25 research outputs found

    Topography processing in Sen2Cor - Impact of horizontal resolution of Digital Surface Model

    Get PDF
    The Copernicus Sentinel-2 mission is fully operating since June 2017 with a constellation of two polar orbiting satellite units. Both Sentinel-2A and Sentinel-2B are equipped with an optical imaging sensor MSI (Multi-Spectral Instrument) which acquires high spatial resolution optical data products. Accurate atmospheric correction of satellite observations is a precondition for the development and delivery of high-quality applications. Therefore the atmospheric correction processor Sen2Cor was developed with the objective of delivering land surface reflectance products. Sen2Cor is designed to process single tile Level-1C products, providing Level-2A surface (Bottom-of-Atmosphere) reflectance product together with Aerosol Optical Thickness (AOT), Water Vapour (WV) estimation maps and a Scene Classification (SCL) map including cloud / cloud shadow classes for further processing. Sen2Cor processor can be downloaded from ESA website as a standalone tool for individual Level-2A processing by the users. It can be run either from command line or as a plugin of the Sentinel-2 Toolbox (SNAP-S2TBX). In parallel, ESA started in June 2017 to use Sen2Cor for systematic Level-2A processing of Sentinel-2 acquisitions over Europe. Since March 2018, Level-2A products are generated by the official Sentinel-2 ground segment (PDGS) and are available on the Copernicus Open Access Hub. Since the beginning of the Sentinel-2 mission, the digital surface model “PlanetDEM 90” from Planet Observer is used as source of Earth topography information, within the Sentinel-2 PDGS. It is at 90- meter resolution, based on SRTM data filled and corrected for 40% of Earth surface. However, until now most users had only access to original SRTM data to run with Sen2Cor or had to provide their own DEM following SRTM or DTED formats. The objective of this presentation is to provide users with an overview of how Sen2Cor makes use of the topography information to improve the quality of the cloud screening and scene classification as well as in the atmospheric correction and terrain correction. In addition, the presentation gives an outlook on Sen2Cor working with the upcoming Copernicus DEM, a new Digital Surface Model (DSM), which represents the surface of the Earth, including buildings, infrastructure and vegetation. This DEM is derived from an edited DSM named WorldDEM. The presentation shows the different L2A surface reflectance obtained with PlanetDEM 90, global Copernicus DEM at 30 m and at 90 m horizontal resolution, and some of these differences are discussed

    Downscaling of global solar irradiation in R

    Get PDF
    A methodology for downscaling solar irradiation from satellite-derived databases is described using R software. Different packages such as raster, parallel, solaR, gstat, sp and rasterVis are considered in this study for improving solar resource estimation in areas with complex topography, in which downscaling is a very useful tool for reducing inherent deviations in satellite-derived irradiation databases, which lack of high global spatial resolution. A topographical analysis of horizon blocking and sky-view is developed with a digital elevation model to determine what fraction of hourly solar irradiation reaches the Earth's surface. Eventually, kriging with external drift is applied for a better estimation of solar irradiation throughout the region analyzed. This methodology has been implemented as an example within the region of La Rioja in northern Spain, and the mean absolute error found is a striking 25.5% lower than with the original database

    On the Functional Relationship Between Fluorescence and Photochemical Yields in Complex Evergreen Needleleaf Canopies

    Get PDF
    Recent advancements in understanding remotely sensed solar‐induced chlorophyll fluorescence often suggest a linear relationship with gross primary productivity at large spatial scales. However, the quantum yields of fluorescence and photochemistry are not linearly related, and this relationship is largely driven by irradiance. This raises questions about the mechanistic basis of observed linearity from complex canopies that experience heterogeneous irradiance regimes at subcanopy scales. We present empirical data from two evergreen forest sites that demonstrate a nonlinear relationship between needle‐scale observations of steady‐state fluorescence yield and photochemical yield under ambient irradiance. We show that accounting for subcanopy and diurnal patterns of irradiance can help identify the physiological constraints on needle‐scale fluorescence at 70–80% accuracy. Our findings are placed in the context of how solar‐induced chlorophyll fluorescence observations from spaceborne sensors relate to diurnal variation in canopy‐scale physiology

    Quantifying mass balance processes on the Southern Patagonia Icefield

    Get PDF
    Artículo de publicación ISIWe present surface mass balance simulations of the Southern Patagonia Icefield (SPI) driven by downscaled reanalysis data. The simulations were evaluated and interpreted using geodetic mass balances, measured point balances and a complete velocity field of the icefield for spring 2004. The high measured accumulation of snow of up to 15.4 m w.e. yr−1 (meters water equivalent per year) as well as the high measured ablation of up to 11 m w.e. yr−1 is reproduced by the model. The overall modeled surface mass balance was positive and increasing during 1975–2011. Subtracting the surface mass balance from geodetic balances, calving fluxes were inferred. Mass losses of the SPI due to calving were strongly increasing from 1975–2000 to 2000– 2011 and higher than losses due to surface melt. Calving fluxes were inferred for the individual glacier catchments and compared to fluxes estimated from velocity data. Measurements of ice thickness and flow velocities at the glaciers’ front and spatially distributed accumulation measurements can help to reduce the uncertainties of the different terms in the mass balance of the Southern Patagonia Icefield.FONDECYT 3140135 European Union 22637

    DMA:an algebra for multicriteria spatial modeling

    Get PDF

    The future sea-level rise contribution of Greenland’s glaciers and ice caps

    Get PDF
    We calculate the future sea-level rise contribution from the surface mass balance of all of Greenland's glaciers and ice caps (GICs, ~90 000 km2) using a simplified energy balance model which is driven by three future climate scenarios from the regional climate models HIRHAM5, RACMO2 and MAR. Glacier extent and surface elevation are modified during the mass balance model runs according to a glacier retreat parameterization. Mass balance and glacier surface change are both calculated on a 250 m resolution digital elevation model yielding a high level of detail and ensuring that important feedback mechanisms are considered. The mass loss of all GICs by 2098 is calculated to be 2016 ± 129 Gt (HIRHAM5 forcing), 2584 ± 109 Gt (RACMO2) and 3907 ± 108 Gt (MAR). This corresponds to a total contribution to sea-level rise of 5.8 ± 0.4, 7.4 ± 0.3 and 11.2 ± 0.3 mm, respectively. Sensitivity experiments suggest that mass loss could be higher by 20–30% if a strong lowering of the surface albedo were to take place in the future. It is shown that the sea-level rise contribution from the north-easterly regions of Greenland is reduced by increasing precipitation while mass loss in the southern half of Greenland is dominated by steadily decreasing summer mass balances. In addition we observe glaciers in the north-eastern part of Greenland changing their characteristics towards greater activity and mass turnover

    Master of Science

    Get PDF
    thesisTopographic shading involves two components: shaded relief and cast shadowing. Shaded relief occurs from self-shadowing due to the slope and aspect of a given location; cast shadowing involves projecting shade from nearby terrain onto an adjacent surface. The combined effect of topographic shading plays a fundamental role in determining surface energy balance for glacier ice. However, this parameter has been oversimplified or incorrectly incorporated in some past studies. Here we develop a topographic solar radiation model to examine the variability in mean irradiance throughout the melt season due to topographic shading and combined slope and aspect. We utilize the 30-meter resolution ASTER GDEM and multihour solar geometry to simulate topographic shading on two glaciers of differing morphologies in regions of contrasting terrain. We test the sensitivity of shading to valley-aspect and latitude for the same two glaciers, and observe patterns in these parameters for a suite of glaciers across High Mountain Asia (HMA). Our results show that topographic shading significantly alters the potential direct clear-sky solar radiation received at the surface for valley glaciers in HMA. Additionally, contrary to the findings of some previous studies, we find that shading can be extremely impactful in the ablation zone of some valley glaciers, particularly for north- and south-facing valleys. A daily mean change in irradiance of more than -70 Wm-2 due to cast shadowing is found in the ablation zones of some HMA glaciers. Cast shadowing is the dominant mechanism in determining total shading for valley glaciers in parts of HMA, especially at lower elevations. Although shading has some predictable characteristics, it is overall extremely variable between glacial valleys, and therefore very difficult to parameterize. We use a modified temperature-index model that includes potential clear-sky irradiance to calculate melt for one selected glacier. Excluding topographic shading for this glacier results in an overestimation of total summer melt in the ablation zone by up to 10%. This demonstrates that topographic shading is not only an important factor contributing to surface energy balance, but can also influence the mass balance of glaciers throughout HMA

    mapping photosynthetically active radiation (PAR) using multiple remote sensing data

    Get PDF
    Incident Photosynthetically Active Radiation (PAR) is an important parameter for terrestrial ecosystem models. Presently, deriving PAR using remotely sensed data is the only practical approach to meet the needs for large scale ecosystem modeling. The usefulness of the currently available PAR products is constricted by their limited spatial and temporal resolution. In addition, the applicability of the existing algorithms for deriving PAR using remotely sensed data are limited by their requirements for external atmospheric information. This study develops new algorithms to estimate incident PAR using remotely sensed data from MODIS (Moderate Resolution Imaging Spectroradiometer), GOES (Geostationary Operational Environmental Satellite), and AVHRR (Advanced Very High Resolution Radiometer). The new PAR algorithms differ from existing algorithms in that the new algorithms derive surface properties and atmospheric optical properties using time-series of at-sensor radiance without external atmospheric information. First, a new PAR algorithm is developed for MODIS visible band data. The validity of the algorithm's underpinning theoretical basis is examined and associated errors are analyzed in light of their impact on PAR estimation accuracy. Second, the MODIS PAR algorithm is adapted to AVHRR in order to take advantage of the long data acquisition record of AVHRR. In addition, the scaling of remote sensing derived instantaneous PAR to daily PAR is addressed. Last, the new algorithm is extended to GOES visible band data. Two major improvements of GOES PAR algorithm over that of MODIS and AVHRR are the inclusion of the bi-directional reflectance distribution function for deriving surface reflectance, and the procedure for excluding cloud-shadowed pixels in searching for observations made under clear skies. Furthermore, the topographic impact on PAR is accessed and corrected. To assess the effectiveness of the newly developed PAR algorithms, validation efforts have been made using ground measurements made at FLUXNET sites. The validations indicate that the new PAR algorithms for MODIS, GOES, and AVHRR are capable of reaching reasonably high accuracy with no need for external atmospheric information. This work is the first attempt to develop a unified PAR estimation algorithm for both polar-orbiting and geostationary satellite data. The new algorithms developed in this study have been used to produce incident PAR over North America routinely to support the North America Carbon Program
    corecore