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Incident Photosynthetically Active Radiation (PAR) is an important parameter for 

terrestrial ecosystem models. Presently, deriving PAR using remotely sensed data is the 

only practical approach to meet the needs for large scale ecosystem modeling.   

 

The usefulness of the currently available PAR products is constricted by their limited 

spatial and temporal resolution. In addition, the applicability of the existing algorithms 

for deriving PAR using remotely sensed data are limited by their requirements for 

external atmospheric information.  

 

This study develops new algorithms to estimate incident PAR using remotely sensed data 

from MODIS (Moderate Resolution Imaging Spectroradiometer), GOES

 (Geostationary Operational Environmental Satellite), and AVHRR (Advanced Very 

High Resolution Radiometer). The new PAR algorithms differ from existing algorithms 

in that the new algorithms derive surface properties and atmospheric optical properties 

using time-series of at-sensor radiance without external atmospheric information. 



First, a new PAR algorithm is developed for MODIS visible band data. The validity of 

the algorithm’s underpinning theoretical basis is examined and associated errors are 

analyzed in light of their impact on PAR estimation accuracy.  

 

Second, the MODIS PAR algorithm is adapted to AVHRR in order to take advantage of 

the long data acquisition record of AVHRR. In addition, the scaling of remote sensing 

derived instantaneous PAR to daily PAR is addressed.  

 

Last, the new algorithm is extended to GOES visible band data. Two major 

improvements of GOES PAR algorithm over that of MODIS and AVHRR are the 

inclusion of the bi-directional reflectance distribution function for deriving surface 

reflectance, and the procedure for excluding cloud-shadowed pixels in searching for 

observations made under clear skies. Furthermore, the topographic impact on PAR is 

accessed and corrected.  

 

To assess the effectiveness of the newly developed PAR algorithms, validation efforts 

have been made using ground measurements made at FLUXNET sites. The validations 

indicate that the new PAR algorithms for MODIS, GOES, and AVHRR are capable of 

reaching reasonably high accuracy with no need for external atmospheric information.  

 

This work is the first attempt to develop a unified PAR estimation algorithm for both 

polar-orbiting and geostationary satellite data. The new algorithms developed in this



 study have been used to produce incident PAR over North America routinely to support 

the North America Carbon Program.  
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 1  
 
 

Chapter 1 Introduction 
 
 

Incident Photosynthetically Active Radiation (PAR), defined as illuminated solar 

radiation at the Earth’s surface between 400 and 700 nm, is an important variable 

controlling terrestrial green vegetation’s biological productivity. To meet the needs of 

vegetation involved ecological modeling, advanced methods have been developed to 

estimate incident PAR using remotely sensed data.  The availability of remotely sensed 

data acquired by Moderate Resolution Imaging Spectroradiometer (MODIS) and other 

sensors offers the possibility for new approaches in estimating PAR with regional to 

continental applicability. The primary objective of this study is to develop new 

algorithms for estimating PAR, using data from MODIS and other sensors, such as 

Advanced Very High Resolution Radiometer (AVHRR) and Geostationary Operational 

Environmental Satellite (GOES).  

 

1.1 Importance of PAR 

 
 
Change in terrestrial biological productivity is the most fundamental measure of “global 

change”.  Biological productivity is the primary source for food, fiber and fuel (Running 

et al., 2004), and plays an important role in studying global climate and the 

biogeochemical circle (Myneni et al., 1995; Sellers and Schimel, 1993). The enormous 

spatial variability of Net Primary Productivity (NPP) at global scale is likely to change 

with increased atmospheric carbon dioxide and the related global climate change 

(Myneni et al., 1997).  
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APAR (Absorbed Photosynthetically Active Radiation) regulates the intensity of 

vegetation intensity and therefore NPP (Goward et al., 1985; Landsberg et al., 1996), 

along with other physical and biological factors, such as canopy structure (Beringer, 

1994; Reich et al., 1995), respiration cost (Lavigne and Ryan, 1997; Maier et al., 1998), 

canopy temperature (Schwarz et al., 1997), and water availability (Will and Teskey, 

1997).   

 

APAR can be calculated by multiplying FPAR (Fraction of PAR absorbed by vegetation) 

with incident PAR (Prince, 1991; Prince and Goward, 1995; Running et al., 2004). 

Algorithms to estimate FPAR using remotely sensed data have been developed, such as 

algorithms utilizing the NDVI-FPAR correlation (Goward and Huemmrich, 1992; 

Sellers, 1985), or those based on radiative transfer models (Myneni et al., 1997).  

 

With FPAR known, PAR is the most critical parameter for estimating APAR and 

terrestrial modeling (Dai et al., 2004). Incident PAR is the solar radiation from 400 to 700 

nm, and is commonly defined as  

∫=−
7.0

4.0

2 )()( λλ dIWmPAR        1-1 

 
where )(λI  is spectral irradiance, and λ  is the wavelength (Asrar, 1989). 

Incident PAR can be measured on ground using spectroradiometers, pyranometers, or 

sensors based on silicon photodiodes (Ross and Sulev, 2000). Although incident PAR is 

measured at observation stations across the U.S. and other countries (Charlock and 
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Alberta, 1996; Hicks et al., 1996; Ohmura, 1998), a worldwide observation network has 

not been established to meet the needs for terrestrial modeling at a regional and global 

scale.   

 

Without the sufficient ground measurement at suitable temporal and spatial scale, many 

methods have been developed to estimate surface incident PAR through other avenues. 

These PAR estimation approaches can be roughly grouped into three categories: 

statistical models, physical models, and satellite based methods.  

   

1.2 Current methods for PAR estimation 

1.2.1 Statistical Models 
 
 
Statistical models estimate surface incident PAR by establishing empirical relations 

between PAR and some atmospheric/meteorological factors, without explicitly exploring 

the interaction between solar radiation and various atmospheric components. Designed to 

explore the statistical relation between satellite observations and ground irradiance 

measurements, the Heliosat model was developed to estimate surface solar shortwave 

irradiance using Meteosat visible band data based on cloud and sky clearness indices 

(Cano et al., 1986).  Subsequent studies improved the original Heliosat model by 

introducing an atmospheric backscatter term, normalization with clear sky irradiance, and 

cloud geometrical correction (Beyer et al., 1996). The improved Heliosat model was 

applied to derive shortwave irradiance for Africa based on Meteosat images (Beyer et al., 

1997). Direct and diffuse PAR are estimated by applying the empirical model developed 
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by (Alados-Arboleda et al., 2000) in conjunction with the direct and diffuse shortwave 

irradiance  resulting from the model developed in (Iqbal, 1983). 

 

The primary advantage of statistical models lies in their simplicity. These statistical 

models enable the estimation of PAR without knowledge of the underlying physical 

mechanism involved in atmosphere radiative transfer processes. On the other hand, 

statistical models’ main drawback is that they are typically site-specific. The statistical 

relationship established between PAR and other geophysical variables are difficult to be 

applied to areas other than from where the relationship is derived from, and therefore 

greatly limits the applicability of statistical models.  

 

1.2.2 Physical models 
 
 

Physical models for PAR estimation explicitly simulate the interaction between solar 

radiation and the Earth’s atmosphere. The solar radiation/atmosphere interaction 

processes that are included in physical models generally include Rayleigh scattering, 

water vapor absorption, ozone absorption, aerosol attenuation, and cloud scattering and 

absorption (Gu and Smith, 1997).  

 

One physical model, CPCR2, was developed by (Gueymard, 1989) to estimate the diffuse 

and direct component of incident PAR based on extraterrestrial solar irradiance and the 

effect of various absorption and scattering processes. Because the irradiance estimation 

output from CPCR2 encompasses the wavelengths between 290 nm and 700 nm that  are 
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broader than the spectrum of PAR, an empirical formula has been developed to compute 

the incident PAR from the CPCR2 output. Another PAR model, developed (Gueymard, 

1993) based on similar physical principles, is able to compute diffuse and direct PAR 

directly because the bandwidth used in the model ranges from 400 to 700 nm. Both 

models have been applied to estimate PAR under cloudless sky conditions (Alados-

Arboleda et al., 2000).  

 

In estimating the impacts of smoke and cloud cover on incident PAR, PAR is treated as 

the top of atmosphere solar flux attenuated by the interactions with atmosphere 

(Kobayashi and Matsnaga, 2004). Gas absorption, Rayleigh scattering, aerosol scattering 

and absorption, as well as cloud scattering are included the model.  

 

A salient advantage of physical models is that their accuracy improves as better 

knowledge of radiative atmospheric transfer and other physical processes is gained. 

Through explicit accounting for physical mechanism, physical models typically are not 

site-specific and can be applied to extended areas and atmospheric conditions. However, 

the accuracy of physical models is heavily influenced by the accuracy of input parameters 

and how well the models represent the real physical processes. The availability of high 

quality input data is critical for achieving expected modeling accuracy. It is not 

uncommon that accuracy of a well developed physical model is seriously compromised 

due to the lack of accurate and reliable inputs.  
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1.2.3 Satellite based PAR estimation methods 
 
 

Algorithms that estimate incident PAR based on satellite remotely sensed data have 

become increasingly important due to their ability to provide PAR information at 

sufficient scale and temporal/spatial resolution required by ecosystem modeling. Sensors 

aboard on geostationary and solar-orbiting satellites have been widely used for PAR 

estimation.  

  

Sensors aboard on geostationary satellites, such as Meteosat and GOES, acquiring data at 

high temporal resolution, are able to better capture the diurnal variation of PAR. 

Research has been conducted to estimate PAR (or total shortwave irradiance) based on 

imagery acquired by these sensors. A model proposed by (Iqbal, 1983) was adopted and 

modified by Rubio to estimate the hourly direct and diffuse PAR using Meteosat 

observations (Rubio et al., 2004).  

 

The method developed by (Pinker and Laszlo, 1992) to estimate PAR is based on a 

relationship between atmospheric transmissivity and top of atmosphere reflectivity at the 

visible region of the spectrum. Atmospheric transmissivity is determined by matching 

TOA (Top of Atmosphere) reflectivity resulting from model simulations to that observed 

by the sensor. This method was applied to ISCCP C1 (International Satellite Cloud and 

Climatology Project) data and generated the first global map of monthly PAR.  

 

                                                                                                                                         
 
 

 



 7  
 
 
(Eck and Dye, 1991) developed a method to estimate PAR using the ultraviolet radiance 

of TOMS (Total Ozone Mapping Spectrometer). Based on the fact that cloud reflectivity 

is fairly constant and cloud absorption is not significant across the ultraviolet and PAR 

wavelength, the method parameterizes cloud at PAR region as a simple linear function of 

TOMS ultraviolet reflectance.  

 

Gautier et al. (Gautier et al., 1980) developed a physical model to estimate the total 

shortwave isolation at surface level using GOES observations. The model calculates 

surface reflectance based on clear sky TOA radiance and by parameterizing effects of 

other physical processes, including Rayleigh scattering, water vapor and ozone 

absorption, cloud absorption, and aerosol attenuation of incoming solar irradiance. This 

model was later modified by (Gu and Smith, 1997) to estimate PAR surface flux over the 

BOREAS study area based on GOES observations. To accommodate the climatic and 

biological difference between the high latitude area and tropical rainforest, this model 

was further modified to calculate the total shortwave insulation and PAR using GOES 

data from the Amazon basin (Gu et al., 2004). The major modification involved is 

focused on the increased cloud absorption factor to better fit the tropical rainforest 

environment.   

 

Visible band data acquired by GOES8 also have been applied to estimate total shortwave 

flux using a simplified physical model based on the shortwave radiative transfer 

equations (Ceballos et al., 2004). The impact of cloud cover on incident PAR is 

approximated by setting minimal and maximal values of TOA spectral reflectance, with 
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Rmin =0.09 representing the clearest sky condition, and Rmax=0.465 representing the 

most overcast condition.  

 

Remotely sensed data acquired by solar orbiting sensors have also been used to estimate 

PAR. A simplified radiative transfer model was developed by (Van Laake and Sanchez-

Azofeifa, 2004) to estimate incident PAR using MODIS atmospheric products. The major 

atmospheric attenuation processes, including Rayleigh scattering, water vapor absorption, 

and aerosol scattering, are treated individually in the model. All the input data and 

parameters are from standard MODIS atmospheric products, including Angstrom 

turbidity coefficient, atmospheric water content, cloud optical thickness, cloud top 

pressure, and total atmospheric ozone. This approach was later applied to estimate PAR 

in Costa Rica (Van Laake and Sanchez-Azofeifa, 2005). Besides estimation of PAR over 

land, incident PAR over ocean has been estimated based on simplified models using 

MODIS data (Carder et al., 1999) and SeaWiFS data (Frouin et al., 2000).  

 

Because there are many more ground stations measuring shortwave irradiance than PAR 

(Ross and Sulev, 2000), and more algorithms have been developed to estimate shortwave 

irradiance using satellite remotely sensed data (Pinker et al., 1995), another commonly 

used PAR estimation method is to derive PAR from measured or estimated total solar 

shortwave insolation (Mottus and Sulev, 2001).  

 

For PAR estimation, the major advantages of satellite based methods are: first, because 

these methods draw on remotely sensed data’s advantage in spatial and temporal 
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coverage, they are typically formulated to be applied to the extended area and time span; 

second, satellite based methods are capable of combining the advantages of both 

statistical models and physical models. Satellite based methods, especially those hybrid 

models, typically utilize statistical approaches to supplement physical approaches in 

cases where physical processes are not well understood or the necessary input data are 

not available.      

 

 

1.3 Issues with the existing remote sensing based PAR estimation methods 

 

1.3.1 The conversion factor between SW irradiance and PAR 
 
 

The conversion ratio between total shortwave insolation and PAR varies with time and 

location as it is affected by many factors including atmospheric pressure, solar elevation, 

turbidity and precipitable water (Alados et al., 1996). A conversion factor of 0.45 is 

reported suitable for the Eastern United States during summer season (Pinker et al., 

1995). But study also suggests that variability in the ratio of PAR to SW (total shortwave) 

insolation is not negligible on a global scale (Pinker et al., 1992). Empirical models have 

been developed to explore the variability of the conversion factor. For instance, a model 

was developed to estimate the conversion ratio based on Angstrom coefficient for aerosol 

transmittance and optical air mass (Al-Shooshan, 1997; Alados-Arboleda et al., 2000). 

(Alados et al., 1996) developed two empirical models for the SW/PAR conversion ratio. 

The first model estimates the ratio based on four parameters: clearness of sky, brightness 
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of sky, solar elevation angle, and dew point temperature. The second model includes only 

the first three parameters, excluding dew point temperature. The comparison with ground 

measurements indicate that the first model performed better (with R2 of 0.81) than the 

second model (R2 = 0.739). In another study, Al-Shooshan utilized neural networks to 

estimate the conversion ratio, with global irradiance, solar zenith angle and sunshine 

duration as input data (lopez et al., 2001).  

 

1.3.2  Diffuse and direct PAR 

 
The ratio of the two components of the incident PAR, direct and diffuse PAR, has impact 

on the intensity of vegetation synthesis. Through research on different forest types, (Gu et 

al., 2003) eported that increased diffuse radiation results in higher light use efficiency and 

is less likely to cause canopy photosynthesis saturation (Gu et al., 2002). The increased 

diffuse radiation caused by the Mount Pinatubo eruption also led to enhanced 

photosynthesis (Gu et al., 2003). Remote sensing based PAR estimation algorithms that 

sufficiently address the seperation of diffuse and direct PAR are not common.  

 

In this study, algorithms centered on extensive MODTRAN4 simulations are developed 

to estimate PAR using remotely sensed data. Because MODTRAN4 is capable of 

calculating both direct and diffuse downward spectral flux at surface level separately, it 

enables the new PAR algorithms to estimate direct and diffuse PAR separately.   

 

1.3.3  Topographic effect on PAR 
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Most algorithms used to generate the satellite based PAR products have not 

accommodated topographic impact on incident PAR, which could be considerable 

especially at higher spatial resolution (Pinker and Laszlo, 1992). For example, in 

validating the VP-RAD (Vapor Radiation) model, Winslow reported that ISCCP-PL PAR 

product was underestimated in mountainous areas by comparing it with long-term 

radiation climatologic data (Winslow et al., 2001).  Topography has several major effects 

on surface incident PAR. First, surface elevation affects atmospheric transmittance by 

changing the actual atmospheric path length (Van Laake and Sanchez-Azofeifa, 2005). 

Second, the surface slope affects the angle between the surface normal and sun zenith 

angle, which is proportional to the fraction of light intercepted by the inclined surface 

(Corripio, 2003). Third, incident PAR value at one location could be affected by the 

shadow and reflecting radiation of neighboring terrain.  

 

Efforts to account for topography have been made (Duguay, 1995; Kumar et al., 1997; 

Varley et al., 1996). In the procedure used to estimate PAR based on MODIS 

atmospheric products, a digital elevation model (DEM) was included to account for the 

effect on the shortened atmospheric path and surface exposure factor caused by elevation 

and slope  (Van Laake and Sanchez-Azofeifa, 2005). To calculate incoming solar 

radiation at mountainous area using Iqbal’s parametric model, (Corripio, 2003) used 

DEM to determine whether each pixel was sunlit or in the shade of surrounding pixels. 

The angle of incidence of the sun on the inclined surfaces is also considered in this study.  
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1.3.4  The impact of snow and ice on PAR estimation 
 

In the visible region, snow and ice have spectral characteristics similar to reflective 

cloud: both snow/ice and cloud appear to be bright in the visible region. This similarity 

imposes a challenge for estimating PAR using remotely sensed data because of the 

difficulty in differentiating cloud from snow/ice. For cases in which snow/ice is mis-

identified as cloud, PAR would be underestimated. Conversely, when cloud is treated as 

snow/ice, PAR would be overestimated. Therefore it is vital to differentiate cloud from 

snow/ice for estimating PAR using remotely sensed data. In this study, in order to 

account the effect of snow/ice on estimating incident PAR, snow and non-snow pixels 

will be treated separately. Snow/ice products that are used to this end include MODIS 

snow cover product (Hall et al., 2001), and snow and ice mapping systems (Ramsay, 

1998). More details related with this issue are given in Chapter 4.  

 

1.4 The need for high spatial resolution PAR products 

 

Because high-resolution incident PAR over land is not a standard EOS product, MODIS 

NPP group (MOD17) uses the DAO (Data Assimilation Office) incident PAR products 

multiplied with MOD15 FPAR (Fractional PAR) to calculate the needed APAR for NPP 

modeling. While the MOD15 FPAR product is of 1 km resolution, DAO PAR products 

are of much coarser spatial resolution (2 by 2.5 degree). The resolution disparity and the 

ensuing disaggregation of DAO PAR impact final NPP product’s accuracy. The 

availability of PAR product of compatible spatial resolution will help in this regard.  
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To estimate NPP using the GLO-PEM model (GLObal Productivity Estimation Model) 

(Prince and Goward, 1995), APAR was calculated by multiplying the FPAR product 

generated from AVHRR NDVI to the TOMS (Total Ozone Monitoring Spectrometer) 

incident PAR product (Eck and Dye, 1991). The TOMS incident PAR product consists of 

monthly average estimation, at spatial resolution of 1 by 1 degree from 66 North to 66 

South latitude. In addition to the concern for the coarse spatial resolution, the monthly 

average PAR compromises the accuracy of the modeling because significant variation of 

PAR may occur over the span of a day. To mitigate this problem, the monthly average 

PAR was interpolated to generate the 10-days average.  

 

1.5 Objectives of this study  

 
The objective of this study is to develop new algorithms to estimate PAR using remotely 

sensed data acquired by MODIS, AVHRR, and GOES. An important feature of the new 

PAR algorithms is that the atmospheric information is derived solely from the satellite 

TOA radiance. Most of the existing satellite based algorithms compute PAR in two major 

steps: deriving the atmospheric parameters, and computing PAR based on the derived 

atmospheric parameters (Pinker et al., 1995; Pinker and Laszlo, 1992; Pinker et al., 

1992).  

 

Of the multiple atmospheric parameters that affect surface flux, the existing algorithms 

require some, such as water vapor and ozone concentration, to be known, in order to 
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derive the others, such as cloud extinction coefficient and aerosol optical depth. In the 

new algorithms, the atmospheric parameters are derived solely based on the satellite 

observations without requiring any external atmospheric knowledge. In addition, for 

those existing algorithm that derive atmospheric parameters based on the linkage between 

atmospheric condition and satellite observations at the top of atmosphere, land surface 

information are also needed due to the fact such linkage is dependent on land surface 

property. In the new algorithms, land surface reflectance are derived through utilizing the 

time series of satellite observations, and therefore. Because the new algorithm derived 

both atmospheric and land surface information solely from satellite observation, they 

have wider applicability than the existing algorithms in situation where external 

information for atmospheric or land surface are lacking.   

 

This feature makes the new algorithms different from the existing algorithm in that: the 

existing algorithms all requires some information of land surface or the atmosphere in 

order to derive the needed atmospheric parameters as the basis for computing  

The combined use of MODIS, AVHRR, and GOES takes advantage of the temporal 

resolution and spatial coverage offered by the three sensors to generate multiple years of 

PAR product covering the whole North America continent as support for ecosystem 

modeling needs.  

 

The core of the new PAR algorithms developed in this study is the derivation of 

atmospheric and land surface conditions using satellite TOA radiance, which are based 

on lookup tables constructed using MODTRAN4 simulation results. MOTRAN4 
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simulations are used to establish the relation between satellite TOA radiance and PAR 

under a variety of atmospheric and land surface conditions. Given the critical role played 

by MODTRAN4 simulations in the new algorithms, it is inevitable that the uncertainty of 

MODTRAN4 affects the effectiveness and accuracy of the new PAR algorithms. As it is 

beyond the scope of this study to analyze the uncertainty of MODTRAN4, the impacts 

caused by such uncertainty are not analyzed.   

1.6 Structure of the dissertation 

 
The rest of this dissertation is organized as follows. The second chapter addresses the 

development of a new PAR algorithm for MODIS data. The third chapter describes using 

AVHRR visible band data to derive both instantaneous and daily PAR values. In the 

fourth chapter, a new algorithm to estimate PAR using GOES visible band data is 

developed, evaluated, and validated. At last, a summary of this work is given in the 

concluding chapter.  
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Chapter 2 Estimating PAR using MODIS data 
 

2.1 Introduction 

 
The amount of solar radiation that reaches the Earth’s surface is determined by several 

factors, including extraterrestrial solar radiation, interactions between solar radiation and 

various atmosphere constituents, and interactions between solar radiation and the Earth’s 

surface. A clear understanding of these interactions and accurate information of the 

relevant atmospheric and surface properties enables radiative transfer models to compute 

PAR.  

 

The first factor that affects PAR is the variation of extraterrestrial solar radiation. 

Extraterrestrial solar radiation refers to the solar radiation emanated from the Sun, before 

reaching the Earth atmosphere. Because extraterrestrial solar radiation is the source of 

PAR, its variation directly impacts PAR. At present, reliable and accurate databases for 

extraterrestrial solar spectral flux are readily accessible and have been incorporated in 

widely used atmospheric radiative transfer models (Berk et al., 1998; Vermote et al., 

1997). In terms of estimating PAR, extraterrestrial solar radiation variation is well 

constrained.  

 

The second and most important factor that affects PAR is the Earth’s atmosphere. Here, 

the atmosphere is used as a broader term that encompasses clouds, aerosols, atmospheric 

gases (including ozone), water vapor, and all other atmospheric constituents. After 

emanating from the Sun, solar radiation interacts with various atmospheric constituents as 
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it travels through the Earth atmosphere. These interactions, including absorption and 

scattering by atmospheric gases, water vapor, aerosol, and cloud, are the primary PAR 

modulators.  

 

Last, the Earth surface also affects PAR, although to a lesser degree than the atmosphere. 

The Earth surface’s impacts on the magnitude of PAR are primarily through multiple 

scattering. Multiple scattering refers to the phenomenon in which part of the solar 

radiation that reaches the Earth’s surface through the atmosphere is reflected back into 

the atmosphere, interacting with the atmosphere, and eventually reaching the Earth’s 

surface again.  

 

Because of the re-entry into the atmosphere of the reflected solar radiation, the magnitude 

of multiple scattering’s contribution of PAR is dependent on not only Earth surface 

conditions but also on atmospheric optical properties.  

 

2.2 The theoretical basis of the new PAR algorithm  

As mentioned in the last section, atmospheric radiative transfer models are capable of 

calculating PAR if they are provided with required information for both atmospheric and 

Earth surface optical properties. A method has been developed to estimated PAR using 

the standard atmospheric and surface products from MODIS (Van Laake and Sanchez-

Azofeifa, 2004). A primary drawback of this approach is its dependence on external input 

for atmospheric and surface conditions, that limit the applicability of the methods where 

required external inputs are not available.  
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In this section, the possibility of deriving PAR from at-sensor radiance without external 

atmospheric information is explored. If proved valid, such an approach will substantially 

extend the applicability of PAR estimation using remote sensing data. 

 

2.2.1 Top of Atmosphere (TOA) radiance 
 
 
The at-sensor radiance measured by space-born remote sensor is also referred to the top 

of atmosphere (TOA) radiance. In this study, the at-sensor radiance and TOA radiance 

are used interchangeably. TOA radiance consists of two components: path radiance, and 

radiation that is reflected from the Earth surface. The first component, path radiance, 

refers to the radiance detected by the sensor as the result of backscattering into space by 

particles and molecules in the atmosphere (Kaufman, 1993). The magnitude of path 

radiance is solely controlled by atmospheric optical properties, and independent of the 

Earth surface properties. The second component of TOA radiance is formed by the part 

of solar radiation that reaches the Earth’s surface and is then reflected into atmosphere 

and eventually captured by the sensor positioned at the top of the atmosphere.  

 

Assuming a flat Lambertian surface, spectral TOA radiance can be expressed by the 

following equation (Chandrasekhar, 1960; Liang, 2004): 

0 0 0 0 0 0( , , ) ( , , ) ( ) ( )
1

s

s

rI I E
r

μ μ φ μ μ φ μ γ μ γ μ
ρ

= + −
−

              2-1 
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Where 0( , , )I μ μ φ  is at-sensor spectral radiance for a given illuminating/viewing 

geometry: solar zenith angle is 0μ , sensor zenith angle is θ, ( cos( )μ θ= ), and relative 

azimuth angle isφ . The first item on the right side of the equation, 0 0( , , )I μ μ φ , is path 

radiance. The second item on the right side of the equation is surface reflected radiance. 

As described in the last paragraph, the second component of TOA radiance is affected by 

atmospheric optical properties ( 0( )γ μ : transmittance from the sun to ground, ( )γ μ : total 

transmittance from the surface to the sensor, ρ : atmospheric spherical albedo), and earth 

surface properties (surface reflectance sγ ). 

 

2.2.2 Spectral downward flux at surface level 
 
 
Over a Lambertian surface, spectral downward flux at solar zenith angle 0μ  can be 

calculated by formula 2-2 (Chandrasekhar, 1960; Liang, 2004).  

 

0 0 0 0 0( ) ( ) ( )
1

s

s

rF F E
r 0
ρμ μ μ γ
ρ

= +
−

μ                  2-2 

 
Where 0θ  is solar zenith angle, 0μ = cos( 0θ ), )( 00 μF is the downward spectral flux 

without contributions from the surface, sr  is surface reflectance, ρ is the spherical albedo 

of the atmosphere, is the extraterrestrial solar irradiance, and 0E )( 0μγ is total 

transmittance (direct plus diffuse).  
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2.2.3 Exploring the relation between TOA radiance and PAR 
 
 
By definition, PAR equals the integration of spectral downward flux at surface level over 

the spectrum of 400-700nm. From section 2.2.1 and 2.2.2, it is evident that both PAR and 

TOA radiance are attenuated extraterrestrial solar radiation as modulated by atmosphere 

and earth surface. The fact that both PAR and TOA radiance are tied to atmospheric 

optical properties and surface properties offers the possible utilization of such 

relationship in order to derive PAR from TOA radiance.  

 

As discussed in Chapter 1, the needs for atmospheric optical property related information 

limit the applicability of existing remote sensing based PAR algorithms. To overcome 

this problem, this study set out to explore the possibility of deriving PAR from TOA 

radiance directly without the need for external atmospheric optical properties 

information. The fundamental basis of the new method is as follows. Because 

atmospheric optical properties modulate both TOA radiance and spectral downward flux 

(and therefore PAR), a distinct atmospheric profile (as an combination of all relevant 

atmospheric properties) will result in a PAR value and a TOA radiance value. In theory, 

N number of distinct atmospheric profiles will result in N pairs of PAR/TOA radiance 

values. When the value of N is large enough to exhaust all the possible atmospheric 

profiles, it will enable us to discern the relation between TOA radiance and PAR. 
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Then the question whether PAR can be derived using only TOA radiance without 

external atmospheric information hinges on whether the relation between TOA radiance 

and PAR meets the following criterion: 

 

Criterion: Under a given illuminating/viewing geometry and surface property, there are 

no two distinct atmospheric profiles that yield the same TOA radiance value, but different 

PAR value. 

 

Meeting this criterion means that a TOA radiance value unambiguously points to a PAR 

value. This feature enables the derivation of PAR solely based on TOA radiance without 

knowledge of the actual underlying atmospheric profile.  

 

There have been studies that derived PAR from TOA radiance based on the 

empirical/statistical relation established using PAR ground measurements (Alados et al., 

2002; Alados et al., 2003). Two major drawbacks of these approaches are: first, the 

empirical relationship between TOA radiance and PAR is site-specific and therefore not 

applicable to other areas, second, the empirical relation is based on limited amounts of in 

situ observations, and there is no vigorous examination whether TOA radiance and PAR 

meet the criterion described in the preceding paragraph. 

 

In this study, a different approach is employed to thoroughly and rigorously examine the 

relation between TOA radiance and PAR under various atmospheric profiles. One of the 

major difficulties in establishing TOA radiance/PAR from in situ observations is that 
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only a very limited amount of atmospheric profiles can be included. To avoid this 

problem, this study chooses to examine the TOA radiance/PAR relation using radiative 

transfer model simulations, which theoretically can be carried out under any possible 

atmospheric profile.  

 

2.2.4 MODTRAN4 simulation and PAR/TOA radiance relation 

 

In this study, the atmospheric radiative transfer model MODTRAN4 is chosen to conduct 

the simulations. MODTRAN4 is considered the most comprehensive atmospheric 

radiative transfer model (Berk et al., 1998). The latest version of MODTRAN4 is capable 

of simulating a wide range of atmospheric radiative transfer processes. Fully 

parameterized, MODTRAN4 is capable of calculating the top of atmospheric upwelling 

radiance for any specific sensor and surface spectral downward flux, that can be 

integrated to calculate PAR.  

 

The downward spectral flux at surface level resulting from MODTRAN4 simulation can 

be integrated between 400 and 700 nanometers to calculate for PAR value. And the 

upwelling spectral radiance at sensor altitude (at the top of atmosphere) can be integrated 

with the sensor’s channel response function to calculate the channel radiance, which is 

TOA radiance measured by a given channel of a given sensor.  

 

2.2.4.1 Illuminating/viewing geometry 
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To simulate for TOA radiance and surface downward spectral flux, MODTRAN4 needs 

to be parameterized for atmospheric gases (including ozone), water vapor, aerosols, 

clouds, and surface reflectance along with line-of-sight geometry.  

 

The line-of-sight geometry, often referred to as illuminating/viewing geometry, includes 

solar zenith angle, sensor zenith angle, and relative azimuth angle.  Because both TOA 

radiance and surface downward spectral flux change with illuminating/viewing angles, 

the same set of atmospheric profile has to be simulated for different illuminating/viewing 

geometry. Because it is impossible to exhaust the indefinite number of possible 

combinations of solar and satellite angles, only representative values of the angles are 

used to form the illuminating/view geometry for MODTRAN4 simulations. These 

representative angles are listed in table 2-1.  

 

Table 2-1 Solar and satellite viewing angles used to form illuminating/viewing geometry 
for MODTRAN4 parameterization. 
 
Solar zenith angle 0o, 20o, 30o, 40o, 50o, 60o, 70o, 80o

Satellite viewing angle 0o, 10o, 20o, 30o, 40o, 50o, 60o, 70o, 80o

Relative azimuth angle 0o, 30o, 60o, 90o, 120o, 150o, 180o

 
 
 

2.2.4.2 Atmospheric parameters 

 

In MODTRAN4, the parameters that specify the atmospheric optical properties are 

organized into three categories. The first category is for an atmospheric model, which 

quantifies the atmospheric gases compositions, water vapor, and ozone concentrations. 
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The second category describes aerosol optical properties. The last category specifies 

cloud optical properties.  With regard to radiative transfer within the visible spectrum, 

these atmospheric profile parameters exert impacts of various magnitudes. Within the 

visible spectrum, clouds and aerosols are the dominating modulators, outweighing 

impacts of water vapor, ozone and other atmospheric gases.  

 

Because each atmospheric profile is a combination of the possible values of the whole set 

of parameters, an exhaustive treatment of all possible atmospheric profiles is too 

voluminous to be practical. In order to render the numbers of atmospheric profiles 

manageable while minimizing the error, this study chooses to fully parameterize only 

cloud and aerosol optical properties using default values for atmospheric gases, water 

vapor, and ozone.  

 

Sensitivity studies through atmospheric radiative transfer model simulation indicates that 

atmospheric transmittance over the PAR region changes from 1.0 to 0.9603 with ozone 

concentration varying from 0 to 17.6862 (g/m2), and transmittance changes from 1.0 to 

0.9875 when water vapor concentration varies from 0.0 to 6.7258 (g/m2) (Liang et al., 

2006). The major effects of cloud on atmospheric transmittance are through the scattering 

process, while absorption within the PAR region is negligible (Frouin and Pinker, 1995). 

Thus, the major hurdle in estimating PAR using remotely sensed data is to account for the 

absorption and scattering caused by aerosol and cloud, which are highly variable in both 

spatial and temporal domains.  
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In MODTRAN4, cloud is specified by cloud type, and cloud extinction coefficient. 

Aerosol is specified by aerosol type and atmospheric visibility, a quantity that is 

convertible to aerosol optical depth. Table 2-2 lists the values used for cloud 

parameterization, and table 2-3 lists the values used for aerosol parameterization.  

 

Table 2-2 Cloud extinction coefficients (km-1) at 550 nm, thickness and based heights 
 
 Altostratus 

cloud 
Stratus  
cloud 

Stratus/stratocumulus 
cloud 

Nimbostratus 
Cloud 

1 1 1 1 
5 5 3 5 
20 20 10 10 
50 50 15 30 

Cloud extinction 
coefficient (km-1) 

128 56.9 38.7 45 
Thickness, km 0.6 0.67 1.34 0.5 
Base height, km 2.4 0.33 0.66 0.16 
 
 

Table 2-3 Aerosol Types and Visibility (km) 
 
 Rural Aerosol Tropospheric Aerosol  Urban Aerosol 

5 5 5 
10 10 10 
20 20 20 
50 50 50 

Visibility 
(km) 

100 100 100 
 
 

2.2.4.3 Relation between PAR and MODIS visible band TOA radiance 

 

Using the atmospheric profiles described in the previous sections, simulations were 

conducted using MODTRAN4 and the resulting top of atmospheric spectral radiances 

were integrated to calculate MODIS band 3 and band 4 radiance, and the resulted surface 
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spectral flux were integrated to compute PAR. Under each illuminating/viewing 

geometry, each simulation resulted in MODIS TOA radiance and PAR, that are depicted 

as scatter plots. Figure 2-1 shows the scattering plots between PAR and MODIS band 3 

(blue band, 459-479 nm). Solar zenith angle are 0o, 20o, 30o, 40o, 50o, 60o, 70o, and 80o, 

respectively for the 8 figures. Sensor viewing angles are all 0o, and relative azimuth 

angles are all 0o also. Surface reflectance is 0.05.  

 

As shown in Figure 2-1, PAR value decreases with the increase of MODIS blue band 

TOA radiance. Although the decrease of PAR with the increase of MODIS is not strictly 

monotonic, it is close to monotonic. Examination of the results under all other 

illuminating/viewing geometry yielded the near-monotonic decrease of PAR with 

MODIS blue TOA radiance.  The near-monotonic decrease of PAR with MODIS visible 

band TOA radiance meet the criteria stipulated in section 2.2.3, providing the basis for 

utilizing TOA radiance to derive PAR without explicit knowledge of the underlying 

atmospheric profile. The development of the new algorithm based on the above described 

idea is described in detail below.   
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Figure 2-1 Relationship between MODIS blue TOA radiance and PAR from 
MODTRAN4 simulations under various atmospheric conditions and solar zenith angles. 
 
 

2.3 MODIS PAR algorithm description  
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In theory, for a given illuminating/viewing geometry, results from a series of 

MODTRAN4 simulations with surface reflectance increasing at infinite small steps will 

enable the at-sensor radiance to surface reflectance conversion. But in practice, this 

method is extremely time-consuming given the large number of possible 

illuminating/viewing geometry combinations. To overcome this difficulty, an alternative 

solution is developed. At a flat Lambertian surface, spectral upwelling radiation, as 

measured by a sensor at top of the atmosphere, can be expressed by equation 2-1, which 

links at-sensor radiance ),( ,0 φμμI with spectral surface reflectance through three 

variables , 

sr

dF ),( ,00 φμμI , and ρ . Thus if the values of three variables are known, the 

relationship between at-sensor radiance and surface reflectance can be determined using 

equation 2-1 for a given atmosphere condition and illuminating/viewing geometry.  

 

The three pairs of surface reflectance/at-sensor radiance values produced by the above 

described simulations are sufficient to solve for the three variables: ,dF ),( ,00 φμμI , and 

ρ . In this study, three random values for surface reflectance: 0.0, 0.5, and 0.8, are chosen 

to simulate the MODIS at-sensor radiance. The resulting values of at-sensor radiance, in 

conjunction with respective surface reflectance, are used to solve for the three variables. 

Thus, under a clear atmosphere, MODIS visible band at-sensor radiance can be converted 

to surface reflectance at any given geometry using equation 2-1 and the values of the 

three variables.  
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Because MODIS visible band at-sensor radiance increases with the increase of 

atmospheric turbidity over most natural surfaces except for snow and ice, observations 

taken under clear atmospheres will have low values in converted surface reflectance. 

Under most conditions, it is valid to assume that within a reasonably long period of time, 

there are observations taken under clear atmosphere. Therefore, for a series of 

observations at a given pixel, sorting for lowest values in converted surface reflectance 

will lead to those observations taken under clear atmosphere.  

 

At a pixel, a time-series of at-sensor radiances are first converted to surface reflectance 

under assumption of clear atmospheric conditions. The resulting surface reflectance is 

referred to as nominal surface reflectance thereafter. High value of nominal surface 

reflectance represents two possible conditions: (1) actual high surface reflectance caused 

by snow and ice, or (2) heavy cloud structure. Low value of the converted surface 

reflectance represents observations taken under clear atmospheric conditions.  

 

2.3.1 Generating Look-Up Tables 
 

Although the above described method is capable of retrieving both surface reflectance 

and atmospheric parameters, the extremely time-consuming on-line MODTRAN4 

simulations make it impractical for large scale applications. To overcome this obstacle, 

the look-up tables (LUT) approach is used.  
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To create the look-up tables, MODTRAN4 simulations are conducted for a series of 

representative configuration of illuminating/viewing geometry and atmospheric 

conditions. In this study, values of illuminating/viewing angles shown in Table 2-1 are 

used.  Values used to specify cloud and aerosol optical properties are listed in Table 2-2 

and 2-3 respectively.  

 

MODTRAN4 simulations and subsequent derivation of the three variables of equation 2-

1 created entries for the first look-up table, which links at-sensor radiance to atmospheric 

surface reflectance through the values of three atmospheric parameters: , dF ),( ,00 φμμI , 

and ρ . In this look-up table, each record (row) comprises values of the 7 variables 

(columns): cloud extinction coefficient/atmospheric visibility, solar zenith angle, sensor 

viewing angle, relative azimuth angle, ,dF ),( ,00 φμμI , and ρ . A typical look-up table of 

this kind is shown in Table 2-4.  

 
Table 2-4 Look-up table that links TOA radiance to atmospheric profile index. 0μ : solar 
zenith angle, μ : sensor zenith angle, φ : relative azimuth angle. ρ : atmospheric albedo 
 
Atmospheric 
profile  

0μ  μ  φ  dF  ),( ,00 φμμI  ρ  

…. …. …. …. …. …. …. 
…. …. …. …. …. …. …. 
 
 
 

In a similar fashion, a second look-up table is created for calculating PAR with known 

surface reflectance and atmospheric profile. Surface downward spectral flux at a 

Lambertain surface can be calculated by equation 2-2. (See Section 2.2.2) 
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Treating the product of )( 000 μγμ E  as one single variable, at a given solar zenith angle 

and atmospheric condition, Equation 2-2 links surface radiation with surface reflectance 

through three variables: )( 00 μF , ρ , and )( 000 μγμ E . A typical look-up table of this kind 

is given in Table 2-5.  

 

Table 2-5 Look-up table that links PAR with atmospheric profile index 0μ : solar zenith 

angle, ρ : atmospheric spherical albedo. 
 
 

Atmospheric 
profile  

0μ  )( 00 μF  )( 000 μγμ E ρ  

…. …. …. …. …. 
…. …. …. …. …. 

 

Using the first look-up table in conjunction with the second one, MODIS visible band 

TOA radiance is linked to corresponding PAR: The first look-up table links a TOA 

radiance value to atmospheric profile index, and the second look-up table link the 

atmospheric profile index to a PAR value. This linkage between MODIS TOA radiance 

and PAR serves as the basis for look-up table searching and PAR derivation, as described 

in detail in the next section.  

 

2.3.2 Searching look-up table to calculate incident PAR 
 
 

The procedure for calculating incident PAR based on the look-up tables comprises: (1) 

For a time-series of observations, each at-sensor visible band radiance is first converted 
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to nominal surface reflectance under clear atmospheric condition using entries from the 

first look-up table and equation 2-1. (2) Cloud pixels are identified based on nominal 

surface reflectance and reference to the MODIS snow/ice map. (3) Sort the time-series of 

nominal surface reflectance, and treat the lowest positive 10 percent values of nominal 

surface reflectance are treated as actual surface reflectance. (4) The values of actual 

surface reflectance along with their illuminating/viewing angles information are used to 

compute surface reflectance value at observations taken under non-clear atmosphere. (5) 

With surface reflectance calculated at each observation, at-sensor radiance at each 

atmospheric condition, from the clearest to the most heavily cloudy is calculated based on 

entries of the first look-up table. The resulting series of simulated values of at-sensor 

radiance are compared with actual at-sensor radiance value to retrieve the atmospheric 

profile index. (6) With values of both surface reflectance and atmospheric profile index 

retrieved, the algorithm proceeds to calculate incident PAR by searching the second look-

up table. A schematic diagram of the algorithm is presented in Figure 2-2.   

 

2.4 Error budget analysis 

 
In the MODIS PAR algorithm, look-up table entries for every representative 

illuminating/viewing geometry consist of results from MODTRAN4 simulations under a 

set of atmospheric conditions. As indicated in section 2.2, using more possible 

atmospheric profiles in generating look-up tables enables a better capture of 

radiance/PAR relations. But using all possible atmospheric profiles in look-up tables is 

not practicable in actual algorithm implementations for two major reasons: first, using a 
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large amount of atmospheric profiles will result in large size look-up tables, second, 

searching of look-up table, as described in section 2.3 requires a monotonic relation 

between at-sensor radiance and PAR. As Figure 2-1 shows, the relation between at-sensor 

radiance and PAR is not strictly monotonic. To have the required monotonic relationship 

between TOA radiance and PAR, this algorithm uses the reduced amount of 

representative atmospheric profiles which introduces errors through approximation and 

linear interpolation. 

 

 

Lookup table I 
(connecting atmospheric condition to TOA radiance)

Actual  
TOA  

Radiance

Derived  
Surface  

Reflectance 

Lookup table II 
(connecting atmospheric condition to surface radiation 

Atmospheric Parameter 

Surface Spectral Flux PAR 

 
Figure 2-2 Procedure of the new MODIS PAR algorithm 
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Because using the reduced amount of atmospheric and linear interpolation will increase 

errors, it is important to evaluate the magnitude of such errors. Figure 2-2 shows the 

differences in at-sensor radiance/PAR relation between using different amounts of 

atmospheric conditions. The left panel of Figure 2-3 is generated by using atmospheric 

conditions presented by only one cloud type (altostratus cloud) and one aerosol type 

(rural aerosol model), while the right panel is generated by using atmospheric conditions 

represented by  four different cloud types and three aerosol types as listed in Tables 2-2 

and 2-3.   

 

Figure 2-3 Relationship between MODIS band 3 (blue band) TOA radiance and PAR 
from MODTRAN4 simulations. The figure in the right panel represents the relation from 
results of all atmospheric conditions. The figure in the left panel represents the relation 
from only one cloud type (altostratus) and one aerosol model (rural).    
 
 

In this algorithm, PAR values corresponding to those atmospheric conditions that are not 

present in look-up tables are linearly interpolated. Such linear interpolation causes error 
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equivalent to the difference between the actual PAR value and the linearly interpolated 

PAR value. While it is not practical to examine the error caused by linear interpolation 

under all possible atmospheric conditions, examining the magnitude of errors under 

representative atmospheric conditions gives a meaningful measurement of the possible 

error range. Figure 2-4 shows the error caused by the linear interpolation method through 

comparing the PAR values resulted from MODTRAN4 simulations and PAR values 

resulted from linear interpolations.  

 

The scatter plots in the leaf column of Figure 2-4 show the comparison between PAR 

values from MODTRAN4 simulations and PAR values from linear interpolations under 

varying solar zenith angle. The histograms in the middle column show the relative error 

in percentage introduced by linear interpolations. The right error bars in the right column 

indicate the relative error in percentage grouped by magnitude of PAR value. A very 

comprehensive analysis of error caused by linear interpolation was conducted, although 

only results from some representative conditions are shown here. Based on the error 

budget analysis, the relative errors caused by linear interpolation under most conditions 

are under 6%.  

 

2.5 The uncertainty associated with atmosphere model, ozone, and water vapor  

 
Precise description of an atmosphere profile requires specifying many parameters, due to 

the complexity of atmospheric composition. The most commonly used parameters 

include those for atmospheric gases, water vapor, ozone, cloud and aerosol. 

                                                                                                                                         
 
 

 



 36  
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Figure 2-4 Error caused by the linear interpolation scheme of look-up tables entries 
generated with selective atmospheric conditions.  
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To best examine the TOA radiance/PAR relation, all the possible combinations of all 

atmospheric parameters should be used in the MODTRAN4 simulation. But the number 

of possible combinations is too large to be conducted. In addition, variations of some 

atmospheric parameters have only insignificant effect on atmospheric transmittance at the 

visible spectrum. In the visible region, aerosol and cloud have the most significant 

impacts, and therefore their impacts are thoroughly examined by varying value for the 

respective parameters.  

 

To render the method practical, the PAR algorithm generates look-up table entries from 

an atmospheric profile with fixed value of water vapor, atmospheric gases composition 

(including ozone). Therefore the uncertainty caused by such simplification should be 

examined.   

 

2.5.1 Uncertainty caused by variation in atmospheric ozone concentration 

 
The uncertainty in PAR estimation caused by using default value for atmospheric ozone 

is assessed by MODTRAN4 simulations for atmospheric profiles with varying amount of 

atmospheric volume ozone. Figure 2-5 shows the range of PAR with atmospheric volume 

ozone changing from 0 to 700 Dobson Units for a given atmospheric profile.  
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Figure 2-5 Change of PAR with the change of atmospheric volume ozone. Atmosphere 
condition is represented by mid-latitude summer model with rural aerosol model with 
visibility of 50 km, altostratus cloud with cloud extinction coefficient of 5 km-1, water 
vapor concentration of 2.0g/cm2. Visible region broad band visibility is set at 0.05. Solar 
zenith angle is 0o.  
 

2.5.2 Uncertainty caused by variation in atmospheric water vapor 

 

While water vapor has significant impact in the infrared region, its impact in the visible 

region is much smaller. Like that of atmospheric ozone, the effects of atmospheric water 

vapor on PAR estimation are assessed by MODTRRAN simulations with varying water 

vapor values. Figure 2-6 shows the change of PAR with water vapor concentration 
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changes from 0 to 8 g/m2. Table 2-6 shows the changes of integrated atmospheric 

transmittance over PAR region with change of water vapor concentration.  

 
 
Figure 2-6 Impacts of atmospheric water vapor on PAR. Atmosphere condition is 
represented by mid-latitude summer model with rural aerosol model with visibility of 50 
km, altostratus cloud with cloud extinction coefficient of 5 km-1, volume ozone of 350 
Dobson Units. Visible region broad band visibility is set at 0.05. Solar zenith angle is 0o.  
 
 
Table 2-6 Water vapor concentration and the integrated transmittance over the PAR 
region 
 

Concentration (g/m2) Transmittance 
0.0 1.0 
0.3703 0.9993 
2.0162 0.9957 
4.0735 0.9919 
6.1309 0.9885 
6.7258 0.9875 
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2.5.3 Uncertainty caused by variation in atmospheric gases composition.  
 

Uncertainty in PAR estimation caused by using default atmospheric gases profiles was 

examined by MODTRAN4 simulations. In these simulations, the five atmospheric 

models included in MODTRAN4 were used: tropical, mid-latitude summer, mid-latitude 

winter, sub-arctic summer, and sub-arctic winter atmospheres. Figure 2-7 shows the 

range of PAR variation under the five atmosphere models with varying water vapor and 

ozone concentrations.   

 

Figure 2-8 shows the combined impacts of atmospheric gases composition, water vapor, 

and ozone concentration under varying solar zenith angles. The four figures in the left 

side column of Figure 2-8 show the ranges of PAR with varying atmospheric profiles 

represented by volume ozone ranging from 0 to 800 Dobson units, water vapor ranging 

from 0 to 8 g/m2,  five atmosphere models used in Figure 2-7. The four figures in the 

right column show the uncertainty in percentage caused by the combined effect of 

varying atmospheric gases composition, water vapor, and ozone concentration. Cloud 

(altostratus) extinction coefficients are 1, 5, 20, and 50 km-1, respectively for figures in 

the four rows in Figure 2-8. Each figure in Figure 2-8 is grouped by solar zenith angle, 

which varies from 0o to 80o with a 10o increment. As indicated by Figure 2-8, the 

uncertainty caused by the combined impacts of atmospheric gases composition, water 

vapor, and ozone concentration are below 2% under most situations.  
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Figure 2-7 Impact of atmospheric gases composition on PAR. The five error bars presents 
the five standard atmosphere models included in MODTRAN4: 1: tropical, 2: mid-
latitude summer, 3: mid-latitude winter, 4: sub-arctic summer, 5: sub-arctic winter. Under 
each atmosphere model, water vapor column varies from 0 to 8 g/m2, and ozone column 
varies from 0 to 800 Dobson Units.  
 
 

2.6 Validation  

 
The process of validation was conducted using ground measurements of incident PAR at 

six FLUXNET sites: Fort Peck (Montana), Lost Creek (Wisconsin), Oak Ridge 

(Tennessee), Walker Branch (Tennessee), Santarem (Brazil), and Black Hills (South 

Dakota).  For each site, a 3 by 3 window of the MODIS TOA radiance (MOD02) and 

angular values were extracted from the MODIS data sets ordered from NASA’s Earth 

Observation System (EOS) gateway.  The ground measurements collected at 30-minute 

or 60-minute intervals were compared with the retrieved values. The measurement values 

closest to the MODIS data acquisition were used without any interpolation. 
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Figure 2-8 Combined impacts of variations in atmospheric gases composition, water 
vapor, and ozone concentration on PAR. Water vapor column ranges from 0 to 8 g/m2, 
ozone volume ranges from 0 to 800 Dobson units. Cloud is represented by altostratus 
cloud with extinction coefficients of 1, 5, 20, and 50 km-1 in the figures of the four rows 
respectively.  
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The validation results have been reported in a published paper (Liang et al., 2006). In the 

published paper, a robust regression method called the least trimmed squares regression 

is used to characterize the fitness between the measured PAR and estimated PAR. In this 

dissertation, the ordinary least squares regression is used to replace the least trimmed 

square regression for the following reasons: first, the ordinary least square regression 

provides a better basis for the cross-comparison with results from other studies; second, 

to keep the consistency with statistics used in AVHRR (Chapter 3) and GOES (Chapter 

4), both of which use the ordinary least squares regression.     

 

The Black Hills site in North Dakota is located at 44° 9' 28.8" N, 103° 39'W. The flux 

tower is situated in an evergreen needle-leaf forest and temperate landscape. The half-

hour measurement data in 2002 from days 182-304 were used for the validation, which is 

shown in Figure 2-9. The solid line in the figure is the 1:1 line, and the dashed line is the 

fitted line resulting from the ordinary least square regression. The relation statistics are 

reported in Table 2-7.  

 

The Fort Peck, Montana, station is located on the Fort Peck Tribes Reservation, 

approximately fifteen miles north of Poplar, Montana. The geographic coordinates are 

48° 18.473' N and 105° 6.032'W.  The three-meter tower was installed in November of 

1999 over grassland with a surface elevation of 634m. The comparison of the retrieved 

and measured half-hour incident PAR in 2002 (the whole year) is shown in Figure 2-10.    

The overall fit is very good, although both overestimation and underestimation of PAR 

values were documented.  
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The Lost Creek site   (46° 4.9' N, 89° 58.7' W) is located in northern Wisconsin. The 

elevation is about 480 m above sea level. The biome is mixed forest with canopy height 

of 1-2 meters. This site was established on Sept. 4, 2000.  The measurement data from 

both 2000 and 2001 were used here and the validation results are shown in Figure 2-11.  

 

Figure 2-9 Validation of the estimated instantaneous PAR at Black Hills, ND. The solid 
line is the 1:1 line, and the dashed line is the fitted line from ordinary least square 
regression.  
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Figure 2-10 Validation result at Fort Peck, South Dakota. The solid line is the 1:1 line, 
and the dashed line is the fitted line from ordinary least square regression.  
 

 

Figure 2-11 Validation of the estimated instantaneous PAR at Lost Creek, Wisconsin.. 
The solid line is the 1:1 line, and the dashed line is the fitted line from ordinary least 
square regression.  

 
 
 

                                                                                                                                         
 
 

 



 47  
 
 
 

The Howland forest (Main Tower) site is located at Howland, Maine (45.20407° N, 

68.74020° W).  Topographically, the region varies from flat to gently rolling with a 

maximum elevation change of less than 68 m. The landscape is composed of deciduous 

evergreen needle forest, boreal/northern hardwood, old coniferous, hemlock, Douglas fir, 

and evergreen coniferous. Measurement data in 2002 from dates 74-365 were 

downloaded. The validation results are shown in Figure 2-12. It appears the worst one in 

all cases where the retrievals are biased. 

 

The Walker Branch Watershed site (35° 57' 31.56" N, 84° 17' 14.76" W ), located at Oak 

Ridge, Tennessee,  is characterized by temperate climate, mixed-species, broad-leaved 

deciduous forest of oak and hickory. The validation of total PAR shown in Figure 2-13 

indicates a good agreement between the estimated and measured values. However the 

validation of both the diffuse and direct PAR result in much more pronounced 

disagreement between the estimated and measured values (Figure 2-14). One possible 

reason for the larger disagreement could be the use of the fixed conversion factor 

between the energy unit (W/m2) and quantum unit (umol/m2/s). MODTRAN4 

simulations output both the diffuse and direct flux in the energy unit, to match the 

quantum unit that are used in the ground measurements, a conversion factor (W/m2=4.6 

umol/m2/s) is used. Study reports that the conversion factor varies with atmospheric 

condition (Dye, 2004). The use of the fixed value of 4.6 for the conversion factor could 

contribute to the poor validation results for the diffuse and direct PAR. 
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The Walker Branch Watershed site at Oak Ridge is the only site where the direct and 

diffuse components of the total PAR are validated separately, because this is the only site 

where ground measurements are available for the diffuse and direct PAR. At the other 

five sites, only total PAR measurements are available.   

 

 

Figure 2-12 Validation result at Howland Forest, Maine. The solid line is the 1:1 line, and 
the dashed line is the fitted line from ordinary least square regression.  
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Figure 2-13 Validation result of total PAR at Oak Ridge, Tennessee. The solid line is the 
1:1 line, and the dashed line is the fitted line from ordinary least square regression.  

 
 

                                                        

 
Figure 2-14 Validation results of direct and diffuse PAR at Oak Ridge, Tennessee. The 
solid line is the 1:1 line, and the dashed line is the fitted line from ordinary least square 
regression.  
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Figure 2-15 Validation results at Santarem, Brazil. The solid line is the 1:1 line, and the 
dashed line is the fitted line from ordinary least square regression.  
 

 
The Tapajos National  Forest site (Santa Rem – Km83) is located in logged evergreen 

tropical broadleaf forest in Brazil. The geographic coordinates of the tower is (3° 1' 

4.905372" S, 54° 58' 17.166324" W). The measured PAR data dates from 1999, but only 

data in 2001 were used in this study. The comparison is shown in Figure 2-15. The 

overall fit is also good, although overestimation occurs at large PAR value.  

 
 

Table 2-7 Summaries of regression analysis at six validation sites 
 
sites interce

pt 
slope Multiple 

R2 
Relative 
error (%) 

N bias RMSE 

Black Hills 128.60 0.8645 0.9013 6.61 110 76.96 150.91 
Fort Peck 193.13 0.8385 0.8804 15.1 353 -38.77 215.41 
Lost Creek 66.81 0.9227 0.9247 10.2 441 16.02 171.32 
Howland Forest 99.60 0.7394 0.8949 21.9 208 198.94 230.38 
Oak Ridge -3.513 1.0202 0.9881 4.1 217 -1.954 15.39 
Santarem 182.59 0.8195 0.8661 7.6 167 88.667 156.01 
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2.7 Calculating Daily PAR from MODIS derived instantaneous PAR 

 
To meet the NPP and other models’ need for daily PAR product, Liang et al (2006) has 

developed method to compute daily average PAR value using the instantaneous PAR 

value estimated from MODIS data. The method is based on deriving an empirical 

relationship between the daily average PAR and MODIS derived instantaneous PAR 

values through regression analysis. The instantaneous PAR value estimated using both 

the Aqua and Terra are included in the regression to take advantage of the multiple 

observations per daytime. Figure 2-16 are reproduced from the published paper (Liang et 

al., 2006) with permission from the authors. The daily average PAR values are reported 

in the energy unit (W/m2) and there are no statistics included in the published paper.  

 

 
Figure 2-16 Comparison of the measured daily average PAR and estimated daily average 
PAR. The solid line is the 1:1 line.  
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2.8 Mapping incident instantaneous PAR over the Greater Washington D.C. area 

 

To test the method for regional mapping, PAR over the greater Washington D.C. area 

was mapped. Figure 2-17 shows the images of the true color composite images of 

MODIS visible bands acquired on 8 day of 2003 (142, 145, 149, 151, 158, 159, 161), and 

Figure 2-18 shows the retrieved PAR values. Images are of 800 by 800 pixels. Each 

pixel’s nominal size is 1 km by 1 km. Visual inspection indicates that the cloud patterns 

shown in TOA radiance images are well captured on the corresponding instantaneous 

PAR images.   

 

 
 

Figure 2-10 True color composite MODIS imagery of greater Washington, D. C. area for 
8 days (May 22, May 25, May 29, May 31, June 5, June 7, June 8, and June 10, 2003). 
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Figure 2-11 Retrieved incident PAR maps from the corresponding MODIS images in 
Figure 2-17 
 

 

2.9 Summary 

 

A new algorithm for deriving PAR using MODIS TOA radiance values without external 

atmospheric information was described in this chapter. The validity of the new method’s 

theoretical basis was examined, and associated errors are analyzed. The application of the 

new algorithm and validation against ground measurement indicate that the new 

algorithm performs well.  

 

Compared with existing satellite based algorithms, the new MODIS PAR algorithm 

derives atmospheric and land surface information from time-series of TOA radiances 
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with no need for external information for atmosphere. This work has been published as a 

journal article (Liang et al., 2006), of which I am a co-author. My contribution to this 

work and publication include: implementation of the MODIS PAR algorithm and 

validation.  

 

Based on the instantaneous PAR estimates using the new MODIS PAR algorithm, Wang 

(Wang et al., 2007) developed an adjusted sinusoidal model to integrate daily PAR. I am 

one of the co-authors of the article manuscript submitted to IEEE Transactions on 

Geophysics and Remote Sensing.  
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Chapter 3 Estimating PAR from AVHRR data 
 

3.1 Introduction 

 
In the last chapter, a new algorithm was developed to derive instantaneous PAR values 

from TOA radiance measured by MODIS visible bands. The two MODIS sensors aboard 

Terra and Aqua were launched into space on 1999 and 2002, respectively. Therefore, the 

longest PAR historical record that can be possibly generated from MODIS data covers 

the most recent 7 years at most. 

 

Because one of the primary uses of PAR is for terrestrial ecosystem modeling, which 

typically requires long-term PAR data for model initiation, parameterization, and 

validation, this study explores the feasibility of taping into the 20-plus years of 

continuous observations taken by Advanced Very High Resolution Radiometer 

(AVHRR). Around this topic, this chapter is organized as follows: first, extending the 

MODIS-based PAR algorithm to the visible band data of AVHRR; second, examine the 

error budget in AVHRR PAR algorithm; third, use an adjusted sinusoidal model to scale 

PAR from instantaneous values to daily average values; And last, validations of both 

instantaneous and daily average PAR values against ground measurements are presented.  
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3.2 The new AVHRR PAR algorithm 
 
 
Similar to the MODIS PAR algorithm, the prerequisite of the AVHRR PAR algorithm is 

the existence of the monotonic change of PAR value with the change of the AVHRR 

visible band at-sensor radiance value. Therefore it is necessary to examine the existence 

and validity of such relations between PAR and the AVHRR visible band TOA radiance 

values. 

  

Using the same set of atmospheric profiles described in chapter 2 (Table 2-1, 2-2, and 2-

3), the relation between NOAA-14 AVHRR band 1 at-sensor radiance and PAR was 

examined. Figure 3-1 shows the relation between AVHRR band-1 radiance and PAR for 

various illuminating/viewing geometries. The figures indicate that PAR decreases with 

increasing AVHRR band 1 at-sensor radiance in a near-monotonic fashion. Results from 

all other illuminating/viewing geometries yield similar patterns. Thus, there is a valid 

basis to develop a new PAR algorithm based on AVHRR visible band data, similar to the 

MODIS PAR algorithm presented in Chapter 2.   
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Figure 3-1 Relationship between AVHRR-14 band-1 TOA radiance and PAR for a range 
of various atmospheric profiles and solar zenith angles. 
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3.3 Error budget analysis  

 
 
To derive PAR from AVHRR TOA radiance, a look-up table approach, similar to that 

used for MODIS, is used. Because of the complexity of including all possible 

atmospheric profiles in the look-up table, and the near linear relation between TOA 

radiance and PAR, a simplified method that uses linear interpolation is employed. The 

simplified linear interpolation method consists of two steps. First, look-up table entries 

for various illuminating/viewing geometry are generated. Second, linear interpolation is 

used to derive PAR based on AVHRR band 1 TOA radiance values.  

 

In constructing the look-up table for each illuminating/viewing geometry, ideally all 

atmospheric profiles should be included in order to best capture the varying relation 

between PAR and TOA radiance. But for the implementation, it is not realistic to include 

all atmospheric profiles that have been used for the simulations in the exploratory stage. 

The reasons for not using all atmospheric profiles are: first, the large of number of 

atmospheric profiles will render the look-up table too large which will make the 

subsequent look-up table search too slow; second, because the relation between TOA 

radiance and PAR is not strictly monotonic, a simplified one-to-one relation is needed. 

The simplification scheme uses results from MODTRAN4 simulations under only one 

cloud type (altostratus cloud) and one aerosol type (rural aerosol model).  

 

Because such simplification introduces error, it is important to quantify the possible 

errors caused by the linear interpolation under varying circumstances. The left panel of 
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Figure 3-2 shows the relation between TOA radiance and PAR from MODTRAN4 

simulations using single cloud/aerosol type. The right panel of Figure 3-2 shows the TOA 

radiance/PAR relation from simulations using multiple cloud/aerosol types.  

 

 

Figure 3-2 Linear interpolation of PAR based on the relation between PAR and TOA 
radiance established from simulations using only one cloud type and one aerosol type. 
The left panel is the TOA radiance-PAR relation based on one cloud/aerosol type 
simulation, the right panel is based on multiple cloud/aerosol type.  
 
 

3.4 AVHRR visible band Data  
 
 
The algorithm described in section 3.2 was applied to data acquired by AVHRR aboard 

the NOAA-14 satellite. There are two forms of AVHRR data: the GAC of 4km spatial 
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resolution, and LAC of 1km spatial resolution. For the purpose of achieving better spatial 

match between satellite image pixel and point measurements taken on the ground, it 

would be more advantageous to use 1km LAC data for PAR estimation. But this study 

chooses to use GAC data in the new AVHRR algorithm, for two reasons: first, because 

LAC data only cover a set of localized areas, it is difficult to find collocated validation 

sites; second, the less consistent coverage of LAC data does not meet the requirement of 

frequent repeat observations by the new AVHRR PAR algorithm.  

 

3.5 Scaling instantaneous PAR to daily average PAR 

 
 
As discussed in the beginning of this chapter, needs for daily PAR values (versus 

instantaneous PAR values) necessitate the instantaneous-to-daily scaling. Scaling 

methods have been developed for scaling, but none of them have universal applicability 

and absolute superior accuracy. In this study, the adjusted sinusoidal model developed for 

MODIS (Wang et al., 2007) is used.  

 
The adjusted sinusoidal model infers PAR distribution function over the course of a 

daytime by assuming the atmospheric condition changes between individual 

instantaneous observations are smooth. The instantaneous PAR distribution functions 

over time are expressed by equation 3-1 for situations when there is only one observation 

over a daytime, or by equation 3-2 for situations when there are two or more 

observations. 
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where  and  are the time of the two satellite overpass, respectively.  and 

 are the instantaneous PAR value at time t  as calculated using the sinusoidal 
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With instantaneous PAR distribution modeled, the daily accumulative PAR can be 

calculated by integrating instantaneous PAR value over a daytime (Equation 3-3).  
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Applying the adjusted sinusoidal model to AVHRR data consists of two steps. First 

instantaneous PAR values are estimated from individual AVHRR band-1 radiance. 

Second, all instantaneous PAR values for a given day are used to compute the daily PAR 

value using the adjusted sinusoidal model.  

 
 The number of AVHRR satellite daytime overpasses varies with location, although 

typically there are more frequent overpasses at higher latitudes than mid and lower 

latitudes. Figure 3-4 illustrates the number of daytime overpasses in North America by 

AVHRR onboard NOAA-14, during day 143 of 1996.   

 

  

 

 

 

 

 

Figure 3-3 Number of satellite overpasses by NOAA-14 AVHRR over the North America 
continent for day 143 in 1996. 
 
 

3.6 Validation 

 
The newly developed method is implemented and resulting PAR estimations panel were 

examined for accuracy. Figure 3-5 shows the estimated instantaneous PAR covering the 
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continental U.S., along with corresponding at-sensor radiance of AVHRR-14 band-1 

image. It can be observed from the imageries that the PAR estimation method 

successfully captured the cloud’s impact on PAR.  

 

To quantitatively assess the accuracy of the algorithm, the derived PAR values are 

validated against ground measurements at three FLUXNET sites: Metolius in Oregon, 

Park Falls in Tennessee, and Walker Branch in Wisconsin.  The estimated and measured 

PAR values for all three sites are from January to March, 1996.  

 

The flux tower at Metolius in Oregon is located at a site composed of mixed-aged trees 

with open spaces. The elevation of the site is 916 m. The scatter plot, depicting the 

comparison between the measured and estimated instantaneous PAR values along with 

linear regression line, is in Figure 3-6. The estimated and retrieved PAR values agree 

well although both underestimations and overestimations are documented.  

 

The second site, Park Falls site in Wisconsin, is managed for timber extraction and 

biodiversity conservation. Figure 3-7 compares the estimated and measured instantaneous 

and daily PAR values at this site.  

 

At the Walker Branch in Tennessee, the dominant trees are oak, maple, and hickory. 

Figure 3-8 shows the comparisons between estimated and measured PAR values. 
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Table 3-1 and Table 3-2 summarize the validation results at the three sites. The statistics 

at all three sites indicates that the daily PAR value is more accurate than their 

instantaneous counterparts.  

 

 

 
 

Figure 3-4 AVHRR band-1 data and estimated instantaneous PAR value covering the 
continental U.S.. The image in the upper panel is TOA radiance at 20:05 GTM, day 225 
in 2004. The image in the lower panel is the estimated instantaneous PAR for the same 
time. The white pixels on the TOA radiance image are clouds. The unit of TOA radiance 
is Wm-2sr-1s-1. The unit of instantaneous PAR is umol/m2/s.  
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Figure 3-5 Validations of PAR derived using AVHRR band 1 data from NOAA-14 at 
Walker Branch, Tennessee. The left graph is a comparison between retrieved (X-axis) 
and measured (Y-axis) instantaneous PAR. The right graph is a comparison between 
retrieved (X-axis) and measured daily PAR (Y-axis).  
 

 

Figure 3-6 Validations of PAR derived using AVHRR band 1 data from NOAA-14 at 
Metolius, Oregon. The left graph is a comparison between retrieved (X-axis) and 
measured (Y-axis) instantaneous PAR. The right graph is a comparison between retrieved 
(X-axis) and measured daily PAR (Y-axis).   
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Figure 3-7 Validations of PAR derived using AVHRR band-1 data from NOAA-14 at 
Park Falls, Wisconsin. The left graph is a comparison between retrieved (X-axis) and 
measured (Y-axis) instantaneous PAR. The right graph is a comparison between retrieved 
(X-axis) and measured daily PAR (Y-axis).  
 
 

Table 3-1 Validation results of instantaneous PAR at three FLUXNET tower sites. 
 

 Metolius Walker Branch Park Falls 
R2 0.8851 0.9083 0.8511 

Slope 0.9542 0.9370 0.8663 
Intercept 65.21 -35.588 46.04 

Bias -16.70 105.82 65.5 
RMSE 197.40 163.52 199.3 

Relative Error 22.97 32.57 40.80 
RMSE/Average 18.35 16.205 25.91 

N 558 455 516 
 

 
 
 
 
 
 
 

                                                                                                                                         
 
 

 



 67  
 
 

Table 3-2 Validation results of daily integrated PAR at three FLUXNET tower sites. 
 

 Metolius Walker Branch Park Falls 
R2 0.9675 0.9275 0.9299 

Slope 0.8383 0.8212 0.8290 
Intercept 559.86 616.51 660.08 

Bias 896.48 1030.19 567.02 
RMSE 1310.28 1468.06 1419.87 

Relative Error 18.19 22.41 32.46 
RMSE/Average 15.67 17.94 21.47 

N 341 333 322 
 
 
 
3.7. Summary and discussion 
 
 

Deriving PAR from historical AVHRR data sets has the potential to provide terrestrial 

ecosystem modeling community with the much needed long time series of input 

parameter. To realize this potential, a new method for mapping PAR from AVHRR data 

was developed in this chapter.  

 

This new method was applied to AVHRR data of 1999 to generate both instantaneous 

and daily PAR estimates. The results of the initial validation are promising, though more 

thorough and systematic validations are needed.  

 

Based on the result of the initial validation, further refinements of the AVHRR PAR 

algorithm has been envisioned: (1) to improve the lookup tables, which should host more 

entries with finer intervals for both solar and sensor zenith angels; (2) to fuse the 

AVHRR derived instantaneous PAR value with those from other sensors, including 

MODIS, GOES, and SeaWiFS, to improve the integration of daily PAR. 
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Chapter 4 Estimating PAR from GOES data 
 

4.1 Introduction 

 
In Chapter 3, scaling of instantaneous PAR to daily average value was discussed. One of 

the key issues of improving the daily PAR scaling accuracy is the number of 

instantaneous PAR per day. With everything else equal, the more instantaneous PAR 

values used for scaling, the more accurate the resulting daily PAR value will be. This 

improved accuracy is primarily because the more instantaneous PAR values distributed 

over a day enable a better capturing of the diurnal variation of PAR.  

 

Both MODIS and AVHRR are only capable of acquiring low numbers of day time 

observations per day because of they are aboard polar-orbiting satellites. By contrast, 

sensors aboard geostationary satellites such as GOES and METEOSAT, have much 

higher temporal resolution and therefore are better equipped to tackle the instantaneous-

to-daily PAR scaling.  

 

Geostationary satellites have long been used to estimate surface solar insolation and 

PAR. Gautier et al. (Gautier et al., 1980) developed a simple physical model to estimate 

incident solar radiation using the first generation GOES visible data, which was later 

improved by including ozone absorption and introducing an empirical correction for sub-

pixel clouds (Diak and Gautier, 1983).  GOES observations were used to retrieve total 

solar radiation and PAR (Gu and Smith, 1997), and surface net radiation at the Boreal 

Ecosystem-Atmosphere Study (BOREAS) (Gu et al., 1999) and Amazon basin (Gu et al., 

                                                                                                                                         
 
 

 



 69  
 
 
2004). GOES-8, 10, and 12 were used to calculate surface insolation and the results were 

validated using insolation data taken at the U.S. Climate Reference Network (USCRN) 

(Oktin et al., 2005). GOES visible band data were used to estimate incoming solar 

radiation over northwest Mexico (Stewart et al., 1999) and Brazil (Ceballos et al., 2004). 

Diner et al. (Diner et al., 1998) estimated daily solar radiation from GOES-8 visible 

imagery in an effort to apply satellite data in agricultural management. Incoming solar 

radiation estimated from GOES-8 imagery was used as part of input for modeling 

evapotranspiration from wetlands at north central Florida (Jacobs et al., 2002).  

 

To retrieve PAR, all existing algorithms require some external knowledge of either 

surface or atmospheric conditions. This is due to the fact that at-sensor radiance includes 

a mixed contribution from both surface and atmosphere, and the PAR retrieval requires 

separation of the two. The dependence of these PAR algorithms on external information 

limites their applicability, especially when the required information is lacking or 

erroneous.  

 

To address this problem, the new PAR algorithm developed for MODIS and AVHRR in 

the previous chapters was modified to be applied to data acquired by GOES imager’s 

visible channel. Similar to the PAR algorithm for MODIS and AVHRR, the GOES PAR 

algorithm is based on the simultaneous derivation of land surface and atmospheric 

parameters without external atmospheric information. Compared with MODIS PAR 

algorithm, there are two major improvements for the GOES PAR algorithm. The first 

improvement is the utilization of spatial relation for excluding the adverse effects of 
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cloud shadow on surface reflectance retrieval. The second improvement is the 

incorporation of a Bi-directional Reflectance Distribution Function (BRDF) for 

characterizing surface reflectance. In addition, the impact of topography on surface 

incident PAR also were assessed in order to provide the end-user of PAR product with 

topographically corrected PAR data.   

 

The rest of this chapter is organized as follows. Section 4.2 gives a detailed description of 

GOES PAR algorithm. Section 4.3 evaluates the performance of the new algorithm 

through validation against ground measurements. Section 4.4 examines the impacts of 

topographic impacts on PAR.   Section 4.5 discusses some problems and possible further 

improvements.     

 

 

4.2 Algorithm description 

 

The central theme of the GOES PAR algorithm is deriving PAR using GOES visible 

band data through the look-up table approach. The details of the algorithm are addressed 

in the following sections.  

4.2.1 GOES-12 visible band at-sensor radiance 
 

GOES visible band data used in this algorithm were acquired by GOES-12. GOES-12 

which was launched into orbit (W 75, over the equator) in 2001 to replace GOES-8 as the 

operational GOES East Satellite. An imager and a sounder are aboard GOES-12. GOES-

                                                                                                                                         
 
 

 



 71  
 
 
12 imager’s visible channel (0.55-0.72 um) has a nominal spatial resolution of 1km by 

1km at nadir. It is referred to as nominal resolution in the sense that the east-west spatial 

resolution is actually 0.57 km at nadir due to over-sampling. The visible band data used 

in this study are taken by GOES-12 imager at 30-minute interval.  

 

Like its predecessors, GOES-12 imager’s visible band does not have an on-board 

calibration device. Sensor responsivity degradation and post-launch vicarious calibration 

have been a constant issue for GOES visible band observations (Weinreb et al., 1997; 

Knapp and Haar, 2000). In this study, the 16 bits integer count of GOES-12 visible band 

data are converted to nominal albedo values. Nominal albedo values were calculated by 

calibrated radiance and solar radiance. It is called nominal albedo because it is neither 

corrected for the solar zenith angle, nor the variation of Sun-Earth distance. Because 

visible band radiance is a required input for the GOES PAR algorithm, the visible band 

radiance is retrieved from converted nominal albedo values by applying the look-up table 

provided by NOAA.  

 

Because the visible band data used in this work were acquired in mid 2004, more than 

two years after the launching of the GOES-12 satellite, the on-orbit sensor degradation 

needs to be taken into account. Vicarious calibration conducted by NOAA using star-

viewing data put GOES-12 imager visible channel response degradation rate at 5.68% per 

year during the period from January 22, 2003 to January 23, 2005. Based on this 

calibration result, the visible band radiance values were adjusted by using the degradation 

rate and number of days since the launching.  
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4.2.2 Examine the relation between PAR and GOES visible band TOA radiance 
 

Because the GOES PAR algorithm is built on retrieving PAR from TOA radiance with no 

external atmospheric information, its validity is based on the existence of PAR value’s 

monotonic change with the change of GOES visible band TOA radiance, as discussed in 

Chapter 2. Therefore, the relation between GOES visible band TOA radiance and PAR 

under various atmospheric conditions has to be examined first.  

 

Using the same set of atmospheric profiles detailed in Chapter 2, MODTRAN4 

simulations were conducted. After the simulations are completed, the resulting top-of- 

atmospheric spectral radiances are integrated to calculate GOES-12 imager’s band-1 

radiance, and the resulting surface spectral flux was integrated to PAR. Then, simulated 

resulting GOES-12 band-1 TOA radiance and PAR were examined. Figure 4-1 shows the 

scatter plots comparing PAR and GOES band-1 at-sensor radiance. Solar zenith angle are 

0o, 20o, 30o, 40o, 50o, 60o, 70o, and 80o, respectively for the 8 figures. Both sensor 

viewing angles and relative azimuth angles are all 0o.    
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Figure 4-1 Relationship between GOES12 band-1 TOA radiance and PAR at a range of 
different atmospheric profiles and solar zenith angles. Surface reflectance is 0.05, sensor 
zenith angle and relative azimuth angle are all set to 0o. 
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As shown in Figure 4-1, PAR values decrease with the increasing GOES-12 band-1 TOA 

radiance. Although the decrease of PAR with increase of GOES TOA radiance is not 

strictly monotonic, it is close to monotonic. Examination of the results under all other 

illuminating/viewing geometries yield the near-monotonic decrease of PAR in respect to 

the increase in GOES-12 band-1 TOA radiance.  The near-monotonic decrease of PAR 

with change of TOA radiance meets the criteria stipulated in section 2.2.3, providing the 

basis for utilizing TOA radiance to derive PAR without explicit knowledge of underlying 

atmospheric profile.  

 

4.2.3 Excluding cloud-shadowed observations 
 

Cloud shadow detection algorithms have been developed (Simpson et al., 2000) for cloud 

screening and other purposes.  In this study, cloud shadowed observations were excluded 

based on the fact that cloud shadowed pixels are adjacent in space to cloud pixels. The 

distance from a cloud pixel to its shadow on the ground is a function of cloud height, 

solar zenith angle, and solar azimuth angle (Simpson and Stitt, 1998). The knowledge of 

these angles allows the calculation of the exact position of cloud pixel’s shadow on the 

ground surface. Due to the complexity of deriving cloud height, a simpler method was 

used to exclude cloud-shadowed observations in this study. In this study, the highest solar 

zenith angle of observations used for deriving surface reflectance is 75o. Visual 

interpretation of cloud edge and its shadow edge indicated that most shadows are with 10 

pixels (10 km at nadir) away from their corresponding cloud structures.  
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Thus, a two-step cloud shadow exclusion approach was used: First, at a given pixel’s 

time series, high values of nominal surface reflectance were identified and the NOAA 

snow/ice cover map is used to exclude snow/ice pixels. Within the time series, 

observations with high nominal surface reflectance but not identified as snow/ice were 

treated as observation under cloud. Second, for each identified cloud pixel, every pixel 

within a 10 pixels of radius was labeled as possible cloud-shadowed pixel, and was 

excluded from subsequent sorting for clear observations.  

 

4.2.4 Fitting BRDF model to calculate surface reflectance 
 

The sorting of nominal surface reflectance will result in a set of lowest positive value 

from the time series of a given pixel. These lowest 10 percent of positive values of 

nominal surface reflectance, excluding those that fall within a 10 pixel radius of 

identified cloud pixels, are regarded as actual surface reflectance. The actual surface 

reflectance are used to fit a modified three-parameter linear Ross-Li model to 

characterize the surface bi-direction feature, which in turn will be used to calculate 

surface reflectance value for the observations taken under non-clear atmosphere.  

 

The modified three-parameter linear Ross–Li model can be written as: 

),,(),,(),,( φθθφθθφθθ vsgeogeovsvolvolisovss KfKffr ⋅+⋅+=                           4-1 

 
where: sθ is solar zenith angle, vθ is sensor zenith angle, φ  relative azimuth angle, is 

isotropic coefficient, is volumetric coefficient, is geometric coefficient, 

isof

volf geof
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),,( φθθ vsvolK  is volumetric kernel function, and ),,( φθθ vsgeoK is geometric Kernel 

function.  

 

After the fitting of the BRDF model, the procedure then compares the values of the 

standard deviation ( fitσ ) of the fit against a predefined threshold value 

maxσ ( 025.0max =σ in absolute value or 25.0max =σ in relative value), which represents 

the maximum value of the standard deviation of the regression that is considered 

acceptable for successful modeling fitting. When the condition maxσσ ≤fit is fulfilled, the 

process exits the procedure, otherwise the surface reflectance value exhibiting the largest 

absolute departure with respect to the model prediction is eliminated, and the fitting 

process starts anew. This iteration procedure is pursued until an acceptable fit is obtained 

or the number of surface data points remaining in the time series becomes too low to 

ensure a reliable retrieval of the geophysical parameters. After the parameters of the 

BRDF are obtained, values of surface reflectance at observations under non-clear 

atmosphere are calculated using the illuminating/viewing angles along with the 

parameters of the fitted BRDF model.  

 

The use of the BRDF model has effect on the surface reflectance derived from GOES 

visible band TOA radiance. As shown in Figure 4-2, the surface reflectance resulting 

from the BRDF model simulation (represented by black dots) are appreciably different 

from the surface reflectance that converted from the TOA radiance without BRDF model 

fitting. In general, the BRDF model removed the extremely large and small reflectance 
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value, which would have significant impacts on resulting surface reflectance from linear 

interpolation method.  

 

Figure 4-2 An examples of the TOA radiance converted surface reflectance (triangles) 
and the BRDF simulated surface reflectance (crosses) during day 191-198, 2004 at Lost 
Creek, Wisconsin.  

 
The BRDF model used in GOES PAR algorithm is a modified three-parameter linear 

Ross–Li model, which is used with an assumption that the land surface bi-directional 

reflecting property keeps stable during the period time used for the BRDF model fitting. 

The BRDF model requires a sufficient amount of individual satellite observations with 

different viewing/illuminating geometry for model fitting. The 30 minute observation 

interval of the GOES provides approximately 20 daytime observations a day, while 

MODIS and AVHRR typically only have no more than 4 observations at the mid and low 
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latitude. To meet the required amount of observations, it is inevitable to use much longer 

time series for MODIS and AVHRR, which is in violation of the BRDF model’s 

underlying assumption: the land surface bi-directional reflecting property keep stable. 

Therefore the BRDF model is not used in the MODIS and AVHRR algorithms. 

 

4.2.5 Error budget analysis 
  

In this GOES PAR algorithm, look-up table entries for every representative 

illuminating/viewing geometry consist of results from MODTRAN4 simulations under a 

set of atmospheric conditions. To render the look-up table of manageable size and to 

meet the strict monotonic change of PAR in regard to GOES-12 band-1 TOA radiance, 

the look-up tables only contain the entries generated from MODTRAN4 simulation with 

atmospheric profiles specified by one cloud type (altostratus cloud) and one aerosol type 

(rural aerosol model).  

 

The error generated by using reduced amount of atmospheric profile and linear 

interpolation was assessed similar to that of MODIS algorithm conducted in chapter 2. 

The analysis results indicate that the error caused by using simplified atmospheric 

profiles varies with both solar zenith angle and magnitude of PAR, and the majority of 

the relative errors are less than 5%.   

 
 

4.3 Validation 
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To assess the accuracy of the algorithm, the derived PAR values are validated against 

ground measurements at four FLUXNET sites: Canaan Valley in West Virginia, Lost 

Creek and Willow Creek in Wisconsin, and Metolius in Oregon. The locations of the four 

validation sites are summarized in Table 2. To mitigate the adverse effect of the spatial 

mis-match between satellite observations and ground sites, a 3 by 3 pixel window 

centered on the pixel that matches the ground site’s latitude and longitude is used. The 

arithmetic mean of the derived PAR values of the 9 pixels within the window is 

compared with the PAR value measured at the corresponding ground site. To temporally 

match the observed and derived PAR values, linear interpolations are used to derive the 

ground measured PAR value at the time that matches the satellite observation. For 

example, if the satellite observation is taken at time , which lies between two ground 

measurements taken at time  and , a linear interpolation is used to derive the 

ground measured PAR value at time  based on the measured values at time and 

. At all four sites, the estimated and measured PAR values are from days 191 to 

198, 2004.  

satT

1_meaT 2_meaT

satT 1_meaT

2_meaT
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Figure 4-3 Scatter plot between estimated instantaneous PAR (X axis) and measured 
instantaneous PAR (Y axis) at Canaan Valley, West Virginia. The solid line is the 1:1 
line, and the dashed line is the fitted linear regression line. 
 
 
The first validation site, the Cannan Valley site in West Virginia, is located in temperate 

grassland. The elevation of the site is 1000 meters, and the tower is four meters high. The 

scatter plot depicting the comparison between the measured and estimated instantaneous 

PAR values along with fitted linear regression is shown in Figure 4-3. There are some 

underestimations and overestimations, though most points are within the vicinity of the 

one-to-one line. The comparison has a RMSE of 190.223 umol/m2/s, and bias of 53.639 

umol/m2/s.  
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Figure 4-4  Scatter plot between estimated instantaneous PAR (X axis) and measured 
instantaneous PAR (Y axis) at the Lost Creek site in Wisconsin. The solid line is the 1:1 
line, and the dashed line is the fitted linear regression line. 
 

The second site at Lost Creek Wisconsin is situated in an alder-willow wetland. The flux 

tower is about nine meters above the ground. The underlying terrain is 480 meters above 

sea level. Figure 4-4 compares the estimated and measured instantaneous PAR values at 

this site. The comparison resulted in a RMSE of 141.43 umol/m2/s, and bias of 11.09 

umol/m2/s. The liner regression between estimated and measured PAR resulted in a R2 

Value of 0.9227  
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Figure 4-5 Scatter plot between estimated instantaneous PAR (X axis) and measured 
instantaneous PAR (Y axis) at the Willow Creek site, Wisconsin. The solid line is the 1:1 
line, and the dashed line is the fitted linear regression line. 
 
 
At the third site, Willow Creek in Wisconsin, the dominant vegetation is alder willow. 

Figure 4-5 shows the comparisons between estimated and measured PAR value, which 

has a RMSE of 131.44 umol/m2/s, and a bias of 16.56 umol/m2/s.  

 

Validation at the last site, Metolius in Oregon, resulted in the highest bias of the four 

validation sites (Figure 4-6). The bias value of -101.54 points to a systematic 

underestimation of PAR, which is also indicated by the high R2 value resulted from the 

linear regression between estimated and measured PAR value.  
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Figure 4-6 Scatter plot between estimated instantaneous PAR (X axis) and measured 
instantaneous PAR (Y axis) at Metolius site, Oregon. The solid line is the 1:1 line, and 
the dashed line is the fitted linear regression line. 
 
 
Table 4-1 Summary of site locations and validation statistics at the four validation sites. 
 

 Metolius Willow Creek Lost Creek Canaan Valley
R2 0.9434 0.9302 0.9227 0.8255 
Slope 1.01 1.022 1.0302 0.9173 
Intercept 89.39 -39.114 -42.081 16.08 
Bias -101.54 16.56 11.09 53.639 
RMSE 130.71 131.440 141.443 190.223 
Relative Error (%) 14.59 13.97 14.16 22.22 
RMSE/Average (%) 9.52 13.01 13.92 24.09 
N 456 445 438 436 

 

4.4 Correcting topographic impacts on PAR 
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PAR value estimated using the method described in the previous sections does not take 

into account the effect of land surface topography. Complex land surface topography has 

impact on the amount of PAR that is actually available for vegetation’s photosynthesis 

(Winslow et al., 2001). Many studies have be done to assess and correct topographic 

effects on surface solar radiation (Corripio, 2003; Duguay, 1995; Kumar et al., 1997; Van 

Laake and Sanchez-Azofeifa, 2005; Varley et al., 1996). Topographic correciton for 

surface solar radiation modeled using both polar-orbiting (Dubayah 1992) and 

geostationary satellites (Dubayah 1997) been  reported.  

 

In addition, topographic impact on incident PAR is closely related to spatial resolution. 

For instance, reflected PAR flux from neighboring pixels at finer resolution becomes 

within-pixel phenomenon as resolution grows coarser. In this section, a set of methods 

adopted from previous studies are used to evaluate topographic impact on PAR at 1 km 

nominal resolution in which PAR is retrieved from GOES-12 visible band data. A brief 

description of the topographic correction method is as follows.  

 

4.4.1 Digital Elevation Dataset  
 

When making topographic correction, each pixel is treated as a block of terrain with 

uniform topographic and reflecting characteristics. The underlying topography is 

provided by the USGS GTOPO30 DEM dataset. The GTOPO30 has a global coverage 

with 30 arc second in spatial resolution. To match the grid of GOES PAR, the USGS 

GTOPO30 DEM dataset covering the study area is re-projected to the same projection 

                                                                                                                                         
 
 

 



 85  
 
 
system as that of GOES PAR with 1km nominal spatial resolution. Figure 4-7 shows the 

USGS GTOPO30 DEM covering the continental U.S. and part of southern Canada.  

 

 

 0 1250 2500 3750 5000m  

Figure 4-7 USGS GTOPO30 DEM projected to Lambert Azimuthal Equal Area 
projection, with center of projection at 90W/30N (Longitude/Latitude). The study area 
covers the continental U.S. and part of southern Canada. 
 
 
 
The three parts are considered in the GOES PAR 1km topographic correction include: 

correction for direct component of PAR based on angular effects; correction of diffuse 

component by sky view factor, and correction for the reflected direct and diffuse PAR 

flux from neighboring terrains.  
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4.4.2 Angular effects on direct PAR 
 

Direct PAR received on a given terrain is determined by the angle ( I ) between the solar 

illumination direction and terrain surface normal (Wang et al., 2005). Angle I is 

expressed as formula 4-2. 
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sZ : Solar zenith angle : Solar azimuth angle sA

S : Terrain slope          : Terrain aspect sT

 

For an arbitrary pixel X, the topographical impact on direct radiation is calculated as an 

impact factor ranging from 0 to 1, with 0 representing no direct PAR is received due to 

terrain’s effect, and 1 representing 100 percent of the available direct PAR is received. In 

addition, effects of neighboring terrain’s shadows are corrected by a two-step approach:  

first, calculating the shadow of each pixel cast at the given solar zenith and azimuth 

angle; and second, testing whether a given pixel is in any other pixel’s shadow. If a pixel 

is in any other’s pixel’s shadow, it will be assigned a shadow factor of 0, otherwise its 

shadow factor will be 1. The total correction factor for angular effect on direct 

component of PAR is the product of the impact factor and shadow factor.  
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Figure 4-8 shows the impact of topography on direct PAR at 19:05 GMT on May 04, 

2005. Within the continental U.S., the Rocky Mountain and the Appalachian Mountain 

range areas reveal the most significant topographical effect on direct PAR.   

 

0% 25% 50% 75% 100  % 

 
Figure 4-8 Effect of topography on direct PAR based on the angle between solar 
illumination direction and the normal to the terrain slope. Dark colors represent pixels 
where low percentage of incident direct PAR is received. Bright colors represent pixels 
where high percentage of incident PAR is received. Note that the topographic effect on 
direct PAR is dependent on time of day and Julian day of year. This image is of 19:05 
GMT, May 04, 2004. 
 

                                                                                                                                         
 
 

 



 88  
 
 

 
Figure 4-9  Histogram of values of sky view factor covering the same area as Figures 4-8.  
The sky view factor ranges from 0.3 to 1.0 with mean value of 0.98 (X axis) and standard 
deviation of 0.019. The Y axis is the percentage value.  
 
 

4.4.3 Sky view factor for diffuse PAR 
 
 
In this study, the diffuse PAR is treated as isotropically distributed. Therefore, the 

topographic impact on diffuse PAR is determined only by the terrain topography. The 

topographic effect on diffuse PAR is corrected by a sky view factor, which is defined as 

the ratio of diffuse irradiance at a point to that on an unobstructed horizontal surface 

(Dubayah and Rich, 1995). The sky view factor is calculated using the angle to the local 

horizon in for 8 sub-directions of the pixel in question.  

 

At each sub-direction, the sub-sky view factor is calculated by the elevation of a blocking 

pixel and the distance from the blocking pixel to pixel X. In order to find the maximum 
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blocking angle, in each direction, pixels within the distance of the searching radius are 

examined, and the largest blocking angle is identified. Sky view factor of pixel X then is 

calculated as the average of 8 sub-sky view factors of the 8 sub-directions. The view 

factor ranges from 0 to 1, with 0 representing a completely obstructed view, and 1 

representing a unobstructed view.  

Figure 4-9 shows the histogram of view factor values covering the study area.   

 

4.4.4 Reflected direct and diffuse flux from neighboring terrains 
 
 

Previous studies have indicated that there is little justification to use sophisticated 

methods to correct the reflected radiation from neighboring terrains as the resultant 

improvement on accuracy is insignificant (Duguay, 1995). In this study a method 

developed by Dubayah (1992) is used to account for the reflected radiation from 

neighboring pixels.  

 

The reflected flux from neighboring terrains can be expressed as: 

)( difdirmeantr EECE += ρ     4-3 

where is the terrain configuration factor:  tC skyt
SC φ−+

= ]
2
cos1[   4-4 

meanρ  is the average reflectance of the 8 neighboring pixels, S is the solar vector, is 

the direct component of PAR, is the diffuse component of PAR, and 

dirE

difE skyφ is the sky 

view factor as described in section 4.3.  
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4.4.5 The results of the topographically corrected PAR  
 
 

The value of the topographically corrected PAR is the sum of the three components 

described in the previous three sections, and can be expressed as: 

rskydifdirdirtopo EEfEE +×+×= φ   4-5 

 
where is the topographically corrected PAR, and is the factor of topographic 

impact on direct PAR. Other symbols are the same as in equations 4-3 and 4-4.  

topoE dirf

 

Validation of topographically corrected PAR is difficult because of lack of ground 

measurements. This is because pyranometers are typically horizontally oriented 

regardless of underlying slope. This study does not carry out validation the 

topographically corrected PAR.   

 

Figure 4-10 shows the topographically corrected instantaneous PAR covering the 

continental U.S. and part of southern Canada, along with corresponding at-sensor 

radiance GOES-12 visible band images. It can be observed from the imageries that 

topographic impact on PAR is much more pronounced in mountainous region than in 

relatively flat regions. It is also evident that topographic impact is much less significant 

in areas with heavy cloud cover than areas under clear atmosphere.  
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4.5 Discussion  

 
A new algorithm for estimating PAR using GOES visible band data is developed in this 

paper. Different from the existing GOES PAR algorithms, this new algorithm derives 

both surface reflectance and atmospheric parameters simultaneously from at-sensor 

radiance values, without the requirement for external knowledge of atmospheric 

parameters. Validation against ground measurements indicates that this new algorithm is 

capable of reaching reasonably high accuracy. Compared with the similar algorithm that 

was developed to estimate PAR from MODIS visible band data, this GOES algorithm is 

improved in two important aspects: first, the GOES algorithm counts for the surface bi-

direction reflectance using a semi-empirical BRDF model while the MODIS PAR is 

based on assumption of Lambertian surface. Second, this new GOES PAR algorithm 

utilizes spatial relation to exclude possible cloud shadowed pixels, while the MODIS 

method uses only temporal relation for cloud shadow exclusion.  

 

However, further improvement is necessary. The topographic correction has not been 

validated due to the lack of ground measurements. The error associated with the DEM 

used for topographic correction may introduce extra uncertainty into the topographically 

corrected PAR. Future studies should consider using topography data with greater 

accuracy to improve the accuracy of topographic correction. For instance, DEM 

generated by the shuttle radar topography mission (STRM) at 30m spatial resolution, 

with global coverage between 60 north and 56 south latitude, is an alternative to the 

GTOPO30 DEM.   
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Figure 4-10  GOES visible band data and topographically corrected PAR covering the 
study area. The 5 images on the left panel are the TOA radiance at 20:00 GMT, day 191, 
192, 193, 194, 195, year 2004. The five images on the right hand panel are the 
topographically corrected PAR at corresponding times. The impact of topographic impact 
is more pronounced at absence of cloud than at presence of cloud. Mountainous areas 
experience more topographic impact than relatively flat areas. The white pixel on the 
TOA radiance images are clouds. The unit of TOA radiance is W/m2/rad/nm. The unit of 
instantaneous PAR is umol/m2/s.  
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The uncertainty involved in validating PAR value from 1km remote sensing data against 

ground-based point measurements is another issue that needs to be addressed. Concerns 

have been raised about using ground-based measurements to validate model performance 

at grid level (Li et al., 2005). More sophisticated validation methods, including inter-

comparison among different remote sensing PAR products and comparison against 

meteorological reanalysis datasets, should be considered for future works.   

 

4.6 Summary 
 

A new algorithm for estimating PAR using GOES visible band data is developed in this 

paper. Different from the existing GOES PAR algorithms, this new algorithm derives 

both surface reflectance and atmospheric parameters simultaneously from at-sensor 

radiance values, without the requirement for external knowledge of surface or 

atmospheric parameters. Validation against ground measurements indicates that this new 

algorithm is capable of reaching reasonably high accuracy.  

 

 However, further improvement is necessary. The topographic correction has not been 

validated due to the lack of ground measurements. The error associated with the DEM 

used for topographic correction may introduce extra uncertainty into the topographically 

corrected PAR. Future studies should consider using topography data with greater 

accuracy in order to improve the accuracy of topographic correction. For instance, DEM 

generated by the shuttle radar topography mission (STRM) at 30m spatial resolution, 
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with global coverage between 60 north to 56 south latitude, is an alternative to the 

GTOPO30 DEM.   

 

The uncertainty involved in validating PAR value from 1km remote sensing data against 

ground-based point measurements is another issue that needs to be addressed. Concerns 

have been raised about using ground-based measurement to validate model performance 

at grid level (Li et al., 2005). More sophisticated validation methods, including inter-

comparison among different remote sensing PAR products and comparison against 

meteorological reanalysis datasets, will be evaluated in future work.  

  
Research described in this chapter has been submitted to the Journal of Applied 

Meteorology and Climatology (Zheng et al., 2006).  
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Chapter 5 Conclusions 

 
PAR is an important variable in terrestrial ecosystem modeling because of its impact on 

green vegetations’ photosynthesis. A complete PAR data product that spans multiples 

years at regional to continental scale is essential for model initialization, calibration, and 

validation. To supplement the current remote-sensing PAR products, this study has 

developed new algorithms to estimate PAR using remotely sensed data acquired by 

MODIS, AVHRR, and GOES. The new PAR algorithms are different from the existing 

ones in that they derive both atmospheric and land surface information solely from 

satellite TOA radiance. A common attribute of the PAR algorithms for MODIS, 

AVHRR, and GOES is that they are all built upon the near-monotonic change of PAR 

with changing TOA radiance.  In addition, the algorithm for each of the three sensors has 

its own special features to accommodate each sensor’s unique characteristics.  

 

5.1 Estimating PAR using MODIS data 

 
The MODIS sensors aboard NASA’s Terra and Aqua satellites possess many advanced 

features for the on-board calibration, geo-location, and channel position. Despite the 

technological superiority made available by the MODIS, no standard PAR product over 

land has been produced using MODIS data. To fill this gap, this study develops an 

algorithm to estimate incident instantaneous PAR using MODIS data. What set this new 

algorithm apart from existing algorithms is that it derives both the atmospheric and land 

surface information solely from satellite TOA radiance.  
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The PAR estimation using MODIS data consists of two main steps: first, retrieval of 

broadband surface reflectance using time-series satellite observations; second, retrieval of 

the atmospheric optical property parameters from MODIS TOA radiance and the 

subsequent retrieval of PAR. The theoretical basis of the retrieval of PAR from TOA 

radiance has been thoroughly examined and errors introduced by the simplification of 

atmosphere parameterization and linear interpolations of the look-up table entries have 

been analyzed and quantified.  

 

The new PAR algorithm has been applied to MODIS data from 2003 to 2004. An overall 

validation of the retrieved instantaneous PAR against ground measurements at six 

FLUXNET sites is given in Figure 5-1.  

 
Figure 5-1 Validation of the instantaneous PAR derived using MODIS data at the all six 
FLUXNET sites used in chapter 2. The solid line the is 1:1 line, and the dashed line is the 
fitted line using the ordinary least squares regression.  
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5.2 Estimating PAR using AVHRR data 
 
 
As the continuation of developing methods to produce large scale PAR product on a 

robust basis, this study develops a new algorithm to estimate PAR using AVHRR data. 

Because of its long data record dating back to the late 1970s, AVHRR offers a unique 

attraction for remote sensing based PAR production: the opportunity to generate about 

30-year PAR product.  

 

The new AVHRR PAR algorithm shares a similar theoretical basis with its MODIS 

counterpart: the derivation of surface reflectance and atmospheric parameters from TOA 

radiance. Results from MODTRAN4 simulations are used to examine the validity of the 

monotonic relation between PAR and AVHRR band-1 TOA radiance, which is the 

foundation of the algorithm.  

 

Application of the new algorithm to data acquired by AVHRR aboard the NOAA-14 

satellite during 1996 and the validations (Figure 5-2) indicate the ability of the algorithm 

to reach reasonable accuracy in estimating instantaneous PAR. Furthermore, to meet the 

need for daily integrated PAR, the estimated instantaneous PAR from AVHRR data is 

scaled to daily PAR using an adjusted sinusoidal model. Although there is no physical 

mechanism in the adjusted sinusoidal model to account for the impact of abrupt changes 

in the atmospheric condition on PAR, the performance of the model is reasonably good: 

the validations against ground measurements indicate that the estimated daily integrated 
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PAR reaches higher accuracy than their instantaneous counterpart at all of the three 

validation sites.  

  
Figure 5-2 Validation of the instantaneous PAR derived using AVHRR data at the three 
FLUXNET sites used in chapter 3. The solid line is the 1:1 line, and the dashed line is the 
fitted line using the ordinary least squares regression.  
 
 

5.3 Estimating PAR using GOES data 

 
In scaling from instantaneous to daily integrated PAR, a larger number of instantaneous 

PAR tends to result in greater scaling accuracy because it better captures the PAR diurnal 

cycle better. As a result of this consideration, this study extends the MODIS/AVHRR 

PAR algorithm to the data acquired by the imager aboard on the geostationary satellite 

GOES. Compared with the MOIDS and AVHRR, the GOES PAR algorithm features two 

important improvements: excluding cloud-shaded pixels utilizing the spatial relationship 

and accounting for the surface bidirectional reflectance characteristics by fitting a three-
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parameter linear Ross-Li model. It is the high temporal resolution of GOES data, which 

provides satellite observations with varying illuminating/viewing geometry over a 

daytime, that make it possible to incorporate the BRDF model in the GOES algorithm.  

 

Figure 5-3 Validation of the instantaneous PAR derived using GOES data at the four 
FLUXNET sites used in chapter 4. The solid line is the 1:1 line, and the dashed line is the 
fitted line using the ordinary least squares regression.  
 
 

 

Similar to that of MODIS and AVHRR, the theoretical basis of the GOES algorithm has 

been thoroughly examined and error budget analyses have been conducted. Application 

of the algorithm to data acquired by GOES-12 in 1999 resulted in estimated PAR 

covering the continental United States. It is evident from visual inspection that the new 

algorithm successfully captured the dynamics of PAR cause by the cloud impacts and 

solar angle changes. The overall validation results, including the ground measurements 

obtained from four FLUX network, is depicted in Figure 5-3.  
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 Furthermore, to meet the need of terrestrial ecosystem modeling, PAR estimated using 

GOES have been corrected for the topographic impacts. The direct and diffuse 

components of PAR were corrected for the angular effect, sky viewing factor, and 

radiation from neighboring terrains.  

 

Table 5-1 Statistical summary of validation results of instantaneous PAR estimated using 
MODIS, AVHRR, and GOES. N is number of samples.  
 

 MODIS GOES AVHRR 
R2 0.9011 0.9131 0.8788 
Slope 0.8771 1.0327 0.9272 
Intercept 103.9378 -28.0842 25.2575 
Bias 32.4876 -6.0201 47.50 
RMSE 194.815 161.130 195.478 
Relative Error (%) 11.763 16.207 31.85 
RMSE/Average (%) 17.494 15.33 20.527 
N 1496 1775 1529 

 

 

5.4 Combining MODIS, AVHRR, and GOES data for daily PAR estimation 

 
Because the primary use of PAR products is for the terrestrial ecosystem modeling, and 

terrestrial models typically require long-term PAR data, it is desirable to generate PAR 

products with extensive coverage both spatially and temporally. To meet this goal, this 

study utilizes the complementary characteristics of the remotely sensed data acquired by 

three different sensors: MODIS, AVHRR, and GOES. 
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The validation results of the instantaneous PAR derived from the three sensors (Table 5-

1) indicate that MODIS derived PAR reaches the higher accuracy (relative error of 

11.76%) than AVHRR (31.85%) and GOES (16.21%). In terms of estimation accuracy of 

instantaneous PAR, all of the three algorithms need to be improved. In addition, what is 

more relevant to the terrestrial biological modeling is the accuracy of the daily PAR 

estimation. The integration of the daily integrated PAR from the instantaneous PAR 

derived using AVHRR data shows that daily PAR estimation reaches a higher accuracy 

(relative error at 24.22%) than the instantaneous PAR (relative error at 31.85%).  

 

One approach for achieving higher accuracy in estimating daily PAR is to combine the 

instantaneous PAR estimations from all of the three sensors: the different overpass times 

of the three sensors provide more snapshots of the PAR diurnal variation and therefore 

presumably provide a better physical basis for the daily PAR integration. However due 

their differences in spatial, temporal, and radiometric properties, it is challenging to 

develop daily PAR integration methods that effectively accommodate and utilize each 

sensor’s characteristics. Furthermore, the different assumptions made in the PAR 

algorithms for the three sensors also make it difficult to integrate the three instantaneous 

PAR results.  

 

Although more efforts are needed, integrating daily PAR using instantaneous PAR 

derived from multiple sensors constitutes a promising research direction. In addition, 

using multiple sensors is necessary to generate PAR product at large spatial scale. For 

example, to encompass the entire North America continent, GOES alone is not sufficient 
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because its coverage does not go beyond 66 degree latitude. Furthermore, the spatial 

resolution becomes very coarse as GOES observations approach the high-latitude. One 

possible alternative, which has been adopted in this study, is to take advantage of polar 

orbiting satellites. Polar orbiting satellites, such as AVHRR and MODIS, have more 

frequent overpasses at the higher latitude than at lower latitude, and therefore are able to 

generate more frequent instantaneous PAR estimates, which enable a better daily PAR 

integration.  

 

5.5 Issues for future research 

 
Through the study reported in this dissertation, several issues have been identified for the 

future exploration. The first is to improve the instantaneous-to-daily PAR scaling 

approach. Although the adjusted sinusoidal model achieves a reasonable accuracy in this 

study, there is need and room for improvements. One possible direction for such 

improvements could be through using instantaneous PAR estimates from different 

sensors in integrating daily PAR. Combined, AVHARR and MODIS have more daytime 

overpasses than when being used alone, thus providing a better chance to capture the 

PAR diurnal variation.  

 

The second issue is the utilization of the sea-viewing wide field of view satellite 

(SeaWiFS) in estimating PAR. The addition of SeaWiFS will further increase the number 

of instantaneous PAR estimates per day, providing the possibility to improve the daily 

PAR integration.   
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The third issue is related to topographic correction of PAR. This study carried out 

topographic correction on the estimated PAR, but did not validate the results due to the 

lack of topographically corrected PAR ground measurements. Given the importance of 

correcting PAR for the topographic impact, greater efforts should be made in the future to 

collect PAR ground measurements with topographic correction.  

 

The new algorithms developed in this study enable the generation of PAR product on the 

continental scale over extended time period, and therefore provide the platform for 

examining the spatial and temporal variation of PAR. Future research in this direction 

may link PAR variation with the natural or anthropogenic activities, which may shed 

light on the problem of global warming and climate change. Finally, the finer spatial 

resolution PAR products generated from this study should be aggregated and compared 

with coarser resolution PAR products to study the scale on which PAR varies.  
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