824 research outputs found

    Vehicle logo recognition using histograms of oriented gradient descriptor and sparsity score

    Get PDF
    Most of vehicle have the similar structures and designs. It is extremely complicated and difficult to identify and classify vehicle brands based on their structure and shape. As we requirea quick and reliable response, so vehicle logos are an alternative method of determining the type of a vehicle. In this paper, we propose a method for vehicle logo recognition based on feature  selection method in a hybrid way. Vehicle logo images are first characterized by histograms of oriented gradient descriptors and the final features vector are then applied feature selection method to reduce the irrelevant information. Moreover, we release a new benchmark dataset for vehicle logo recognition and retrieval task namely, VLR-40. The experimental results are evaluated on this database which show the efficiency of the proposed approach

    Vehicle make and model recognition for intelligent transportation monitoring and surveillance.

    Get PDF
    Vehicle Make and Model Recognition (VMMR) has evolved into a significant subject of study due to its importance in numerous Intelligent Transportation Systems (ITS), such as autonomous navigation, traffic analysis, traffic surveillance and security systems. A highly accurate and real-time VMMR system significantly reduces the overhead cost of resources otherwise required. The VMMR problem is a multi-class classification task with a peculiar set of issues and challenges like multiplicity, inter- and intra-make ambiguity among various vehicles makes and models, which need to be solved in an efficient and reliable manner to achieve a highly robust VMMR system. In this dissertation, facing the growing importance of make and model recognition of vehicles, we present a VMMR system that provides very high accuracy rates and is robust to several challenges. We demonstrate that the VMMR problem can be addressed by locating discriminative parts where the most significant appearance variations occur in each category, and learning expressive appearance descriptors. Given these insights, we consider two data driven frameworks: a Multiple-Instance Learning-based (MIL) system using hand-crafted features and an extended application of deep neural networks using MIL. Our approach requires only image level class labels, and the discriminative parts of each target class are selected in a fully unsupervised manner without any use of part annotations or segmentation masks, which may be costly to obtain. This advantage makes our system more intelligent, scalable, and applicable to other fine-grained recognition tasks. We constructed a dataset with 291,752 images representing 9,170 different vehicles to validate and evaluate our approach. Experimental results demonstrate that the localization of parts and distinguishing their discriminative powers for categorization improve the performance of fine-grained categorization. Extensive experiments conducted using our approaches yield superior results for images that were occluded, under low illumination, partial camera views, or even non-frontal views, available in our real-world VMMR dataset. The approaches presented herewith provide a highly accurate VMMR system for rea-ltime applications in realistic environments.\\ We also validate our system with a significant application of VMMR to ITS that involves automated vehicular surveillance. We show that our application can provide law inforcement agencies with efficient tools to search for a specific vehicle type, make, or model, and to track the path of a given vehicle using the position of multiple cameras

    Fast Automatic Vehicle Annotation for Urban Traffic Surveillance

    Get PDF
    Automatic vehicle detection and annotation for streaming video data with complex scenes is an interesting but challenging task for intelligent transportation systems. In this paper, we present a fast algorithm: detection and annotation for vehicles (DAVE), which effectively combines vehicle detection and attributes annotation into a unified framework. DAVE consists of two convolutional neural networks: a shallow fully convolutional fast vehicle proposal network (FVPN) for extracting all vehicles' positions, and a deep attributes learning network (ALN), which aims to verify each detection candidate and infer each vehicle's pose, color, and type information simultaneously. These two nets are jointly optimized so that abundant latent knowledge learned from the deep empirical ALN can be exploited to guide training the much simpler FVPN. Once the system is trained, DAVE can achieve efficient vehicle detection and attributes annotation for real-world traffic surveillance data, while the FVPN can be independently adopted as a real-time high-performance vehicle detector as well. We evaluate the DAVE on a new self-collected urban traffic surveillance data set and the public PASCAL VOC2007 car and LISA 2010 data sets, with consistent improvements over existing algorithms

    Scalable logo detection by self co-learning

    Get PDF

    Object Re-Identification Based on Deep Learning

    Get PDF
    With the explosive growth of video data and the rapid development of computer vision technology, more and more relevant technologies are applied in our real life, one of which is object re-identification (Re-ID) technology. Object Re-ID is currently concentrated in the field of person Re-ID and vehicle Re-ID, which is mainly used to realize the cross-vision tracking of person/vehicle and trajectory prediction. This chapter combines theory and practice to explain why the deep network can re-identify the object. To introduce the main technical route of object Re-ID, the examples of person/vehicle Re-ID are given, and the improvement points of existing object Re-ID research are described separately
    corecore