentionally, having an in-vehicle automatic speed limit warning system could help to prevent a significant number of speeding and accidents from happening. Existing systems cannot provide consistent and satisfactory performance. In this paper we investigated automatic speed limit transmission based on RFID technologies. We conclude that both passive and active RFID systems show potential in such scenario, but are suitable for different scales of applications. For both technologies, challenges are identified and addressed, with system prototypes proposed and demonstration systems developed to prove the feasibility of our design concept

    A Study on Vehicle Trajectory Analysis

    Get PDF
    Successful developments of effective real-time traffic management and information systems demand high quality real time traffic information. In the era of intelligent transportation convergence, traffic monitoring requires traffic sensory technologies. The present analysis extracted data from Mobile Century experiment. The data obtained in the experiment was pre-processed. Based on the pre processed data experimental road map has generated. Individual vehicle tracking has done using trajectory analysis. Finally an attempt has been made for extracting association rules from mobile century dataset using Apriori algorithm

    Digitization of the entire traffic system and mitigation of the ongoing traffic crisis across cities of developing nations

    Get PDF
    This thesis report is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Electrical and Electronic Engineering, 2015.This paper focuses on a novel approach for handling the present traffic situation in perspective of Bangladesh. We plan to moderate the ongoing traffic predicament that currently plagues Dhaka city and gradually expand it to the whole country. Road traffic congestion is apparently a borderless ordeal in Dhaka and its adjacent cities and the situation tends to worsen as new cars enter the current stream every day. The aim of the paper is to develop a threefold solution to counter the traffic clogging. The approach taken during the course of this research focused primarily on an experimental evaluation of the small-scale model of the traffic routing algorithms. Among the threefold solution, the first approach is to develop a traffic algorithm to calculate the routes with shortest possible times to destinations. We plan to implement the system‟s usability by providing feedback to our target users (car drivers) so that they can decide on which route to take. This will be done by means of an overhead display on the car dashboards backed up by an embedded OS or Android. For our input we plan to take the amount of cars that are at any specific route at a time and provide that data to the car driver by the means of modern vehicle density measurement techniques. Travelling times are calculated using Dijkstra‟s algorithm and the shortest possible time required is provided to the commuters taking into consideration the situation of the roads at any point of time. The second approach is to make use of 24-hour Dynamic Traffic Light Controllers (DTLCs) based on artificial neural networks. The DTLC will be implemented using the Intel NUC in conjunction with the Arduino Mega. The decision making algorithm is designed to replicate, in a meager form, the human brain with the system trained to learn to respond to certain traffic situations. At present the BRTA (Bangladesh Road Transport) employs Static Traffic Light Controllers (STLCs) to handle traffic flow at some intersections while other, less important, ones have manual control in the form of the traffic officer in charge

    Real life Applications of Internet of Things

    Get PDF
    The Internet of Things is the next technological revolution after the revolution of computer and internet. IoT integrates the new technologies of computing and communication (e.g. Sensor networks, RFID, Mobile communication and IPV6 etc). The Internet of Things is an emerging topic of technical, social, and economic significance. The term Internet of Things generally refers to scenarios where network connectivity and computing capability extends to objects, sensors and everyday items not normally considered computers, allowing these devices to generate exchange and consume data with minimal human intervention. Internet connect “all people”, Internet of Things connect “all things”. Interconnection of Things or Objects or Machines, e.g., sensors, actuators, mobile phones, electronic devices, home appliances, any existing items and interact with each other via Interne

    Passive RFID-Based Inventory of Traffic Signs on Roads and Urban Environments

    Get PDF
    This paper presents a system with location functionalities for the inventory of traffic signs based on passive RFID technology. The proposed system simplifies the current video-based techniques, whose requirements regarding visibility are difficult to meet in some scenarios, such as dense urban areas. In addition, the system can be easily extended to consider any other street facilities, such as dumpsters or traffic lights. Furthermore, the system can perform the inventory process at night and at a vehicle’s usual speed, thus avoiding interfering with the normal traffic flow of the road. Moreover, the proposed system exploits the benefits of the passive RFID technologies over active RFID, which are typically employed on inventory and vehicular routing applications. Since the performance of passive RFID is not obvious for the required distance ranges on these in-motion scenarios, this paper, as its main contribution, addresses the problem in two different ways, on the one hand theoretically, presenting a radio wave propagation model at theoretical and simulation level for these scenarios; and on the other hand experimentally, comparing passive and active RFID alternatives regarding costs, power consumption, distance ranges, collision problems, and ease of reconfiguration. Finally, the performance of the proposed on-board system is experimentally validated, testing its capabilities for inventory purposesMinisterio de Economía y Competitividad TEC2016-80396-C2-2-

    Sensor Technologies for Intelligent Transportation Systems

    Get PDF
    Modern society faces serious problems with transportation systems, including but not limited to traffic congestion, safety, and pollution. Information communication technologies have gained increasing attention and importance in modern transportation systems. Automotive manufacturers are developing in-vehicle sensors and their applications in different areas including safety, traffic management, and infotainment. Government institutions are implementing roadside infrastructures such as cameras and sensors to collect data about environmental and traffic conditions. By seamlessly integrating vehicles and sensing devices, their sensing and communication capabilities can be leveraged to achieve smart and intelligent transportation systems. We discuss how sensor technology can be integrated with the transportation infrastructure to achieve a sustainable Intelligent Transportation System (ITS) and how safety, traffic control and infotainment applications can benefit from multiple sensors deployed in different elements of an ITS. Finally, we discuss some of the challenges that need to be addressed to enable a fully operational and cooperative ITS environment

    Anti-collision systems in tunneling to improve effectiveness and safety in a system-quality approach: A review of the state of the art

    Get PDF
    Tunnelling and underground construction operations are often characterized by critical safety issues mainly due to poor visibility and blind spots around large vehicles and equipment. This can lead to collisions between vehicles or between vehicles and pedestrians or structural elements, causing accidents and fatalities. To improve the OS&H conditions, it is important to investigate the possible introduction of innovative techniques and technologies to reduce the occurrences and consequences of shared spaces (spaces used by both vehicles and pedestrians). For this reason, research was conducted to investigate the possible use of different technologies of anti-collision systems in tunnelling operations. First, to achieve this goal, an extensive review of the literature was carried out in accordance with the PRISMA statement to select the current techniques and technologies used by general anti-collision systems in civil and mining construction sites. Then, the operating principles, the relative advantages and disadvantages, combinations, and costs were examined for each of these. Eight types of systems and many examples of applications of anti-collision systems in underground environments were identified as a result of the analysis of the literature. Generally, it was noted that the anti-collision techniques available have found limited application in the excavation sites of underground civil works up to the present day, though the improvement in terms of safety and efficiency would be considerable
    corecore