1,069 research outputs found

    Deep learning in remote sensing: a review

    Get PDF
    Standing at the paradigm shift towards data-intensive science, machine learning techniques are becoming increasingly important. In particular, as a major breakthrough in the field, deep learning has proven as an extremely powerful tool in many fields. Shall we embrace deep learning as the key to all? Or, should we resist a 'black-box' solution? There are controversial opinions in the remote sensing community. In this article, we analyze the challenges of using deep learning for remote sensing data analysis, review the recent advances, and provide resources to make deep learning in remote sensing ridiculously simple to start with. More importantly, we advocate remote sensing scientists to bring their expertise into deep learning, and use it as an implicit general model to tackle unprecedented large-scale influential challenges, such as climate change and urbanization.Comment: Accepted for publication IEEE Geoscience and Remote Sensing Magazin

    SINet: A Scale-insensitive Convolutional Neural Network for Fast Vehicle Detection

    Full text link
    Vision-based vehicle detection approaches achieve incredible success in recent years with the development of deep convolutional neural network (CNN). However, existing CNN based algorithms suffer from the problem that the convolutional features are scale-sensitive in object detection task but it is common that traffic images and videos contain vehicles with a large variance of scales. In this paper, we delve into the source of scale sensitivity, and reveal two key issues: 1) existing RoI pooling destroys the structure of small scale objects, 2) the large intra-class distance for a large variance of scales exceeds the representation capability of a single network. Based on these findings, we present a scale-insensitive convolutional neural network (SINet) for fast detecting vehicles with a large variance of scales. First, we present a context-aware RoI pooling to maintain the contextual information and original structure of small scale objects. Second, we present a multi-branch decision network to minimize the intra-class distance of features. These lightweight techniques bring zero extra time complexity but prominent detection accuracy improvement. The proposed techniques can be equipped with any deep network architectures and keep them trained end-to-end. Our SINet achieves state-of-the-art performance in terms of accuracy and speed (up to 37 FPS) on the KITTI benchmark and a new highway dataset, which contains a large variance of scales and extremely small objects.Comment: Accepted by IEEE Transactions on Intelligent Transportation Systems (T-ITS

    Aerial Vehicle Tracking by Adaptive Fusion of Hyperspectral Likelihood Maps

    Full text link
    Hyperspectral cameras can provide unique spectral signatures for consistently distinguishing materials that can be used to solve surveillance tasks. In this paper, we propose a novel real-time hyperspectral likelihood maps-aided tracking method (HLT) inspired by an adaptive hyperspectral sensor. A moving object tracking system generally consists of registration, object detection, and tracking modules. We focus on the target detection part and remove the necessity to build any offline classifiers and tune a large amount of hyperparameters, instead learning a generative target model in an online manner for hyperspectral channels ranging from visible to infrared wavelengths. The key idea is that, our adaptive fusion method can combine likelihood maps from multiple bands of hyperspectral imagery into one single more distinctive representation increasing the margin between mean value of foreground and background pixels in the fused map. Experimental results show that the HLT not only outperforms all established fusion methods but is on par with the current state-of-the-art hyperspectral target tracking frameworks.Comment: Accepted at the International Conference on Computer Vision and Pattern Recognition Workshops, 201

    Vision-Based Semantic Segmentation in Scene Understanding for Autonomous Driving: Recent Achievements, Challenges, and Outlooks

    Get PDF
    Scene understanding plays a crucial role in autonomous driving by utilizing sensory data for contextual information extraction and decision making. Beyond modeling advances, the enabler for vehicles to become aware of their surroundings is the availability of visual sensory data, which expand the vehicular perception and realizes vehicular contextual awareness in real-world environments. Research directions for scene understanding pursued by related studies include person/vehicle detection and segmentation, their transition analysis, lane change, and turns detection, among many others Unfortunately, these tasks seem insufficient to completely develop fully-autonomous vehicles i.e. achieving level-5 autonomy, travelling just like human-controlled cars. This latter statement is among the conclusions drawn from this review paper: scene understanding for autonomous driving cars using vision sensors still requires significant improvements. With this motivation, this survey defines, analyzes, and reviews the current achievements of the scene understanding research area that mostly rely on computationally complex deep learning models. Furthermore, it covers the generic scene understanding pipeline, investigates the performance reported by the state-of-the-art, informs about the time complexity analysis of avant garde modeling choices, and highlights major triumphs and noted limitations encountered by current research efforts. The survey also includes a comprehensive discussion on the available datasets, and the challenges that, even if lately confronted by researchers, still remain open to date. Finally, our work outlines future research directions to welcome researchers and practitioners to this exciting domain.This work was supported by the European Commission through European Union (EU) and Japan for Artificial Intelligence (AI) under Grant 957339

    Scene Detection Classification and Tracking for Self-Driven Vehicle

    Get PDF
    A number of traffic-related issues, including crashes, jams, and pollution, could be resolved by self-driving vehicles (SDVs). Several challenges still need to be overcome, particularly in the areas of precise environmental perception, observed detection, and its classification, to allow the safe navigation of autonomous vehicles (AVs) in crowded urban situations. This article offers a comprehensive examination of the application of deep learning techniques in self-driving cars for scene perception and observed detection. The theoretical foundations of self-driving cars are examined in depth in this research using a deep learning methodology. It explores the current applications of deep learning in this area and provides critical evaluations of their efficacy. This essay begins with an introduction to the ideas of computer vision, deep learning, and self-driving automobiles. It also gives a brief review of artificial general intelligence, highlighting its applicability to the subject at hand. The paper then concentrates on categorising current, robust deep learning libraries and considers their critical contribution to the development of deep learning techniques. The dataset used as label for scene detection for self-driven vehicle. The discussion of several strategies that explicitly handle picture perception issues faced in real-time driving scenarios takes up a sizeable amount of the work. These methods include methods for item detection, recognition, and scene comprehension. In this study, self-driving automobile implementations and tests are critically assessed
    corecore