57 research outputs found

    Evolutionary Developmental Soft Robotics As a Framework to Study Intelligence and Adaptive Behavior in Animals and Plants

    Get PDF
    In this paper, a comprehensive methodology and simulation framework will be reviewed, designed in order to study the emergence of adaptive and intelligent behavior in generic soft-bodied creatures. By incorporating artificial evolutionary and developmental processes, the system allows to evolve complete creatures (brain, body, developmental properties, sensory, control system, etc.) for different task environments. Whether the evolved creatures will resemble animals or plants is in general not known a priori, and depends on the specific task environment set up by the experimenter. In this regard, the system may offer a unique opportunity to explore differences and similarities between these two worlds. Different material properties can be simulated and optimized, from a continuum of soft/stiff materials, to the interconnection of heterogeneous structures, both found in animals and plants alike. The adopted genetic encoding and simulation environment are particularly suitable in order to evolve distributed sensory and control systems, which play a particularly important role in plants. After a general description of the system some case studies will be presented, focusing on the emergent properties of the evolved creatures. Particular emphasis will be on some unifying concepts that are thought to play an important role in the emergence of intelligent and adaptive behavior across both the animal and plant kingdoms, such as morphological computation and morphological developmental plasticity. Overall, with this paper, we hope to draw attention on set of tools, methodologies, ideas and results, which may be relevant to researchers interested in plant-inspired robotics and intelligence

    Constructing living buildings: a review of relevant technologies for a novel application of biohybrid robotics

    Get PDF
    Biohybrid robotics takes an engineering approach to the expansion and exploitation of biological behaviours for application to automated tasks. Here, we identify the construction of living buildings and infrastructure as a high-potential application domain for biohybrid robotics, and review technological advances relevant to its future development. Construction, civil infrastructure maintenance and building occupancy in the last decades have comprised a major portion of economic production, energy consumption and carbon emissions. Integrating biological organisms into automated construction tasks and permanent building components therefore has high potential for impact. Live materials can provide several advantages over standard synthetic construction materials, including self-repair of damage, increase rather than degradation of structural performance over time, resilience to corrosive environments, support of biodiversity, and mitigation of urban heat islands. Here, we review relevant technologies, which are currently disparate. They span robotics, self-organizing systems, artificial life, construction automation, structural engineering, architecture, bioengineering, biomaterials, and molecular and cellular biology. In these disciplines, developments relevant to biohybrid construction and living buildings are in the early stages, and typically are not exchanged between disciplines. We, therefore, consider this review useful to the future development of biohybrid engineering for this highly interdisciplinary application.publishe

    Toward energy Autonomy in heterogeneous Modular Plant-Inspired Robots through Artificial evolution

    Get PDF
    Contemporary robots perform energy intensive tasks—e.g., manipulation and locomotion—making the development of energy autonomous robots challenging. Since plants are primary energy producers in natural ecosystems, we took plants as a source of inspiration for designing our robotics platform. This led us to investigate energy autonomy in robots through employing solar panels. As plants move slowly compared to other large terrestrial organisms, it is expected that plant-inspired robots can enable robotic applications, such as long-term monitoring and exploration, where energy consumption could be minimized. Since it is difficult to manually design robotic systems that adhere to full energy autonomy, we utilize evolutionary algorithms to automate the design and evaluation of energy harvesting robots. We demonstrate how artificial evolution can lead to the design and control of a modular plant-like robot. Robotic phenotypes were acquired through implementing an evolutionary algorithm, a generative encoding and modular building blocks in a simulation environment. The generative encoding is based on a context sensitive Lindenmayer-System (L-System) and the evolutionary algorithm is used to optimize compositions of heterogeneous modular building blocks in the simulation environment. Phenotypes that evolved from the simulation environment are in turn transferred to a physical robot platform. The robotics platform consists of five different types of modules: (1) a base module, (2) a cube module, (3) servo modules, and (4,5) two types of solar panel modules that are used to harvest energy. The control system for the platform is initially evolved in the simulation environment and afterward transferred to an actual physical robot. A few experiments were done showing the relationship between energy cost and the amount of light tracking that evolved in the simulation. The reconfigurable modular robots are eventually used to harvest light with the possibility to be reconfigured based on the needs of the designer, the type of usable modules, and/or the optimal configuration derived from the simulation environment. Long-term energy autonomy has not been tested in this robotics platform. However, we think our robotics platform can serve as a stepping stone toward full energy autonomy in modular robots

    Aeronautical engineering, a continuing bibliography with indexes

    Get PDF
    This bibliography lists 419 reports, articles and other documents introduced into the NASA scientific and technical information system in March 1985

    Hierarchical Variance Reduction Techniques for Monte Carlo Rendering

    Get PDF
    Ever since the first three-dimensional computer graphics appeared half a century ago, the goal has been to model and simulate how light interacts with materials and objects to form an image. The ultimate goal is photorealistic rendering, where the created images reach a level of accuracy that makes them indistinguishable from photographs of the real world. There are many applications ñ visualization of products and architectural designs yet to be built, special effects, computer-generated films, virtual reality, and video games, to name a few. However, the problem has proven tremendously complex; the illumination at any point is described by a recursive integral to which a closed-form solution seldom exists. Instead, computer simulation and Monte Carlo methods are commonly used to statistically estimate the result. This introduces undesirable noise, or variance, and a large body of research has been devoted to finding ways to reduce the variance. I continue along this line of research, and present several novel techniques for variance reduction in Monte Carlo rendering, as well as a few related tools. The research in this dissertation focuses on using importance sampling to pick a small set of well-distributed point samples. As the primary contribution, I have developed the first methods to explicitly draw samples from the product of distant high-frequency lighting and complex reflectance functions. By sampling the product, low noise results can be achieved using a very small number of samples, which is important to minimize the rendering times. Several different hierarchical representations are explored to allow efficient product sampling. In the first publication, the key idea is to work in a compressed wavelet basis, which allows fast evaluation of the product. Many of the initial restrictions of this technique were removed in follow-up work, allowing higher-resolution uncompressed lighting and avoiding precomputation of reflectance functions. My second main contribution is to present one of the first techniques to take the triple product of lighting, visibility and reflectance into account to further reduce the variance in Monte Carlo rendering. For this purpose, control variates are combined with importance sampling to solve the problem in a novel way. A large part of the technique also focuses on analysis and approximation of the visibility function. To further refine the above techniques, several useful tools are introduced. These include a fast, low-distortion map to represent (hemi)spherical functions, a method to create high-quality quasi-random points, and an optimizing compiler for analyzing shaders using interval arithmetic. The latter automatically extracts bounds for importance sampling of arbitrary shaders, as opposed to using a priori known reflectance functions. In summary, the work presented here takes the field of computer graphics one step further towards making photorealistic rendering practical for a wide range of uses. By introducing several novel Monte Carlo methods, more sophisticated lighting and materials can be used without increasing the computation times. The research is aimed at domain-specific solutions to the rendering problem, but I believe that much of the new theory is applicable in other parts of computer graphics, as well as in other fields

    Doctor of Philosophy

    Get PDF
    dissertationBalancing the trade off between the spatial and temporal quality of interactive computer graphics imagery is one of the fundamental design challenges in the construction of rendering systems. Inexpensive interactive rendering hardware may deliver a high level of temporal performance if the level of spatial image quality is sufficiently constrained. In these cases, the spatial fidelity level is an independent parameter of the system and temporal performance is a dependent variable. The spatial quality parameter is selected for the system by the designer based on the anticipated graphics workload. Interactive ray tracing is one example; the algorithm is often selected due to its ability to deliver a high level of spatial fidelity, and the relatively lower level of temporal performance isreadily accepted. This dissertation proposes an algorithm to perform fine-grained adjustments to the trade off between the spatial quality of images produced by an interactive renderer, and the temporal performance or quality of the rendered image sequence. The approach first determines the minimum amount of sampling work necessary to achieve a certain fidelity level, and then allows the surplus capacity to be directed towards spatial or temporal fidelity improvement. The algorithm consists of an efficient parallel spatial and temporal adaptive rendering mechanism and a control optimization problem which adjusts the sampling rate based on a characterization of the rendered imagery and constraints on the capacity of the rendering system
    • …
    corecore