9 research outputs found

    Physical chemistry of the interactions between multicomponent solvents and biomass

    Get PDF
    Extraction of cellulose and lignin from plant biomass remains a major issue for enabling more economic and green production of lignocellulosic renewable fuels and byproducts. Although the use of multicomponent solvents has provided remarkable results in wood fractionation processes most of the currently used methods rely on empirically elaborated protocols. Understanding the physicochemical mechanisms of biomass breakdown and its interactions with solvent medium during fractionation will lead to more efficient use of biomass. This defined the focus in this thesis work on a systematic and detailed description of the interactions between ligoncellulose components with binary water-organic mixtures of ethanol and acetonitrile. Our results and their analysis were obtained predominantly with molecular dynamics (MD) simulations, and supported by additional studies of quantum chemical (Density Functional Theory) and mixed quantum mechanical (QM) and classical MD scheme (QM/MM). With these tools we first established a non-linear behavior of the mixed solvent structures, thermodynamic properties and dynamic hardness, as a measure for their global reactivity. The analysis of the average numbers of HBs with the liquid composition shows that alcohol molecules tend to substitute water molecules, allowing compensating for the loss of H-bonds in the water solvent domains. The role of organic component in water solvent mixtures on the conformational changes induced in the main wood components (cellulose, lignin and hemicellulose) is highlighted and their dependence on distinct solvent compositions is unveiled for each organic solvent component and its content in water. This dependence is explained by preferential solute-solvent interatomic interactions as a function of solvent compositions. Subsequently, the evolution of interaction forces in lignin-cellulose and lignin-xylan complexes are also found to have solvent-dependent profiles. All this supports the general conclusion about specific solvent actions on lignocellulose compounds being the driving factors in the observed macroscopic non-linear behavior in wood swelling in mixed water-organics

    XXI Workshop de Investigadores en Ciencias de la Computación - WICC 2019: libro de actas

    Get PDF
    Trabajos presentados en el XXI Workshop de Investigadores en Ciencias de la Computación (WICC), celebrado en la provincia de San Juan los días 25 y 26 de abril 2019, organizado por la Red de Universidades con Carreras en Informática (RedUNCI) y la Facultad de Ciencias Exactas, Físicas y Naturales de la Universidad Nacional de San Juan.Red de Universidades con Carreras en Informátic

    XXI Workshop de Investigadores en Ciencias de la Computación - WICC 2019: libro de actas

    Get PDF
    Trabajos presentados en el XXI Workshop de Investigadores en Ciencias de la Computación (WICC), celebrado en la provincia de San Juan los días 25 y 26 de abril 2019, organizado por la Red de Universidades con Carreras en Informática (RedUNCI) y la Facultad de Ciencias Exactas, Físicas y Naturales de la Universidad Nacional de San Juan.Red de Universidades con Carreras en Informátic

    XX Workshop de Investigadores en Ciencias de la Computación - WICC 2018 : Libro de actas

    Get PDF
    Actas del XX Workshop de Investigadores en Ciencias de la Computación (WICC 2018), realizado en Facultad de Ciencias Exactas y Naturales y Agrimensura de la Universidad Nacional del Nordeste, los dìas 26 y 27 de abril de 2018.Red de Universidades con Carreras en Informática (RedUNCI

    Algorithmic skeletons for exact combinatorial search at scale

    Get PDF
    Exact combinatorial search is essential to a wide range of application areas including constraint optimisation, graph matching, and computer algebra. Solutions to combinatorial problems are found by systematically exploring a search space, either to enumerate solutions, determine if a specific solution exists, or to find an optimal solution. Combinatorial searches are computationally hard both in theory and practice, and efficiently exploring the huge number of combinations is a real challenge, often addressed using approximate search algorithms. Alternatively, exact search can be parallelised to reduce execution time. However, parallel search is challenging due to both highly irregular search trees and sensitivity to search order, leading to anomalies that can cause unexpected speedups and slowdowns. As core counts continue to grow, parallel search becomes increasingly useful for improving the performance of existing searches, and allowing larger instances to be solved. A high-level approach to parallel search allows non-expert users to benefit from increasing core counts. Algorithmic Skeletons provide reusable implementations of common parallelism patterns that are parameterised with user code which determines the specific computation, e.g. a particular search. We define a set of skeletons for exact search, requiring the user to provide in the minimal case a single class that specifies how the search tree is generated and a parameter that specifies the type of search required. The five are: Sequential search; three general-purpose parallel search methods: Depth-Bounded, Stack-Stealing, and Budget; and a specific parallel search method, Ordered, that guarantees replicable performance. We implement and evaluate the skeletons in a new C++ parallel search framework, YewPar. YewPar provides both high-level skeletons and low-level search specific schedulers and utilities to deal with the irregularity of search and knowledge exchange between workers. YewPar is based on the HPX library for distributed task-parallelism potentially allowing search to execute on multi-cores, clusters, cloud, and high performance computing systems. Underpinning the skeleton design is a novel formal model, MT^3 , a parallel operational semantics that describes multi-threaded tree traversals, allowing reasoning about parallel search, e.g. describing common parallel search phenomena such as performance anomalies. YewPar is evaluated using seven different search applications (and over 25 specific instances): Maximum Clique, k-Clique, Subgraph Isomorphism, Travelling Salesperson, Binary Knapsack, Enumerating Numerical Semigroups, and the Unbalanced Tree Search Benchmark. The search instances are evaluated at multiple scales from 1 to 255 workers, on a 17 host, 272 core Beowulf cluster. The overheads of the skeletons are low, with a mean 6.1% slowdown compared to hand-coded sequential implementation. Crucially, for all search applications YewPar reduces search times by an order of magnitude, i.e hours/minutes to minutes/seconds, and we commonly see greater than 60% (average) parallel efficiency speedups for up to 255 workers. Comparing skeleton performance reveals that no one skeleton is best for all searches, highlighting a benefit of a skeleton approach that allows multiple parallelisations to be explored with minimal refactoring. The Ordered skeleton avoids slowdown anomalies where, due to search knowledge being order dependent, a parallel search takes longer than a sequential search. Analysis of Ordered shows that, while being 41% slower on average (73% worse-case) than Depth-Bounded, in nearly all cases it maintains the following replicable performance properties: 1) parallel executions are no slower than one worker sequential executions 2) runtimes do not increase as workers are added, and 3) variance between repeated runs is low. In particular, where Ordered maintains a relative standard deviation (RSD) of less than 15%, Depth-Bounded suffers from an RSD greater than 50%, showing the importance of carefully controlling search orders for repeatability

    XX Workshop de Investigadores en Ciencias de la Computación - WICC 2018 : Libro de actas

    Get PDF
    Actas del XX Workshop de Investigadores en Ciencias de la Computación (WICC 2018), realizado en Facultad de Ciencias Exactas y Naturales y Agrimensura de la Universidad Nacional del Nordeste, los dìas 26 y 27 de abril de 2018.Red de Universidades con Carreras en Informática (RedUNCI

    Artificial Intelligence Techniques for Automatic Reformulation and Solution of Structured Mathematical Models

    Get PDF
    Complex, hierarchical, multi-scale industrial and natural systems generate increasingly large mathematical models. Practitioners are usually able to formulate such models in their "natural" form; however, solving them often requires finding an appropriate reformulation to reveal structures in the model which make it possible to apply efficient, specialized approaches. The search for the "best" formulation of a given problem, the one which allows the application of the solution algorithm that best exploits the available computational resources, is currently a painstaking process which requires considerable work by highly skilled personnel. Experts in solution algorithms are required for figuring out which (formulation, algorithm) pair is better used, considering issues like the appropriate selection of the several obscure algorithmic parameters that each solution methods has. This process is only going to get more complex, as current trends in computer technology dictate the necessity to develop complex parallel approaches capable of harnessing the power of thousands of processing units, thereby adding another layer of complexity in the form of the choice of the appropriate (parallel) architecture. All this renders the use of mathematical models exceedingly costly and difficult for many potentially fruitful applications. The \name{} environment, proposed in this Thesis, aims at devising a software system for automatizing the search for the best combination of (re)formulation, solution algorithm and its parameters (comprised the computational architecture), until now a firm domain of human intervention, to help practitioners bridging the gap between mathematical models cast in their natural form and existing solver systems. I-DARE deals with deep and challenging issues, both from the theoretical and from an implementative viewpoint: 1) the development of a language that can be effectively used to formulate large-scale structured mathematical models and the reformulation rules that allow to transform a formulation into a different one; 2) a core subsystem capable of automatically reformulating the models and searching in the space of (formulations, algorithms, configurations) able to "the best" formulation of a given problem; 3) the design of a general interface for numerical solvers that is capable of accommodate and exploit structure information. To achieve these goals I-DARE will propose a sound and articulated integration of different programming paradigms and techniques like, classic Object-Oriented programing and Artificial Intelligence (Declarative Programming, Frame-Logic, Higher-Order Logic, Machine Learning). By tackling these challenges, I-DARE may have profound, lasting and disruptive effects on many facets of the development and deployment of mathematical models and the corresponding solution algorithms
    corecore