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Contemporary robots perform energy intensive tasks—e.g., manipulation and loco-
motion—making the development of energy autonomous robots challenging. Since 
plants are primary energy producers in natural ecosystems, we took plants as a 
source of inspiration for designing our robotics platform. This led us to investigate 
energy autonomy in robots through employing solar panels. As plants move slowly 
compared to other large terrestrial organisms, it is expected that plant-inspired robots 
can enable robotic applications, such as long-term monitoring and exploration, where 
energy consumption could be minimized. Since it is difficult to manually design robotic 
systems that adhere to full energy autonomy, we utilize evolutionary algorithms to 
automate the design and evaluation of energy harvesting robots. We demonstrate how 
artificial evolution can lead to the design and control of a modular plant-like robot. 
Robotic phenotypes were acquired through implementing an evolutionary algorithm, 
a generative encoding and modular building blocks in a simulation environment. The 
generative encoding is based on a context sensitive Lindenmayer-System (L-System) 
and the evolutionary algorithm is used to optimize compositions of heterogeneous 
modular building blocks in the simulation environment. Phenotypes that evolved from 
the simulation environment are in turn transferred to a physical robot platform. The 
robotics platform consists of five different types of modules: (1) a base module, (2) a 
cube module, (3) servo modules, and (4,5) two types of solar panel modules that are 
used to harvest energy. The control system for the platform is initially evolved in the 
simulation environment and afterward transferred to an actual physical robot. A few 
experiments were done showing the relationship between energy cost and the amount 
of light tracking that evolved in the simulation. The reconfigurable modular robots are 
eventually used to harvest light with the possibility to be reconfigured based on the 
needs of the designer, the type of usable modules, and/or the optimal configuration 
derived from the simulation environment. Long-term energy autonomy has not been 
tested in this robotics platform. However, we think our robotics platform can serve as a 
stepping stone toward full energy autonomy in modular robots.
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1. INtRodUCtIoN

Energy autonomy in artificial systems is beneficial for long-term 
autonomous behavior in single or multi-robot applications 
required for, e.g., monitoring and exploration. However, it can 
be complicated to design energy autonomous systems since 
this depends on the energy demand and energy acquisition 
of the robot. In evolutionary robotics, locomotion and object 
manipulation are among the most prominent objectives for 
robots (Vargas et  al., 2014). Though the same principles in 
evolutionary robotics can be implemented for energy autonomy 
in robotic systems, energy autonomy is usually implemented 
on different robotic systems where the robot is able to utilize 
energy from light (Noth et al., 2006; Afarulrazi et al., 2011) or 
microbial fuel cells (Ieropoulos et  al., 2003; Philamore et  al., 
2015). Being able to automatically design robotic systems that 
are geared toward energy autonomy could give us unintuitive 
solutions that might be more effective than traditional solutions. 
Since plants have mastered extracting energy from light in ter-
restrial environments, they are taken as a source of inspiration. 
Although plants have many unique features, we do not consider 
the implementation of many of them since it is either impracti-
cal or infeasible to implement in robotic systems. However, an 
abstraction of plant development is implemented in the form of 
a generative encoding (section 2.3). Having a modular robotic 
system that conforms to energy optimization could give rise to 
self-reconfigurable robots that maximize energy acquisition.

The ultimate mechanisms that drive evolution in organisms are 
enacted through the external energy influx into an open system  
that innately works against its thermodynamic equilibrium. 
Considering the earth as an open system, this energy influx is 
mainly acquired from the sun in the form of light and to a lesser 
degree in the form of heat and chemicals from earth. Being 
able to acquire this energy from the sun to generate complex 
organisms is thus a vital for evolution. The initial multicellular 
organisms that roamed the planet acquired energy from their 
environment in the form of chemicals and light (Reece et  al., 
2010). These carbon-based life forms were the precursors to 
plants which became the expert terrestrial organisms for acquir-
ing energy from light. Although plants appear to be slow, they 
are highly optimized for gathering energy from their environ-
ment. Many plants contain track and actuation mechanisms that 
optimize their productivity by absorbing light more efficiently 
(Ehleringer and Forseth, 1980). This tracking behavior emerges 
in the form of circumnation through heliotropism (Graham 
and Wilcox, 2013). In phototropism, a form of heliotropism, the 
plant actively grows toward a light source as in the case of the 
sunflower (Atamian et al., 2016; Kutschera and Briggs, 2016). 
Some other species of plants can adjust their leaves or flowers to 
bend toward the light with a structure called the pulvinus. The 
pulvinus is a structure below the leaves and flowers that twists 
and pivots them through adjusting turgor pressure (Song et al., 
2014). In general, leaves adjust their angle and move their sur-
face perpendicular to the sun when conditions are optimal in a 
process called diaheliotropism. These are some general adaptive 
mechanisms through which a plant can adapt their morphol-
ogy based on specific stimuli. Other morphological traits are 

hard-coded in the genome such as phyllotaxis (Prusinkiewicz 
and Lindenmayer, 1990), the arrangement of leaves on a plant. 
Since the amount of solar modules used in the robotic system 
is limited, as will become apparent in the next sections, no fair 
comparison can be made with the complex forms of phyllotaxis 
seen in plants. However, phyllotaxis is mainly driven by innate 
factors requiring limited feedback from the environment which 
is similar to the open-loop control implemented in the genera-
tive encoding and evolutionary algorithm.

A mechanism exactly like phototropism is a feat that we are 
unable to implement in the robot since this would require some 
form of growth. This could, however, be accomplished with soft 
robots (Sinibaldi et al., 2014; Heinrich et al., 2016; Sadeghi et al., 
2016; Vergara et al., 2017). Although allowing for continual growth 
show promising bio-inspired applications in robotic systems 
(Sadeghi et al., 2014), this also brings forth difficulties regarding 
the reconfigurability and reuse of robotic parts. Our modular 
robotics approach, therefore, does not allow continual growth 
but enables reuse and reconfigurability. The bio-inspiration of 
the implemented robotic platform is motivated by the rotational 
movements of the pulvinus since this structure allows for move-
ment of the leaves without major morphological change. With 
an open-loop control system, we can find simple control mecha-
nisms that allow for the optimal energy absorption. While arti-
ficial plant systems have been implemented in cellular automata 
(Hogeweg, 1988; Balzter et al., 1998) as well as virtual creatures 
(Zamuda and Brest, 2014; Corucci et  al., 2016; Veenstra et  al., 
2016; Zahadat et al., 2016), they have rarely been investigated in a 
three-dimensional embodied approach other than light-tracking 
solar panels (Prinsloo and Dobson, 2015). Many evolutionary 
robotics experiments have focused on acquiring behavior typical 
of consumers (Sims, 1994a,b; Pfeifer and Bongard, 2006; Vargas 
et al., 2014), we instead look at how primary energy producers 
can evolve in artificial systems. Some robotic platforms have been 
designed to cope with energy autonomy (Greenman et al., 2003; 
Ieropoulos et al., 2003; Philamore et al., 2015) although research 
in this area is still limited. Our evolutionary system, instead of 
modeling nature, aims at implementing feasible evolved designs 
into real modular robots. Our modules are, therefore, based on 
a heterogeneous modular design. A robotic module being an 
independent unit that encapsulates part of the robots functional-
ity (Stoy et al., 2010). The modular robotics approach eases the 
construction process of different morphologies as well as the 
capability of changing the morphologies on the spot. By simply 
implementing the same connection mechanism on each module 
of the modular robot, different modules can be joined together to 
form unique and feasible robot phenotypes. Our platform, thus, 
allows for light absorption in a robotic system that implements 
actuators with similar degrees of freedom as the pulvinus with the 
aid of a plant-inspired developmental algorithm.

2. MAteRIALs ANd Methods

A simulation environment is used to evolve modular robots and 
the evolved phenotypes are transferred to the real world. The 
simulated robots were optimized for harvesting energy from 
light using simulated solar panels. The physical robot simply 
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FIgURe 1 | The modules used in the simulated and physical robot. The cube module (A), base module (B), servo module (C), solar panel module (d),  
and flower module (e).
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follows the parameters that have been evolved by the simula-
tor. Different environments were simulated that in turn shaped 
the search space of the robot. Moreover, five different types of 
modules were designed that could be simulated. These modules 
could all be connected using the same connection mechanisms. 
Enabling morphological change and open-loop evolution of 
the control system enables our platform to evolve unique robot  
phenotypes that can be transferred to reality. The simulated robots 
could never use more modules of a type than was maximally 
allowed. Every evolved robot could, thus, be created in reality. 
Varying the amount of solar panels that we can implement in 
our robotic system gave us an idea on the amount of modules, we 
require to evolve sufficient robotic phenotypes. A modular robot 
was constructed by attaching one module to another module 
manually. Since the connection mechanism is based on magnets, 
the construction process is a simple snap-on procedure.

Virtual Robot Experimentation Platform (V-REP; version 
3.4.0) (Rohmer et al., 2013) is used as the robotics simulation 
platform and the evolutionary algorithm was implemented as a 
C++ based DLL plugin. The simulation environment consisted 
of a default floor and was simulated using the bullet dynamics 
engine (version 2.78). The dynamics settings were set to accu-
rate (default) with a time step of 50 ms. The modules used for 
the simulator are based on the physical properties of the real 
modules (Figure 1) approximating similarity in size and weight. 
The modules consisted of a base module, a servo module, a cube 
module, and two types of solar modules as will be discussed in 
the next section. All modules contained connection faces that 
could either be male or female. The pairing of these two con-
nection faces established a connection between two modules 
allowing for the composition of a modular robot (section 2.2). 
A list of the materials used to construct these methods can be 
found on our website.1

2.1. Modules
Five different types of modules were used in our approach:  
a cube module (Figure 1A), a base module (Figure 1B), a servo 
module (Figure  1C), and two types of solar modules. One of 
the solar modules simply contained two solar panels that were 

1 List of materials can be found on our website at: https://sites.google.com/view/
emergemodular/projects/energy-autonomy.

joined together (Figure 1D). The other, more elaborative, solar 
panel module (flower module) was designed with the aim of 
allowing for more plant-like adaptive behavior in the system 
(Figure 1E). However, the increased complexity of this flower 
module also brings about increased complexity in the simulator. 
Therefore, this flower module is not used in the experiments 
described in this paper but rather serves the role of informing 
the reader about the potential future implementations of solar 
modules. Throughout different modules, all custom parts were 
3D printed using polylactic acid (PLA).

The base module (Figure 1B) is composed of a simple cus-
tom structure with three female connection faces. Three female 
connection faces were used to reduce the amount of possible 
connection faces limiting the search space of the robot. However, 
more connection sites could make more sense in a future imple-
mentation of the base module though this makes the state space 
landscape more convoluted due to more possible configurations 
of the modules. This base module was simulated statically mean-
ing that its physical properties were not simulated. Instead, the 
module was fixed in place ensuring that the structure stays in 
the same position conforming to the sessile nature of plants. The 
three female connection sites were 55 by 55 mm and were placed 
next to each other at a 45° angle. The cube module (55 mm by 
55 mm by 55 mm; weight is 300 g) is used as a structural building 
block for the modular robot to which other modules are attached. 
This cube has five female connection sites (top, right, left, front, 
and back) and one male connection site (bottom).

The servo module (80  mm by 55  mm by 55  mm, weight is 
160 g) is based on a module from the EMERGE modular robotic 
platform (Moreno et al., 2017). This module contains three female 
connection sites attached to the shaft, and one male connection 
site on the bottom attached to the chassis of the servo motor.  
It houses a dynamixel AX-18a servo motor. In the experiments, 
the range of the servo motors is limited to +90° and −90°. The 
difference of the servo module used in this paper is the attrib-
ute of having 4 data channels compared to the 2 data channels 
implemented in the EMERGE module. Also, infrared sensors that 
were present in the EMERGE module are not implemented in 
the servo modules used for this paper. Infrared sensors were not 
implemented since they take up additional space on the PCBs and 
consume additional energy. At the location of the infrared sensor 
in the emerge module, there is simply a 3-mm-wide hole that can 
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FIgURe 2 | Schematic diagram of the modular robot containing solar panels. The Solar panel module consists of two solar panels that are connected to one 
another in series (A). A diode is attached to prevent current from flowing in the reverse direction. As can be seen in (B), the solar panel modules pass power  
down to the base module where the battery is located.

4

Veenstra et al. Energy Autonomy in Modular Robots

Frontiers in Robotics and AI | www.frontiersin.org September 2017 | Volume 4 | Article 43

be used to adjust a screw to tighten the connection between the 
servo bracket and the servo motor. This tightening can in turn 
lead to a stiffer joint that is harder to actuate but also harder to 
move passively. This is beneficial to adjust on the spot, since we do 
not want an inactive servo joint to buckle under the weight of the 
robot. Servo motors closer to the base of the robot can, therefore, 
be tightened more while those at the end can be looser. The 
dynamixel AX-18a servo motor is controlled via a PID controller 
that is directly connected to the robotics simulator.

The first type of solar panel module (referred to as solar  
module) implemented two simple solar panels (141  mm by 
124  mm by 6  mm, weight is 66  g) on a 3D printed bracket 
(Figure  1D). Two 0.8  W, 5.5  V monocrystalline silicon solar 
panels (118  mm by 63  mm) were mounted on the case of the 
solar module. These two solar panels were connected in series 
and could output a voltage of 11 V (Figure 2A). An additional 
diode was attached to the solar module to prevent current flowing 
in the opposite direction. The current acquired from the solar 
panels was converted to 12 V using a step-up voltage regulator 
(not shown in the figures) to ensure a 12 V output. This output 
voltage was connected to two data channels connected to the base 
module. The solar module was simulated with a basic morphol-
ogy with similar dimensions and contained five proximity sen-
sors to determine light absorption. These proximity sensors were 
positioned at each corner and in the middle of the solar module. 
Each proximity sensor served as a ray tracer simply determining 
whether there was an object in between the starting position of 
the ray and a light source. In addition, the difference between 
the z directional vector of the ray compared to the orientation of 
the solar panel gives us the angle at which light impacts the solar 

panel. This angle of attack linearly influenced the contribution of 
light absorption to the fitness of an individual.

The flower module (Figure  1E) is composed of five SP3-37 
flexible solar panels. Each panel is mounted on a 3D printed 
petal. These artificial petals could not bend making the use of the 
flexibility in the solar panels redundant. The flexible solar panels, 
thus, effectively function the same as a regular solar panel. The five 
petals are connected together through a system of cranks and a 
small circular platform. A rack and pinion system combined with 
a small servomotor pushes the platform and actuates the petals. 
Two hinge joints connect the circular platform to the petals, one 
at the inner edge of a petal (center of the flower) and the other 
closer to the middle of the petal. In our case, a hinge joint on the 
edge of the petals is attached to the platform containing the rack 
while the hinge joint closer to the middle of the petal is connected 
to the piston. When the piston moves the rack up and down, the 
petals actuate and open or close the flower respectively. The petals 
can open to a certain degree and this position can be optimized 
depending on the solar intake. The energy harvested is stored in 
a LiPo battery. This battery was used to power the servomotor 
actuating the petals making the flower module (not the modular 
robot) energy autonomous. Though the flower module is not 
used in the evolutionary runs, it can also be connected to the 
same power grid of the modular robot in order to charge the 12 V 
battery. In addition, the flower module contained a MMA842Q 
accelerometer (3-axis), which enables the flower module to detect 
movement. This sense of movement can inform the flower module 
whether it should close or open its petals under harsh or favorable 
conditions. For example, at night, during heavy rain or in windy 
scenarios, it would be better for the flower module to close and 
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FIgURe 3 | (A) The connection mechanism of the modules is composed of a female connector (left and middle) and male connector (right). Each module contains 
six channels through which modules can distribute power (PWR), ground (GND), and data (D1, D2, D3, D4) from one module to another. Both the male connector 
and the female connector have copper pads. Spring pins are attached to the pads on the male PCB. These spring pins (right) allow for a current to flow between 
modules (B). The connection sites contain magnets through which male sites can be connected to female sites. The blue (left) PCBs have places to connect the 
spring pins and is used for the male connector sites while the black (right) PCBs are used for the female connector sites.
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protect its solar panels. Especially if the solar panels can unfold in 
an origami-like manner (the original intend of implementing the 
flexible solar panels), the surface area would be relatively weak 
highlighting the need for the flower and solar panels to close. 
The flower module contained five solar panels and five shapes 
were used to simulate them. Similar to the solar module, each 
solar panel simulated five proximity sensors that were used to 
measure the light absorption. This led to the increased compu-
tational requirements since 25 proximity sensors and six shapes 
were used in the flower module. Therefore, the flower module was 
excluded in the robot simulator.

One base module, one cube module, eight servo modules, five 
solar modules, and two flower modules were created in reality and 
the simulator was, thus, restricted to use this amount of modules. 
This limits the potential resulting phenotypes of the evolutionary 
algorithm and constrains the search space but enables evolution 
of feasible modular robots. A direct feedback from simulated 
modular robots and actual modular robots is thus present. All the 
morphological parameters of the individual modules were fixed 
to represent their physical counterparts. The eventual physical 
modular robot was constructed based on the phenotypes that 
evolved in the simulation environment. An implementation of 
the dynamixel protocol (protocol used to communicate with 
the servo motors) in the plugin allowed for the direct control  
of the actual robot in the simulation environment. The dynamixel 
protocol utilizes serial communication to communicate with the 
dynamixel AX-18a servo motors. Through sending instruction 
packets, individual motors can be controlled using a single com-
munication bus. The values of the dynamixel servos needed to 
be transformed into hexidecimal values that indicate parameters, 
such as the desired speed and position of the servo motors. The 
solar modules implemented in the evolutionary algorithm did not 
have any type of actuation. Connecting a few modules together 
to form a robotic entity enabled current to flow from a power 
source toward the servo modules while also allowing for the flow 
of current from the solar panels to the power source (Figure 2B). 
The solar modules could directly charge a 12 V lithium ion bat-
tery that was used though the efficiency of charging the batteries 
greatly depended on the light saturation of the solar panels.

2.2. Connectivity
The real modules are connected to one another via magnet-based 
connection faces (Figure 3A). The connection faces contained 
PCBs with pads and spring pins that enabled electricity to be 
routed between modules. The connection faces could either be 
male or female. The male connector faces contained spring pins 
that were soldered on the pads of the PCB (Figure  3B). The 
female connection face contains 3 mm pads to ensure a con-
nection with the spring pins on the male connection face. The 
PCBs included six separate channels through which electricity 
could be routed. Two of the channels were dedicated to power 
and ground while the four other channels routed data channels. 
Two of these data channels were used to enable a current to 
flow from solar panels back toward the initial power source. 
3D printed hulls housed four cylindrical NdFeB (neodymium, 
iron, and boron) magnets (12 mm diameter, 3 mm depth). Two 
magnets can hold one another together with a force of roughly 
13.5  N. The male connector hull has protrusions that ensure 
the fit and connection of the male connector to the female con-
nector. The connectivity of the modules in the robotic system 
is depicted in a block diagram (Figure 4).

In the simulated modules, a force sensor was put in between 
two connection faces to detect the torque and force between 
two modules. Since the modules have never disconnected in 
the physical robot yet, the modules could only break from one 
another if 100 consecutive threshold violations occurred where 
the threshold was set to 10,000 Nm of torque and 80,000.0 N of 
force. The chosen values are incredibly high to ensure that the 
modules stay connected to one another except in the case of a 
faulty collision. When the simulated robot simulated modules 
that inaccurately collided, disconnection between modules could 
occur. These inaccuracies did not occur in the eventual simulator. 
As a failsafe, the fitness value of individuals that contained broken 
force sensors was set to zero. The construction of the modular 
robot occurred before the simulation started. A generative 
encoding (section 2.3) translated the genome and created the 
robot phenotype. This genome consisted of simple morphological 
parameters and an additional neural network (section 2.4.1) for 
the servo modules.
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FIgURe 4 | Block diagram of the modular robotics platform. A personal 
computer is connected to a central 3-pin power hub via a USB2AX interface. 
A 12 V power supply is also connected to the same 3-pin power hub. The 
power hub is in turn connected to a male or female connector face of the 
modular robot. This connection distributes power to all connected modules. 
The block diagram only shows the Servo and the Solar module. The base 
and cube module simply transfer all electrical current from their male 
connection faces to their male connection face and vice versa. Two of the 
channels are connected separately to the solar panel modules which transfer 
power from the solar panels to the power source. The red and black 
connections indicate power and ground, while the green connection 
represents the communication wire. The dotted lines represent the power 
and ground connections to the solar panels.
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2.3. generative encoding
The generative encoding was based on a context sensi-
tive Lindenmayer-System (L-System) (Lindenmayer, 1968; 
Lindenmayer and Jürgensen, 1992; Prusinkiewicz and 
Lindenmayer, 1997)—a parallel rewriting system—as imple-
mented in Veenstra et al. (2017). The variables of the L-System 
represented the different modules of the robot. A variable 
describes a state that is decoded as the morphology, control, 
and attachment rules of the modules. In the simulation envi-
ronment, these modules represent the cube, base, servo, and 
solar modules. One state was dedicated to the base module and 
was the axiom of the L-System. Another state represented the 
cube module. Four states represented the servo module and 
two states contained the parameters of the solar module. Every 
state can assign unique attachment rules and control param-
eters. The generative encoding does not necessarily lead to all 
genotypic parameters to be expressed in the phenotype. Instead, 
some genotypic parameters could be dormant which allowed 
for genetic drift to occur across generations. E.g., eight servo 
modules could be generated in the phenotype if one servo state 
is expressed eight times in the phenotype, but this phenotype 
could also be the result of one state being expressed six times 
and one state being expressed two times in the phenotype. The 

phenotypic representation of the modules is determined by the 
attachment rules of the L-System that were stored in the genome. 
The attachment rules of the modules included the information 
of which module is connected to what connection face in which 
orientation. The L-System was, moreover, context sensitive 
since a module cannot be placed at an attachment site if another 
module already occupied it. Modules cannot be created if this 
caused a collision with other created modules. The different 
modules were colored in the phenotype based on their states so 
recursive expression could easily be detected. Five iterations of 
the L-System were done to create the robot phenotypes starting 
with the base module as the axiom.

2.4. evolutionary Algorithm
Our implemented evolutionary algorithm was based on a steady-
state genetic algorithm (Syswerda, 1991). The simulations were 
limited to 46,000 evaluations per evolutionary run. 46,000 
evaluations were chosen as a trade-off between computational 
time and performance. A population size of 92 individuals was 
used and was simulated for 500 generations. The population 
size is a multiple of the 23 simulation instances that ran in 
parallel on a cluster node containing 24 computing cores. One 
core was dedicated to running the evolutionary algorithm itself 
while the remaining cores evaluated individuals in V-REP. For 
each experiment, 12 evolutionary runs were performed with 
different initial seeds. The evolutionary algorithm was genera-
tional and randomly selected one parent from the population 
to produce an offspring. The initial population consisted of 
individuals created from randomized genomes. Though the 
offspring were haploid, a crossover function allowed certain 
states of another parent to be transferred to the offspring with a 
20% chance. In our case, we simulated up to eight states. After 
crossover occurred, the offspring were mutated with a morpho-
logical mutation rate of 0.15 and a control mutation rate of 0.1. 
The morphological mutation accounted for any aspect of the 
generative encoding replaced by a random value with a 15% 
chance. Only the four states of the servo modules contained a 
neural network and the neural network had several mutation 
operators that could be activated with a 10% chance. There 
were four mutation operators working on the neural networks: 
change connectivity that altered the edges between the neural 
network; add neuron; remove neuron; and change neuron swap-
ping an interneuron for a new interneuron of another type (sec-
tion 2.4.1). The maximum amplitude of the servo arm ranged 
from −90° and +90°.

2.4.1. Neural Network
In a previous experiment, simple sinusoidal wave functions were 
implemented to control simulated servo modules (Veenstra 
et al., 2017). The same sinusoidal patterns are implemented here 
though they are implemented in a network of neurons. This 
artificial neural network, implemented in the servo modules, 
consists of one input neuron, up to six interneurons and one 
output neuron. In our case, the input neuron is always activated.  
A recurrent interneuron layer consisted of neurons that simulated 
a fixed sinusoidal output pattern or a neuron with a binary step 
function. The phase, amplitude, and frequency of the sinusoidal 
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FIgURe 5 | Different Simulated environments: environment with stationary light source (top left); an environment where the initial base module is constrained  
(top middle); an environment where direct light is blocked by an object (top right); and an environment where the light source is moving in an arc (bottom).  
The line represents is an approximation of the path the light takes.
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neuron could be altered and the mutable parameters of the 
binary step neuron were the threshold value (between −1.0 and 
1.0) and the output weight (between −1.0 and 1.0). The output 
neuron simply outputs a value between −1.0 and 1.0 based on its 
inputs. This value is in turn transformed into a value that repre-
sents the absolute position of the servo motor of the module. In 
this neural network, the connections were not weighted, instead, 
once a neuron gets activated, all the neurons connected to the 
activated neuron receive the same output. This was implemented 
due to the small size of the neural network (one input and one 
output) and to limit the search space. A neural network could be 
implemented in each state of the servo module. This means that 
multiple servo modules could express the same neural network 
if the generative encoding created these neural networks from 
the same gene.

2.4.2. Fitness Function
The goal of the simulated robots was to absorb light within 5 s 
of simulation time. The simulation time was limited to 5 s since 
the modules were able to appropriately adjust the positions 
of their joints to the light source within the given simulation 
time. To approximate an actual day cycle in the physical world 
depends on the transformation of the simulation time which 
can be stretched according to a given environment. The fitness 
of each individual was determined by the amount of light that 
was absorbed by each ray of all the solar panels present on 
the robot and can be derived from equation (1). The gathered 

light was calculated by subtracting the z directional vector of 
the z axis of each ray on the solar panel from the z directional 
vector of x axis of the solar panel. An additional cost function 
was added to represent an arbitrary energy expenditure of the 
robot.

 
F
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n

j:= ∑ − ∑
= =1 1
ρ ∈ ,

 
(1)

where F represents the fitness value obtained by calculating the 
total amount of light absorption that occurred within the 5 s of 
simulation time. The “:=” operator represents an update of the 
fitness value with right-hand side at each time step. ρ represents 
the amount of energy gathered by each ray i at every time step. 
For each servo module j, the amount of energy ∊ used by all 
servo modules is subtracted. An additional cost function was 
added to compensate for modules that were disconnected due 
to the breaking of a connection site (not shown in equation). 
Breaking of modules never occurred in experiments though 
the initial fitness cost was implemented to ensure we did not 
reward malfunctioning robots.

2.5. experimental setup
The evolutionary runs were performed in four different envi-
ronments (Figure  5). The first environment contained a light 
source located directly above the modular robot. The second 
environment consisted of four walls surrounding the modular 
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FIgURe 6 | Different Resulting Phenotypes. Four individuals of each simulation environment are shown. (A) The top left individuals were evolved in the environment 
with a stationary light source and no objects in the environment. (B) The top right individuals were evolved in an environment where the surroundings of the initial 
module were blocked by four adjacent wall structures. (C) The bottom left depicts individuals evolved in the environment where the light source was blocked by  
an additional structure. (d) The bottom right individuals were evolved in an environment where the light source moved.
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robot constricting direct outward growth of the phenotype of the 
modular robot. The third environment contained an object that 
blocked the phenotype from receiving direct light absorption. 
This was done in to motivate outward growth of the modular 
phenotype. The last environment consisted of a moving light 
source that mimicked the trajectory of the sun in winter in the 
northern hemisphere of earth. It was expected that the last envi-
ronment would promote the evolution of blind control systems 
that enabled solar panels to tilt toward the sun. The position of 
the light source was calculated by two sinusoidal functions that 
were transformed into cartesian coordinates (equation (2)). The 
“:=” operator represents an update of the left-hand side variable 
with the term on the right-hand side as it is performed at each 
time step.

 

P P
P
P

x x_start x x

y y

z z

:= +
:=
:=

α τα
τ α
τ α

sin( )
sin( )

,

 (2)

where α represents a specific scaling factor for transforming the 
position in cartesian coordinates. The x, y, and z positions of the 
light source are updated at each time step denoted with τ.

In the environment with the moving light source, the energy 
cost was a custom value. This cost value was either 0.0, 0.1, 0.5, 
2.0 or 8.0. For every energy cost, 12 evolutionary runs were 
done. These values were chosen as they changed the evolution-
ary trajectory of the different evolutionary runs; whereas above 
a cost of 8.0, no change in the evolutionary runs could be seen. 

In addition, for each simulated environment twelve evolutionary 
runs were performed when simulating a maximum of one, two, 
or five solar modules. This is done to see if movement evolves in 
environments where a different amount of solar panels can be 
simulated. It is expected that when simulating a maximum of one 
solar panel, on average more angular movement can be detected 
in the solar panels compared to simulating more solar modules. 
This hypothesis is tested by measuring the difference in angular 
movement of each solar panel at each time step. This arbitrary 
measure of angular movement is stored together with the fitness 
values of the individuals.

3. ResULts

The results shown in this section are separated in the resulting 
phenotypes of the eventual population of robots in different 
environments and the results on the impact of movement and 
energy cost on evolving the modular robots. The phenotypes give 
a clear overview of the types of robots that could be evolved while 
the energy costs explain emergent behaviors seen in the evolved 
robots.

3.1. Phenotypes evolved in different 
environments
The four types of environments led to major differences in evolved 
phenotypes (Figure  6). The individuals in the environment  
with the stationary light source evolved simple morphologies 
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FIgURe 8 | This figure shows a few phenotypes of the modular robots that have evolved in the environment with the moving light source. (Left) simulating a 
maximum of five solar modules, (middle) simulating a maximum of one solar module, and (right) simulating a maximum of five solar modules and transferring  
the evolved phenotype to the real world.

FIgURe 7 | The resulting evolutionary runs done in the different environments. The three graphs depict the individual runs where bold solid line represents the 
average maximum fitness value of all evolutionary runs. The colored surrounding area represents the 25–75 percentiles while the less intense colored surrounding 
area represents the 0–100 percentiles. The evolutionary runs are shown of the environment with a stationary light source (left), the constrained environment (middle), 
and the indirect light environment (right).
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where all solar panels are pointing upwards avoiding collision 
with one another. The individuals in the constrained environment 
were more difficult to evolve as can be seen in the graph depicting 
the evolutionary progressions (Figure 7). In particular, only three 
individuals in the last generation of the evolutionary run displayed 
phenotypes that were different from the top right and bottom 
right individuals seen in Figure 6. It can, therefore, be said that 
the search space of this environment is a lot more rugged than the 
search space in the other environments making it harder for the 
evolutionary algorithm to get out of a local optima. As expected, 

the environment where the light source was blocked directly from 
above, the solar panel modules were located on the outside of the 
modular robots. Some of these evolved phenotypes were easily 
implemented in the real world since they did not actuate any 
servo modules (Figure 8). As can be seen in Figure 9, the eventual 
population of the modular robots that evolved in the environ-
ment with the moving light source was also easy to transfer to the  
real robot. Eventually, although it is a conceptual model, the 
modular robot that incorporates the flower modules is depicted 
in Figure 10.
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FIgURe 9 | Various evolved phenotypes in the environment where the light source is moving. When simulating five solar modules (A), a maximum of one solar 
module (B) and a four solar module phenotype that has been transferred to the real world (C). The camera stays in the same location after each subsequent picture.
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FIgURe 10 |  (Left) Different design stages of the flower module. (Right) An example of an assembled modular robot with flower modules. Note that the servo 
modules are an older version with one data channel instead of four. Photograph by Phil Ayres.
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FIgURe 11 | The effects of energy cost on rotations of solar panels when simulating a maximum of 1 solar panel (A), 2 solar panels (B), and 5 solar panels  
(C). The black line depicts the average of the maximum fitness values of 12 individual runs. The lighter gray lines depict the average of the maximum fitness  
of 12 individual runs where energy cost was applied to the simulation. The lighter gray lines represent higher energy cost. The box plot (d) depicts the average 
movement of the solar panels in each simulation with different energy costs. Though a lot of disparity could be seen between runs, a trend can be seen that 
when energy cost is higher, the resulting phenotypes on average move their solar panels less. This distinction can most clearly be seen when maximum  
1 solar panel is being simulated (blue). The different colors of the box plot represent the different amount of maximum solar panel modules that could be generated.
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3.2. Movement in energy harvesting 
Modular Robots
As could be seen in the simulation environment with the moving 
light source, movement can increase the fitness value of evolved 
robots compared to the evolutionary runs if the cost of moving 
is low enough (Figure 11). A statistically significant difference 
can be seen when comparing the average movement angle of all 
solar panels when comparing maximum and minimum energy 
cost. The difference in fitness for a high energy cost versus a 
low energy cost for movement is highest when simulating one 
module and lowest when simulating five modules. Based on 
a Mann–Whitney U test, we can see that there is a significant 
difference in the angular movement of the leaves when a large 
energy cost is applied when simulating a maximum of 1 (p-value: 
0.0000779), 2 (p-value: 0.0000300), and 5 (p-value: 0.0050966) 
solar panel modules. The difference in angular movement 
between simulating a maximum a 1 and 5 solar modules 
without a energy cost was also significant (p-value: 0.0030495). 
Similarly, the difference of angular movement when simulating 
a maximum of 1 and 5 solar modules was significant with the 
highest energy cost (p-value: 0.0070689). When comparing the 

maximum of 2 solar modules with the other maximum amount 
of solar modules, no significant difference could be found. This 
is due to the fact that the angular movement of the solar panels 
when simulating a maximum of 2 panels is between simulating 
1 and 5 solar panels. These differences indicate that less modules 
lead to more movement of solar modules. Based on these results, 
we can say that the amount of solar modules directly influences 
the amount of movement in the solar panels.

4. dIsCUssIoN

The aim of this paper was to provide a deeper understanding 
in how evolution of modular robots could shape robotic enti-
ties toward energy autonomy in different environments. The 
resulting phenotypes of each environment indicate that the 
simulated individuals adjusted differently to optimize for light 
absorption. Some of the simulations led to solutions in local 
optima indicating a rugged search space for the evolutionary 
algorithm, as was the case of the constrained environment. The 
other environments typically evolved more varied and more 
complex phenotypes. This demonstrates that our simulator 
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is versatile in creating novel robots using a fixed amount of 
modules in different simulated environments though improve-
ments in the evolutionary algorithm as well as the encoding 
could be made.

4.1. Light tracking
When movement was more costly and when more solar panels 
were available to be implemented in the modular robot, it 
was expected to see a relative decrease in angular movement 
of the leaves when compared to runs without implementing 
cost of movement and simulating less solar panels. Our results 
indicate that when less solar modules were allowed in the 
evolutionary runs, more movement could on average be seen 
in the phenotypes that evolved. The reason that this difference 
occurs is due to the increased search space of simulating more 
than one solar module as well as the constraining available 
positions for solar modules when simulating a limited num-
ber of modules. Our results indicate that having more than 
one solar panel does lead to robots tilting their solar panels 
toward the light source. However, when only one solar panel 
is being used, the robot evolved more movement and move-
ment has a clear evolutionary advantage when it tilts the solar 
module toward the light. Similar to Veenstra et  al. (2016), 
evolution does not necessarily pick up movement of solar pan-
els even when there is no cost for movement attributed to it.  
A significant difference could, however, be seen when a large cost 
was implemented for movement in the modular robots. Having 
more solar modules may be more beneficial than requiring to 
track a light source. When robots are constructed in the real 
world, the actual movement costs and solar uptake of the entire 
robot can be modeled and used as a feedback mechanism to the 
simulation environment. In this scenario, we could determine 
if it is better to make small modular robots at different locations 
only containing a few solar modules, or if it is better to create a 
single modular robot containing many solar panels.

4.2. Challenges
One major challenge of the presented robotic modular 
platform is the size and weight of the modules. Since the 
modules are only connected via magnetized connector sites, 
the structure will become quite heavy which is especially 
detrimental at the extremities of the modular robot. Modules 
connected to the base module would have to cope with more 
force than the modules at the extremities. Similar to plants, 
the main stem or tree trunk is usually the strongest and heavi-
est while its branches are lighter and its leaves even lighter 
than the branches. Unable to distribute weight accordingly is, 
however, a common issue in modular robotics and one solu-
tion is to remove redundant connection sites. Another solution 
is to vary the shape, size, and weight of the modules. Such a 
system might require modules that isolate their mechanical 
connections and communication. Since every connection face 
of our modules contains the same amount of magnets, each 
connection between modules has the same strength. A future 
implementation could allow for modules at the near the base to 
be connected with more force and modules at the extremities 
be connected with less force.

Only a limited number of generations were simulated in 
the evolutionary runs due to convergence of the evolutionary 
algorithm. Improvements to the evolutionary algorithm itself 
would be valuable to cope with this. These improvements could 
consist of implementing speciation (Stanley and Miikkulainen, 
2002), novelty search (Lehman and Stanley, 2011), and/or 
pareto optimization techniques (Schmidt and Lipson, 2011; 
Brodbeck et al., 2015). However, doing more evolutionary runs 
might lead to the discovery of better performing individuals by 
having an initial population that can be exposed to incremental 
improvements. The demonstrated robotic platform has poten-
tial for integrating interactive evolution (Sims, 1992; Graf and 
Banzhaf, 1996). A human in the loop could, for example, design 
the modular robot by simply connecting the modules to form a 
robot morphology. The simulator could in turn evolve behaviors 
for that specific robots configuration in the simulation envi-
ronment similar to Wagy and Bongard (2015) with potential 
continuous self-modeling (Bongard et  al., 2006). Although 
evolutionary algorithms were used to generate the control and 
morphology of the modular robots, online adaptation could 
be a more beneficial strategy, especially for real-world robots.  
A hybrid approach of initially evolving arbitrary modular robots 
followed by an online learning strategy could, therefore, lead to 
more feasible robots. This would be especially valuable if the 
adaptive control can be localized and its genetic information 
could be reused similar to the generative encoding.

The generative encoding abstracts the complexity of the 
genome and has been shown to work well to quickly acquire 
decent performance. However, as is common in evolutionary 
algorithms, some runs stagnate in a local optima making it 
harder for the evolutionary algorithm to discover novel strate-
gies. However, the variety of modular robots that evolved in 
each environment varied a great deal. It is unknown whether 
doing more evolutionary runs will increase this variety of decent 
modular robots. The generative encoding implemented might 
also be improved through using more implementations that have 
been used as abstractions of development such as compositional 
pattern producing networks (Stanley, 2007).

The evolutionary system limited the amount of usable mod-
ules to the amount of robotic counterparts in the real world. 
Simulating more modules could lead to more effective pheno-
types when making. However, simulating less modules could 
potentially lead to good solutions as well when considering that 
many modules that have been implemented in the evolved robot 
did not seem to be of any particular advantage (see Figure 8B). 
The implemented modules are also not ideal when optimizing 
for light harvesting in modular robots. E.g., the servo modules 
contained a hinge-like joint although it might be better to 
implement a twisting joint in the environment with the moving 
light source. Moreover, other modules with less energy demand-
ing actuation, or elastic and rigid structural properties, could 
increase the performance of the evolutionary algorithm to find 
more suitable solutions for absorbing light from the environ-
ment. One possible new module type could be a soft module 
similar to Vergara et al. (2017). If a soft module could be used 
to inflate multiple chambers, directed movement of solar panel 
modules toward a light source could be implemented with ease. 
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Such a soft module would be similar to a pulvinus structure 
seen in many plants. Even the energy gathering system could 
potentially be combined with modules that gather energy from 
different sources such as microbial fuel cells. The robotics plat-
form does allow for the effortless integration of new modules in 
the system—both for the hardware and the software—although 
explorations of these systems are left for future work.

Four types of environments were used in the evolutionary 
runs to optimize for light absorption while the fitness function 
stayed the same across environments. An additional approach 
could be to evolve a population of individuals initially in one 
environment and afterward in more advanced environments 
which can either be done incrementally (Bongard, 2008) or 
through encapsulation of behavior in specific evolved envi-
ronments (Lessin et al., 2013). The light source could also be 
used as a stimulus in mobile modular robots. In this case, the 
evolutionary algorithm could optimize the robot to locomote 
toward light as a main stimulus that could potentially give rise 
to modular Braitenberg vehicles (Braitenberg, 1986). Evolving 
locomotion would add an additional reality gap that was not 
present in our sessile modular robots. Additional experiments 
could also include lattices with many solar panels that greatly 
increase the uptake of light. As seen in the evolutionary runs, 
modular robotic structures with many solar panels would not 
necessarily give any freedom for complex behavior to evolve. 
Moreover, the robotics platform can be used to evolve any 
arbitrary task that evaluates compositions of robotic modules. 
If the same connection faces are used for the modules, any type 
of module could be implemented. For locomotion, it would be 
useful to have additional modules that can act as feet or tendons. 
The robots evolved for different tasks could then be further 
evolved toward energy autonomy by allowing solar panels to be 
implemented in the evolved individuals.

4.3. Multi-Robot systems
Considering food chains in natural ecosystems, organisms 
higher up the food chain extract the energy that has been 
harvested by primary energy producers (Reece et  al., 2010) 
simply through consuming and reusing the molecules they 
produced. Hence, most plants and other photosynthetic 
organisms are known as primary energy producers. Primary, 
secondary, tertiary, etc., energy consumers subsequently 
depend on the acquisition of chemical energy that has been 
created by their prey. The modular approach allows for a 
potential implementation of a multi-robot system where a 
robot specialized in absorbing light could share its energy with 
other robots, potentially making robot energy autonomy viable 
in environments that are off the electrical grid. Moreover, 
humanity’s ecological footprint is already unsustainable 
and in overshoot (Toth and Szigeti, 2016). This calls for an 
approach toward energy autonomy in robots that will not 
increase our already existing ecological footprint. Instead of  
relying on renewable energy sources to be implemented in our 
energy grid, we can imagine a robotic system where robot enti-
ties can specialize in gathering energy from the environment 
while higher order robots can tap into the power grid of these 

robot entities to recharge themselves—possibly tapping into 
the humanities existing electrical power grid to release their 
energy. Since light in urban or desert environments is largely 
wasted since a limited number of plants grow in these locations, 
robots in these environments can be greatly beneficial if they 
are able to gather solar energy in say, windows, rooftops, etc.

Since the tasks of our robotic platform is largely undeter-
mined, it is unsure what the eventual robotic entity will look 
like, how it moves, manipulates objects, and gathers informa-
tion from the environment. Instead of having robotic entities 
created for specific functions, we can implement a range of 
robotic modules that can be optimized for a variety of tasks. 
In an approach where multiple small modular robots are used 
to gather energy, an additional modular robot could be used 
to extract energy from the energy harvesting modular robots 
simply by connecting a docking module to the solar harvesting 
modular robot. This docking module could simply be a male 
connector face that attaches to a female connector face of the 
energy harvesting robot. This can in turn give rise to an artifi-
cial ecosystem whereby some robots are specialized in energy 
uptake while others can be specialized for different tasks. Such 
a system could enable symbiotic relationships between modular 
robots that are optimized to harvest energy and other robots 
that are able to extract energy from the energy harvesting 
modular robot. The modular connection mechanisms would 
allow for the energy to flow directly from one modular robot 
to another without too much of a hassle. The advantage of 
energy autonomy in an ecosystem of robots instead of a single 
robot is that some robots can specialize for very specific tasks 
not having to worry about spending much energy. This divi-
sion of labor in multi-robot systems conforms to symbiotic 
energy exchange that can contribute to the survival of the 
entire robotic system.

5. CoNCLUsIoN

We have shown how an evolutionary algorithm can evolve light 
harvesting robots that can easily be transferred to the real world 
using a modular robotics approach. Furthermore, there is an 
advantage for evolutionary algorithms to exploit movement 
when only one solar panel module is simulated but not when 
more are simulated given the constrains of the simulator. It has 
been demonstrated that the robotic platform is able to evolve a 
variety of modular robots based on the various objectives in the 
environment. This might prove especially advantageous when 
evolving a multi-robot system that can form a stepping stone 
toward artificial ecosystem. This artificial ecosystem can con-
sist of multiple modular robotic entities that interact with one 
another based on energy. The described platform was limited to 
the available types of modules and the flower module was not 
used in the evolutionary algorithms. However, a robotic module 
containing more complex electronics could simplify evolutionary 
search when as smart morphology and online learning is applied. 
All of the described experiments and proposed methods can, 
thus, lead to an automated design of homeostasis in robots that 
can potentially scale up to artificial ecosystems.
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