
Università degli Studi di Pisa

Dipartimento di Informatica

Dottorato di Ricerca in Informatica

Thesis: SSD (MAT/09 & INF/01)

Artificial Intelligence Techniques for Automatic

Reformulation and Solution of Structured

Mathematical Models

Luis Perez Sanchez

Supervisor

Antonio Frangioni

Referee

Andreas Grothey

Referee

Tapio Westerlund

October 15, 2010

Largo Bruno Pontecorvo, 3 – 56127, Pisa, Italy
email: perez@di.unipi.it

web: http://www.di.unipi.it/∼perez

Luis Perez Sanchez Antonio Frangioni

Abstract

Complex, hierarchical, multi-scale industrial and natural systems generate increasingly large math-
ematical models. Practitioners are usually able to formulate such models in their “natural” form;
however, solving them often requires finding an appropriate reformulation to reveal structures in
the model which make it possible to apply efficient, specialized approaches. The search for the
“best” formulation of a given problem, the one which allows the application of the solution algo-
rithm that best exploits the available computational resources, is currently a painstaking process
which requires considerable work by highly skilled personnel. Experts in solution algorithms are re-
quired for figuring out which (formulation, algorithm) pair is better used, considering issues like the
appropriate selection of the several obscure algorithmic parameters that each solution methods has.
This process is only going to get more complex, as current trends in computer technology dictate
the necessity to develop complex parallel approaches capable of harnessing the power of thousands
of processing units, thereby adding another layer of complexity in the form of the choice of the
appropriate (parallel) architecture. All this renders the use of mathematical models exceedingly
costly and difficult for many potentially fruitful applications. The i-dare environment, proposed
in this Thesis, aims at devising a software system for automatizing the search for the best com-
bination of (re)formulation, solution algorithm and its parameters (comprised the computational
architecture), until now a firm domain of human intervention, to help practitioners bridging the
gap between mathematical models cast in their natural form and existing solver systems. i-dare
deals with deep and challenging issues, both from the theoretical and from an implementative
viewpoint: 1) the development of a language that can be effectively used to formulate large-scale
structured mathematical models and the reformulation rules that allow to transform a formulation
into a different one; 2) a core subsystem capable of automatically reformulating the models and
searching in the space of (formulations, algorithms, configurations) able to “the best” formulation
of a given problem; 3) the design of a general interface for numerical solvers that is capable of
accommodate and exploit structure information. To achieve these goals i-dare will propose a
sound and articulated integration of different programming paradigms and techniques like, classic
Object-Oriented programing and Artificial Intelligence (Declarative Programming, Frame-Logic,
Higher-Order Logic, Machine Learning). By tackling these challenges, i-dare may have profound,
lasting and disruptive effects on many facets of the development and deployment of mathematical
models and the corresponding solution algorithms.

4

Acknowledgments

I would like to thank all the people that, in one way or another, helped me to walk across this
beautiful and sometimes steep road. In particular, infinite thanks to my supervisor Antonio Fran-
gioni. Without his patience, understanding and clarifying ideas, the realization of this work would
have been impossible.

Thanks to Giorgio Levi for suggesting me to apply for the PhD in the first place and encouraging
and supporting me throughout all the process. Thanks to Pierpaolo Degano and Ilaria Fierro, for
an excellent PhD school organization and for giving us (foreign PhD students) full support during
all these three years. Thanks to Giorgio Gallo for the crucial advices at each stage of the Thesis.
Thanks to Andrea Maggiolo, Fabrizio Luccio and Linda Pagli for all the help and support since
the very beginning.

Thanks to Luciano Garcia Garrido for introducing me to the Logic and Artificial Intelligence
and for always motivating me to explore new and interdisciplinary points of view.

Thanks to Leo Liberti for the discussions regarding the experiments that helped me to build
the methodology applied in this Thesis.

Thanks to Basuki, Flavio and Jorge for being three excellent PhD colleagues and friends and for
all the moments together that made this experience a really nice one. Thanks to Sara, Fabrizio,
and Sergio for the “intense” Bowling competitions. Thanks to Cristina and Daniela for always
being caring friends even when we barely knew each other.

Vorrei inoltre ringraziare il Furnari, la Roglia, il Cataldi e il resto del team Torino, per uno spet-
tacolare Bertinoro e per tutti bei momenti che abbiamo passato insieme. Grazie a Sara Capecchi
per essere stata sempre dalla nostra parte e averci sempre appoggiato.

Grazie al team Cuneo: Chiara, Damiano, Elisa, Seutta, Valeria, Luca, Anna e Diego, per avermi
accettato sempre come parte del gruppo, per le tante chiacchierate (anche quando io parlavo sempre
in inglese). Grazie a mia “cognata” Mara, per la compagnia e l’amicizia, ma soprattutto per le
grasse risate. Grazie a Danila e Diego per essere diventati dei fratelli per me, per le tante serate
a giocare a domino mentre si ascoltavano le selezioni musicali da YouTube, e per tutti i preziosi
momenti insieme.

Grazie a Carla e Gra per essere dei suoceri meravigliosi, per avermi accolto nella loro famiglia
come un figlio, per tutto il supporto e la comprensione, e per i meravigliosi piatti che mi avete
fatto assaggiare.

Gracias al Luisda, Pabli, Kmilo, Batista, Jose Carlos, Tomy, Mija, por todos los valiosos mo-
mentos, desde las noches en el cub́ıculo 3 del C5, hasta las clases en la UH, las inolvidables sesiones
en UH-SIS y podŕıa seguir adelante.

Gracias a mi hermanita Thaizel por la important́ısima compañ́ıa durante todo este tiempo en
Pisa, fundamentalmente durante el dif́ıcil inicio.

A los mejores padres que un hijo pueda desear, gracias a los dos por haberme apoyado siempre
en mis decisiones, aún cuando eran decisiones dif́ıciles. Gracias por todos los utiles consejos y por
todo el amor que me han dado siempre. Por supuesto gracias tambien a la super abuela Zenaida
por todo su cariño (y espectaculares garbanzos).

Elena, mi è molto difficile fare soltanto una frase, GRAZIE DI TUTTO!

6

Contents

Introduction i

I.1 Modeling and solving with structures – Motivations ii

I.2 The proposal and further motivations . iii

I.3 i-dare – Overview . vii

I.4 Thesis structure . ix

1 i-dare(lib) – the structure library 1

1.1 Basic components . 1

1.1.1 Parameter Types . 2

1.2 Structure Classes . 2

1.2.1 Leaf Problem Class . 3

1.2.2 Block Class . 6

1.2.3 Block - Formal definitions . 7

1.3 Some Structure Class examples . 10

1.4 Discussion . 12

2 i-dare(im) – base modeling environment 13

2.1 Dimensions . 13

2.1.1 Local dimensions . 13

2.2 Variables and Constants . 14

2.2.1 Bounding . 15

2.2.2 Property well-formedness . 15

2.2.3 Indexing . 16

2.2.4 Expressions . 17

2.3 Scalars and Vectors . 20

2.4 Leaf Problem . 23

2.4.1 Local Leaf Problems . 24

2.5 Blocks . 26

2.6 Formulation . 29

2.7 Discussion . 31

3 i-dare(ei) – the enhanced instance 33

3.1 Instance Wrapper (IW) . 33

3.1.1 Global Data . 34

3.1.2 Data handler (DH) . 36

3.1.3 IW - Data Validation . 40

3.1.4 IW - Access methods . 41

3.2 Structured Instance Generation . 42

3.2.1 Meta Data File . 42

3.3 Discussion . 47

8 CHAPTER 0. CONTENTS

4 i-dare(solve) – solving the model 49
4.1 Structured Modeling and Solving Methods . 49

4.1.1 Some initial formulation . 49
4.1.2 Knapsack constraints . 50
4.1.3 Logical Formula . 54
4.1.4 Disjunctive Scheduling . 54
4.1.5 Product Loading . 55

4.2 Shared Variables – Blocks – Relaxation . 58
4.2.1 Returning to the Product Loading problem 59
4.2.2 Tackling the other formulations . 60

4.3 Solvers’ Tree . 61
4.4 Solvers and Structures . 63

4.4.1 Solvers exported and new Structure relations 65
4.4.2 Configuration Templates . 67
4.4.3 Solution Generation . 69
4.4.4 The overall solution process . 69

5 i-dare(t) - the reformulation system 71
5.1 Atomic Reformulation Rules . 71

5.1.1 Abstract structure classes . 72
5.1.2 Track Structures . 73

5.2 Algebraic ARR . 74
5.2.1 ARR

∑

– Index declarations . 75
5.2.2 ARR

∑

– Dimension relations . 76
5.2.3 ARR

∑

– Mappings . 76
5.2.4 ARR

∑

– Fixed template items . 80
5.2.5 ARR

∑

– Conditional expression . 80
5.2.6 ARR

∑

– examples . 81
5.2.7 Semantics . 83

5.3 Algorithmic ARR . 87
5.3.1 Semantics . 88

5.4 Selection domain and Reformulation Domain . 90
5.5 Discussion . 91

6 i-dare(control) - best (Formulation, Solver, Configuration) 93
6.1 Search Spaces . 93

6.1.1 Extended Model . 94
6.1.2 Solvers and Configurations . 94

6.2 Controlling the Search in the (Formulation, Solver, Configuration) Space 94
6.2.1 Objective function computation . 95
6.2.2 Training and Meta-Learning . 99
6.2.3 The overall search process . 99

6.3 Experiments . 100
6.3.1 Further experimentation . 102

6.4 Discussion . 103

7 Combining structures and reformulations 105
7.1 Structures . 105

7.1.1 Compositions . 107
7.2 Creating a model . 108
7.3 Reformulations . 109

7.3.1 ProdBC to MILP . 110
7.3.2 SAbs to Composition . 111
7.3.3 VAbs to LP . 111

0.0. CONTENTS 9

7.3.4 SemiContinuous to MILP . 112
7.3.5 ProdCC to MILP . 114
7.3.6 SemiAssign to MILP . 114
7.3.7 Constraint to MILP . 115
7.3.8 OFMin to MILP . 115
7.3.9 IndComposition to MILP . 116
7.3.10 Composition to MILP . 117

7.4 Applying the ARR
∑

s to HCP . 119

8 More focused structures and reformulations 123
8.1 Rounding Up previously defined structures . 123

8.1.1 Reformulations . 124
8.1.2 Reformulation Diagram . 129

8.2 Some Convex Structures . 130
8.2.1 Reformulations . 132

8.3 Quadratic Variants . 136
8.3.1 Reformulations . 137
8.3.2 Final diagram . 140

Conclusions 143
C.1 Perspectives on Deployment . 144
C.2 i-dare challenges . 146

Bibliography 149

A Frame Logic – FLORA-2 159
A.1 FL Syntax . 159

A.1.1 Alphabet . 159
A.1.2 Terms . 160
A.1.3 Formulas . 160
A.1.4 Higher-Order Logic . 162

10 CHAPTER 0. CONTENTS

List of Figures

I.1 Schematic diagram of the full I-DARE system . vii

1.1 i-dare(lib) hierarchy . 3

2.1 K-Vector examples . 21
2.2 Replication inside blocks . 27
2.3 An example of wrong component tree . 29

3.1 Structured Instance . 42

4.1 Representation of y(1-y) function . 50
4.2 a) Shared variables partitioned over substructures (except for one) in a linear model

b) Variables shared by all substructures in a linear model 58
4.3 Graphic relating constraints with variables for formulation §4.1.5 59
4.4 Graphic relating constraints with variables for formulation a) §4.1.5 and b) §4.1.5 . 61
4.5 Solver Tree assignment . 62
4.6 Formulation Diagram . 62
4.7 C++ vs. FLORA-2 hierarchies . 64
4.8 Overall solution process . 70

5.1 ARR
∑

reformulation and solving process . 86
5.2 Formulation example . 90

6.1 GMLS diagram . 100

7.1 HCP Formulation . 110
7.2 Independent Composition of N MILP subproblems 116
7.3 Composition of two MILP subproblems with shared variables 118

8.1 Initial set of ARRs and structures . 130
8.2 Convex Structures and Reformulations . 136
8.3 Full structure and reformulation diagram . 141

12 CHAPTER 0. LIST OF FIGURES

Listings

1.1 Component Class . 2
1.2 Leaf-Problem class . 3
1.3 Leaf-Problem class example . 4
1.4 Another Leaf-Problem class example . 4
1.5 Yet another Leaf-Problem class example . 4
1.6 MCF class . 5
1.7 Local Leaf-Problem class example . 6
1.8 Block class . 6
1.9 Block class example . 7
1.10 Another block class example . 7
1.11 MILP block class modification (d loc) . 8
1.12 Simple Selection LfP class . 10
1.13 MMCF(FC) class . 10
1.14 Lagrangian Relax class . 11
2.1 Example of dimensions . 13
2.2 Local dimension definition . 13
2.3 Example of local dimensions . 14
2.4 Another dimension . 14
2.5 Class of properties . 14
2.6 Example of variable . 14
2.7 Bounding example . 15
2.8 Dimensions and Constants in i-dare(im) . 16
2.9 Aggregator Class . 18
2.10 Example of aggregator general form . 19
2.11 Example of a specific aggregator . 19
2.12 LfP specification . 23
2.13 LfP example . 23
2.14 LfPL specification . 24
2.15 LfPL example . 25
2.16 Automatic property generation . 25
2.17 Automatic dimension and index generation . 25
2.18 Example of property and dimension generation . 25
2.19 Block definition . 26
2.20 LP and Integrality constraint . 27
2.21 MILP block instance . 27
2.22 Another block example . 28
2.23 MILP MPS LfPL class . 28
2.24 Formulation class . 29
2.25 Full formulation example . 30
3.1 Instance Wrapper . 33
3.2 XML global data format . 34
3.3 DH Class . 36
3.4 Data Handler subscription predicate . 36

14 CHAPTER 0. LISTINGS

3.5 XML Data Handler Class . 37
3.6 IW example . 37
3.7 MPS Data Handler Class . 37
3.8 LEAF Node general form . 43
3.9 BLOCK Node general Form . 46
4.1 Solver Root Class . 63
4.2 Blueprint exported to the FLORA-2 file . 64
4.3 Example of solution hierarchy . 65
4.4 Extension of :: FLORA-2 operator . 67
4.5 Example of Integer parameter type . 67
4.6 Example of Double parameter type . 67
4.7 Example of Integer parameter type . 68
4.8 Example of Choice parameter type . 68
5.1 ARR class definition . 71
5.2 ARR

∑

class definition . 75
5.3 ARR

∑

to reformulate MCF to LP . 81
5.4 MMCF FC class . 82
5.5 ARR

∑

to reformulate MMCF FC to Lagrangian Flow Relaxation 83
5.6 Writer class . 85
5.7 Delegation solver FLORA-2 class . 86
5.8 Generate the path tree . 88
5.9 ARRA class definition . 88
6.1 Solver Wrapper Interface . 96
6.2 Machine Learning Interface . 97
8.1 Continuous KnapSack Problem . 124
8.2 MILP to block MILP . 124
8.3 Branch and Bound block . 125
8.4 MILP to Branch and bound with LP . 125
8.5 Semi-Continuous MILP . 126
8.6 MILP-SC to MILP . 126
8.7 MMCF(FC) to MILP-SC . 127
8.8 Independent Replication Selection block . 129
8.9 MMCF(FC) to Lagrangian Knapsack Relaxation 129
8.10 Quadratic Function . 130
8.11 Second Order Cone Program . 131
8.12 Mixed-Integer Second Order Cone Program . 131
8.13 MISOCP to Branch and bound with SOCP . 132
8.14 MIQP-SC-SEP to MISOCP . 134
8.15 Mixed-Integer Semi-Infinite Perspective Cuts (for the quadratic case) plus Linear

Constraints . 135
8.16 MIQP-SC-SEP to MISIPC Q LC . 136
8.17 KnapSack Problem . 136
8.18 Quadratic Minimum Cost Flow . 137
8.19 QMCF to MCF through linearization . 138
8.20 QMMCF FC to Lagrangian Flow Relaxation . 138
8.21 QMMCF FC to Lagrangian Knapsack Relaxation 139

Introduction

The development of mathematical models of reality, which often take the form of decision or op-
timization problems, is arguably the single most important way in which humanity improves its
understanding and control over the physical world. Coupled with the phenomenal growth of avail-
able computational resources over the last 50 years, it has very substantially contributed to the
exponential growth of knowledge in almost all scientific fields such as physics [109], statistics [81],
data mining [86, 61], mathematics [105, 25], artificial intelligence [99, 44], and many others. Fur-
thermore, countless many practical applications fundamentally hinge upon mathematical models
in such diverse fields as transportation [29, 21], location [85, 107], scheduling [30, 90, 132], com-
plex industrial systems [120], networks [28], bio-informatics [108], chemical engineering [23, 119],
medical equipment configuration [116], and many others. Therefore, it is fundamental for the con-
tinuous improvement of science and technology that better and better mathematical models, and
the software packages required to solve them, be available to researchers of all fields.

However, it is one of the most striking and important discoveries of science and mathematics
in the Twentieth Century that just being able of creating a model does not mean that there is a
reasonable way to solve it. Göedel’s theorems [153], existence of non-computable functions [151],
complexity theory [106], etc, have shown that being able to write a model is not equivalent to be
able to solve it, i.e. for some models there may not be a way to compute a solution or doing it in
a reasonable amount of time.

This impossibility was not clear, as testified by Hilbert in his Program [63]. Hilbert proposed
to define a formulation of mathematics based on a solid and complete logical fundantion, believ-
ing that this could be done by (1) showing that all mathematics follows from a correctly chosen
finite axiom system; (2) and that such axiom system is provably consistent through means such
as epsilon calculus [126]. It was Hilbert’s understanding that, once realized this, every possible
problem in mathematics and science could have been solved by “just computing”. This dream
was put to end initially by Göedel, who proved that any non-contradictory formal system, which
was comprehensive enough to include at least arithmetic, cannot demonstrate its completeness by
way of its own axioms (any effectively generated theory capable of expressing elementary arithmetic
cannot be both consistent and complete).

Göedel’s results were later complemented by studies in computer theory (Turing [151], Von
Neumann [155]), showing the existence of undecidable problems and non-computable functions,
which of course make a model not solvable. Further down the same line, the existence of effectively
computable functions, for which, can be shown that any algorithm that computes them will be very
inefficient, in the sense that the running time increases exponentially (or even superexponentially)
with the length of the input, which also makes the model not solvable (in a reasonable time) was
discovered. Furthermore, currently, a huge number of decision and optimization problems (NP-
Hard, NP-Complete) are believed to be unsolvable in polynomial time, although no formal proof
is yet available (see [118, 100]).

Undeterred by the impossibility of a universal solution procedure (efficient enough), the scien-
tific community has continued building better and better models. Since the “super-solver” is not
available, each problem needs to be addressed individually, focusing in exploiting particularities

ii INTRODUCTION

in their models. These particularities can be called structures, that are well known parts of a
model for which exist particular solving techniques. Typically, problems can only be solved with
algorithms that recognize and exploit these structures.

I.1 Modeling and solving with structures – Motivations

When a model of a practical industrial/scientific application is built, oftentimes a choice is made
a priori (and possibly unintentionally) about which structure of the model is the most prominent
from the algorithmic viewpoint. This is done by choosing first which of the several main classes of
models the problem is molded in: a Linear Program (LP) [57], a Mixed Integer Linear Program
(MILP) [127], and so on. This decision is mostly driven by the previous expertise of the modeler,
by the“bag of tricks” she has available, and by her understanding (or lack thereof) of the intricate
relationships between the choices made during the modeling phase and the effectiveness/availabil-
ity of the corresponding solution procedures.

Unfortunately, making “the best” choice is arguably difficult. Many classes of models have been
devised which are useful for expressing different practical problems, and the continuous improve-
ments of solution methods have created an enormous wealth of results about different algorithmic
approaches for (old and new) model classes and the conditions under which any approach is more
or less computationally effective. For instance, Conic and Semidefinite Programs [31] allow for
carefully selected forms of nonlinearities which keep the problems convex, and therefore efficiently
solvable by appropriate classes of algorithms; they have many applications e.g. in engineering and
computational mathematics, as well as having been the foundation of Robust Optimization where
uncertainty of problem’s data is taken into account [32].

To further enlarge the set of representable functions while still guaranteeing efficient resolv-
ability, Disciplined Convex Programming [82, 41] require problems to be specified by following a
rigorous set of rules which ensure convexity, as well as providing solution algorithms with the data
they need to effectively tackle the problem. While nonconvex problems are in general much harder
to solve, an enormous number of variants arise according to the specific properties of the objective
function and constraints that can be exploited for algorithmic purposes. Considerable attention
has recently been devoted to nonconvex nonlinear problems, with [39, 88, 144] or without [117]
integrality constraints on the variables.

Several special cases of particular interest arise when nonlinearities and/or nonconvexities are
a consequence of expressing specific situations, such as: the optimization of a different objec-
tive function by a different decisor [24, 68] or, more in general, the equilibrium between a set of
different decisors [104]; constraints about joint probability of uncertain events to occur [43]; con-
vex constraints with just one single concave component [95, 37], differential equation constraints
[110, 131], and many others. Complex combinatorial structures, e.g. like the ones appearing in
scheduling problems [90], can be embedded as “primitives of the modeling language” in Constraint
Logic Programing (CLP) techniques [121, 22, 34] under the form specialized domain propagation
techniques. And the list goes on and on.

When a model class has (more or less arbitrarily) been selected and the model has been writ-
ten, a specific numerical solver has to be used to actually solve it. The typical choice is to rely on
battle-hardened general-purpose solvers, capable of tackling (in principle) any one problem in the
given model class without much intervention from the end-user. Unfortunately, general-purpose
solvers may exhibit poor performance on many applications since they typically ignore any existing
underlying structure. For each of the above problem classes, an enormous literature is available
about techniques that are effective for solving specific sub-classes of problems; these include (to
name just a few) preconditioning techniques in linear algebra [51, 74, 70], effective domain re-
duction techniques [64] and hybrid search/optimization methods in CLP [65, 93], specialized row-
and column-generation algorithms in MILP [30, 33, 59, 69, 77, 92], specialized search strategies
in heuristic approaches [87, 44, 73, 85], appropriate selection and breeding procedures in evolu-
tionary programs [80], and effective learning rules in swarm-intelligence approaches [60]. Thus,

I.2. THE PROPOSAL AND FURTHER MOTIVATIONS iii

for countless applications, specialized solvers exist that are better than general-purpose ones. Yet,
because they are specific to smaller classes of problems, they are often much less developed, and
therefore less robust and user-friendly, than general-purpose ones. In addition, their efficiency may
crucially depend on the appropriate setting of some algorithmic parameters which requires a level
of understanding of their inner workings that cannot be reasonably expected outside a small circle
of specialists. On top of all this, practical problems most often exhibit several structures simul-
taneously; not only it is not a fortiori clear which of them is computationally more relevant, but
also the most efficient approach may require exploiting them all. This would call for integrating
several different specialized approaches, a task most often bordering the impossible in the current
state of affairs.

Thus, the fact that the most appropriate (specialized) approach is actually selected crucially
depends on the realization of a long list of conditions: the user has to discover the structures
(which requires knowing about them in the first place), realize that they are computationally
relevant, fetch specialized numerical solvers capable of exploiting them, write the model fighting
with the rigidities and quirks of the interface of the specialized solvers (such as requiring specific
programming languages, using badly conceived input data formats, not allowing certain operations
required by the applications, . . .) and the inevitable configuration problems, and integrate all this
in the environment required by the application. Often, modelers lack both knowledge and resources
to perform these complex tasks; therefore the wealth of available knowledge about specialized
algorithms for specific structures lies unused gathering dust in the uncharted backwaters of the
scientific literature and/or in prototypical software codes which, despite holding great promises,
are too specialized to be known and used outside a small circle of interested specialists. Meanwhile,
end-users cannot solve their problem efficiently enough.

To make matters worse, computationally exploiting “the right” form of structure crucially
depends on having chosen “the right” formulation that reveals it. However, many structures are
typically not “naturally” present in the mathematical models, and must be purposely created by
such weird tricks of the trade such as creating apparently unnecessary copies of variables and/or
relations [84], replacing an exact compact nonlinear formulation with a much larger approximate
linear one [142], replacing a single integer-valued variable by a set of binary-valued ones [69],
and many similar others. That is, one needs a reformulation of the problem—which may well
turn out to be rather different from the “natural” one familiar to the original modeler—where
structures inside the model are transformed into other equivalent ones that are better suited to
some carefully selected algorithmic approach. Finding these reformulations, and the corresponding
algorithms with their appropriate configurations, is a costly and painstaking process, up to now
firmly in the hands of very specialized experts—most often themselves blissfully unaware of the
many potential practical applications of the techniques they master—with little to no support from
modeling tools.

I.2 The proposal and further motivations

This Thesis will be focused in the proposal of a system, named i-dare (Intelligence-Driven Auto-
matic Reformulation Engine), that defines the methodology necessary to deal with the problem-
atics issued in the previous section: structured modeling, ((re)formulation, solver, configuration)
selection, structured solver application.

From the foundational viewpoint, the main aim of i-dare is to challenge the implicit assump-
tion, underlying all mathematical modeling efforts, that devising an effective mathematical model
can only be achieved by human creativity, and that computer tools have no role on it. There are,
of course, sound theoretical and practical reasons to believe that human creativity will ever—or at
least for a very long time—be a necessary component of any mathematical modeling exercise. How-
ever, as for countless many other human activities before, the intervention of automated system has
a huge potential to improve the efficiency and effectiveness of these efforts, ultimately allowing the
human skills to concentrate on these parts that are still firmly out of reach of computer systems.

Attaining this result is, however, far from simple. First and foremost, it is a striking discovery

iv INTRODUCTION

that while the term reformulation is ubiquitous in mathematics (e.g. [39, 82, 101, 117, 142, 144, 154]
among the countless many others: a Google search on the term returns more than 600,000 hits),
there are precious few formal definitions and theoretical characterizations of the concept. Among
the few ones, some are limited to syntactic reformulations, i.e., those that can be obtained by
application of algebraic rewriting rules to the elements of a given model [113]. These reformulations
are capable of exploiting syntactical structure of the model, such as presence of particular algebraic
terms in parts of its algebraic description [71, 117]. While being very relevant, these do not include
all transformations that have shown to be of practical use.

Oftentimes, reformulations are based on nontrivial theorems which link the properties of two
seemingly very different structures; some notable examples are the equivalent representations of
a polyhedron in terms of extreme points and faces (which underpins a number of important ap-
proaches such as decomposition methods, and has many relevant special cases such as the path
formulation and the arc formulation of flows [18]) and the equivalence between the optimal solu-
tion value of a convex problem and that of its dual (which is the basis of many results in robust
optimization). These reformulations require a higher view of the concept of structure of a model,
i.e., a semantic structure which considers the mathematical properties of the entire represented
mathematical objects as opposed to these of small parts of their algebraic description; we therefore
refer to them as semantic reformulations. Proper definitions of reformulation capable of capturing
this concept are thin on the ground.

For instance, an attempt was made in [143] by demanding that a bijection exists between
the feasible regions of the two models and that one objective function is obtained by applying
a monotonic univariate function to the other, which are extremely strict conditions. A view
based on complexity theory was proposed in [24], but since it requires a polynomial time mapping
between the problems it already cuts off a number of well-known reformulation techniques where the
mapping is pseudo-polynomial [69] or even exponential in theory [30, 59, 73], but quite effective in
practice. Only recently a wider attempt at formalizing the definition of formulation has been done
which covers several techniques such as reformulation based on the preservation of the optimality
information, changes of variables, narrowing, approximation and relaxation [113, 114].

However, a general formal definition of reformulation is not enough for i-dare; the aim is
to identify classes of reformulation rules for which automatic search in the formulation space is
possible. In this sense, syntactic reformulations, being somewhat more limited in scope and akin
to rewriting systems, may prove to have stronger properties that allow more efficient specialized
search strategies. Yet, defining appropriate more general classes of semantic reformulations is also
necessary in order for the system to be able to cover a large enough set of possible reformulations.
This calls for an appropriate definition of “structure” that on one hand is general enough, and on
the other hand allows for effective search in the reformulation space.

Another crucial requirement is the ability to predict with a sufficient degree of accuracy some
performance metrics of a given solution approach (with a given set of algorithmic parameters) on
a given instance of a model, without actually performing the computation. This is necessary as it
will provide the “objective functions” of the search, and is clearly a very difficult task. There is
a huge literature on both complexity analysis and experimental evaluation of algorithms, and the
system will have to be conceived as to allow exploitation of any available result for each specific
solver and model classes. However, the system will also require some general-purpose approach
to cover all the cases where no useful results are known. This would call for the application of
machine learning techniques to the prediction of algorithms performances, and possibly for the
selection of a set of “good” algorithmic parameters, a promising avenue of research which appears
to have just started to produce the first concrete results [49, 96]. Yet, all the attempts so far have
focused on narrow classes of problems and approaches; what would set i-dare far apart from any
other previous attempt are the sheer scale and heterogeneity of the set of approaches that have to
be addressed, as well as the extension of the approach to cover the case of different formulations
for the same model. Results showing that accurate prediction is indeed possible, with existing or
newly devised approaches, for such a varied set of algorithms may substantially impact the practice
of parameters selection in several applications.

I.2. THE PROPOSAL AND FURTHER MOTIVATIONS v

From the technological viewpoint, none of the currently available methodologies and tools for
mathematical modeling provides all the functionalities envisioned and needed by i-dare:

1. A modeling language capable of representing semantic structures, providing the user with a
rich set of constructs that permits a representation of the problem which is “natural” form
and independently from the underlying solution methods.

2. A core system capable of automatically reformulating the models and a search mechanism in
the space of (formulations, algorithms, configurations) that is capable of finding “the best”
formulation of a given problem, intended as the one which, applying the selected algorithm
with its selected configuration, provides the most efficient solution approach.

3. A general solver interface capable of integrating specialized solution approaches by making it
possible for one solver to use others as sub- or co-solvers independently from their algorith-
mic details; this calls for a structured instance description language which, unlike currently
available ones, is flexible enough to allow passing all parts of the data of the instance to each
different involved specialized solvers in the format it requires and supports.

While 2. is arguably the most innovative feature, the other two components are also crucial for
the overall success of the system. Remarkably, the need for these is indeed felt in the modeling
and numerical solver communities, as witnessed by the fact that they have been addressed to some
extent in several existing software projects. Yet, each of these project has focussed on specific
aspects of the problem, without addressing the whole (challenging) general issue.

Regarding need 1, standard algebraic modeling languages like AMPL [66] or GAMS [15] are
completely “unstructured”: they offer no support to partitioning a model into sub-components
with clearly defined interfaces that may be developed and modified separately from each other.
While you can define subproblems and have each of them solved by a different solver, each sub-
model lives in the same namespace, and changes in any of them may (unintentionally) bear changes
in the others. Thus, first-generation algebraic languages can be likened to the first generation of
computer languages like FORTRAN or Basic in this respect, and share the same weaknesses:
developing and maintaining large and complex models, while possible, gets rapidly extremely
difficult as the size increases. The need for more structured modeling languages is clearly felt
in the community, and it has been addressed in several ways. One is to rely on an existing
Object-Oriented Programming (OOP) language, in order to inherit its structured programming
capabilities: this is for instance the case of FLOPC++ [4] (using C++), puLP [134] (using Python)
and of the commercial OptimJ product [130] (using Java). While this may help, it does not
introduce “natural” constructs specifically for modeling; besides, it requires knowledge of the
host programming language. Similarly, CP-based approaches like G12 [76] “naturally” allow for
some degree of structured modeling due to the partial extensibility of the CP language, but they
ultimately remain tied to a specific modeling and solving paradigm—although hybrid CP/MILP
approaches are possible in SCIP [16] and ILOG (now IBM) Concert [54]—and to the underlying
programming language (C or C++). The need for providing structure directly at the algebraic
modeling level is addressed e.g. by the RIMA project [136], and is especially felt in the context of
what is often referred to as multidisciplinary design or multidisciplinary optimization, giving rise
to projects like ASCEND [156] and pyMDO [122] (both using the OOP capabilities of Python).
However, the aim of these projects is “only” to make it simpler for the user to come up with a
correct model; once that is done, the formulation is “flattened up” and passed to a general-purpose
solver.

The main proposal of i-dare in this respect is to move up a further step of the ladder of
expressive power, devising a modeling system based on declarative languages like Prolog [129].
In particular, Frame-Logic systems [102] like FLORA-2 [159] allow to combine the expressive
power of declarative languages with OOP components, providing tools of unparalleled effectiveness
for reasoning about structures. This is clearly necessary to deal with semantic (non-syntactical)
structures, since then reformulations are not limited to application of algebraic rewriting rules, but
require the capability of checking logical conditions for the applicability of a given reformulation
rule.

vi INTRODUCTION

Since logic programming paradigms, while extremely powerful, are even less familiar to the vast
majority of perspective users than OOP ones, this logic-based modeling language should not be
the only choice for interfacing with the system proposed in this Thesis. Instead, its primary role
will be that of an intermediate modeling language, used to drive the core search and reformulation
capabilities of the system (cf. 2. above) but largely invisible both to end-users and to algorithms
developers. For the former, a number of different existing front-end systems may be adapted to
produce the required intermediate language representation of the model; this is for instance the
case of ASCEND (which comes already equipped with a nice GUI component) or pyMDO, but
also extensions to popular alternatives like GAMS and AMPL can be considered, a-la SML [53].
Back-end communication with algorithms will be obtained through a general solver interface and
a structured instance format, discussed next.

In order to work as planned, the system i-dare, requires a unified interface for “every possible
solver”. The primary component of such an interface will have to be a(n extensible) structured
instance format. File formats for solvers are often awkward remnants of the punched-cards era such
as MPS [97], rather difficult to understand for all but the most technically-savvy users [140], and/or
extremely fragmented so that the same model can be represented in several different incompatible
ways [125] to suit the needs of the different available solvers. This makes it more difficult to collect
instances of models for testing and validation purposes, requiring substantial work for the trivial
and uninspiring task of converting one (awkward) data format into another. A unified data format
with good expressive capabilities, thanks to the flexibility of XML, has been recently proposed in
the Optimization Services project [137], extending the concept to that of data stream, e.g. served
by a network connection. While the OS format may provide a convenient starting point, it will
be necessary to extend it to explicit support for semantic structures, where some parts of the
model are represented in “abstract” terms by providing indication of the intended semantic of
the model rather than some algebraic description of its constraints. A logic and very convenient
consequence of this choice is that the instance format should not be intended to replace every
existing specialized data format, but rather to be a meta-format which, other than allowing to
“natively” represent the data and the algebraic structures of the instance, may delegate the task of
representing specific instance blocks (corresponding to specialized structures) to specialized data
formats. This has several advantages, apart from that of not wasting resources re-inventing the
wheel (for instance, the native format itself may be delegated to Optimization Services). It will be
possible to use existing solvers with their natively supported data formats, without the need for
an interface layer for a new language. Existing instances sets will not need to be translated in the
new format, which may be error-prone and may increase their size (the flexibility of XML being
often dearly paid in terms of size bloat) w.r.t. that of possibly highly compact specialized encoding.
The data format will evolve together with, and adapt to, the set of supported solvers. Finally, the
reformulation machinery of the core system will yield a universal data format translator, capable
of automatically perform the conversion between any two sets of specialized formats for any two
classes of models for which a (chain of) reformulation rule(s) exists in the system.

The universal data format will serve as basic input structure for a universal solver interface. The
need for isolating the user from the details and quirks of the underlying solution methods is heavily
felt, as demonstrated e.g. by the Open Solver Interface project [123] and the Stochastic Modeling
Interface [12], both in COIN-OR [1], and by the MCFClass project [124]. Yet, these are limited to
very specific classes of solvers and models. The traditional approach to the solver independence
problem has been that of delegating the interface to the (algebraic) modeling language such as
GAMS or AMPL; however, this is only possible when the underlying solver is a monolithic, general-
purpose one.

The aim of the Thesis in this matter is to allow different solvers for specialized problems to
be used together; therefore, a mechanism for generic solver collaboration will have to be devised
and perfected. It is well-known that a trade-off between generality, efficiency and flexibility exists
so that a mechanism devised for covering all potential uses is unlikely to be possible, or at least
efficient enough. As for the structured instance format, the idea is therefore that of exploiting
the semantic information embedded in the structured model description to allow solvers for a

I.3. I-DARE – OVERVIEW vii

given structure to impose constraints on the set of functionalities provided by other solvers they
collaborate with, thus rendering the universal solver interface flexible and capable of incorporating
existing interfaces like the previously mentioned ones.

I.3 i-dare – Overview

Figure I.1 provides a schematic description of the i-dare system. The system is divided into three
main parts: front-end, core system and solving section, clearly separated by interfaces.

Figure I.1: Schematic diagram of the full I-DARE system

The front-end part will comprise one or more graphical and/or textual front-ends for the sys-
tem. A general Modeling Environment Handler (ME-Handler) must be designed that declares all
functionalities that i-dare exposes to each modeling environment, effectively setting the interface
between the front-end and the core system. The interface will rely on i-dare(im), the i-dare

logic-based intermediate modeling language. Defining the ME-Handler, will not be considered as
a part of this Thesis, whereas a detailed definition of i-dare(im) will be provided.

The core system is further subdivided in three parts: formulation and reformulation, perfor-
mance evaluation, and control.

• The formulation part (denoted as “Structures and ARRs” in Figure I.1) is responsible for
the definition of the structured model and of the corresponding structured instance, together
with the set of reformulation rules that can be used to perform reformulations. It is based
on i-dare(im), and composed by three modules. i-dare(lib) is the package containing
all the structures that i-dare knows, together with the basic mechanisms to reason about
formulations, such as verifying their well-formedness. When a formulation is complemented
with a set of actual data it becomes an Extended Model (instance in standard optimization
parlance); a general Instance Handler (I-Handler) will be defined, which allows data to be
retrieved from the different sources (files, databases, network connections, . . .) using newly
defined and/or existing data formats (cf. i-dare(ei)). A general deduction system, denoted
as i-dare(t) will then be used to reformulate EMs by using the database ARR of Atomic

viii INTRODUCTION

Reformulation Rules, together with the necessary argument (input) and answer (output)
mappings between the two concerned structures. While most ARR could conceivably be
directly applied to models, they are in general applied to EM for two reasons. The first is
that applicability (or exact form) of a reformulation may depend on the actual data of an
instance. The second is that gauging the computational impact of a reformulation cannot
typically be done without some access to the actual data; this is in fact the rationale for the
next component.

• The performance evaluation part (denoted as “ML” in Figure I.1) is responsible for the del-
icate task of predicting the performances of each tentative reformulation, so as to compute
the “objective function” which guides the search (itself governed by the next component).
While it is clear that the performance evaluation will require some form of machine learning,
it is fundamental to decouple the basic structure of the system from the details of the spe-
cific learning method employed. Therefore, the ML approach will be “seen” by the control
mechanism as a “black box”, described by an abstract General Machine Learning Control
GMLC interface. Internally, a similar interface (denoted as Ψ in the figure) will be defined
to allow any general ML approach to be used to actually perform the prediction. Some no-
table details of the system, evidenced in the figure, require further comments. First, since
a “solver” may actually be composed by a combination of several different solvers, each one
will possibly have a different ML approach (denoted by ΨS in the figure). Second, given
the generality of the system, prediction will necessarily have to be solver-specific, with each
solver at least extracting its tailored set of “features” from the instance and presenting them
to the ML; this is the task of solver wrappers, that will have to be implemented to hook any
numerical solver to the system. Third, while any solver will be able to rely on the “external”
general-purpose ML approach, some solvers may have the capability of self-predicting their
performances, either using highly tailored ML approaches or completely different techniques
like complexity analysis. This “internal” ML will have to be appropriately presented to the
general mechanism, e.g. to be used to compute the performance of the “overall” solver from
these of its “sub-solvers”. Other crucial components of this part of the i-dare system are
the actual continuous Learning mechanism which—either exploiting actual runs by end-users
or using spare CPU cycles to perform test runs—updates the knowledge base upon which
the prediction is performed, and the Meta Learning mechanism that allows to evaluate and
compare different ML techniques for computing the Ψ function, thereby selecting those which
provide the best results.

• Finally, the control part is composed by the package i-dare(control), in charge of guiding
the search for the best (reformulation, solver, configuration) (f, s, c) triplet. In order to
decouple the basic structure of the system from the details of the search mechanism—the
appropriate choice of which will require substantial research—the package defines the abstract
interface that any control mechanism will have available to guide the deduction process of
the i-dare(t) package for generating the tentative reformulations, whose performances will
be predicted by the GMLC component, until the desired (f, s, c) triplet is reached.

Finally, the solving section is responsible for actually performing the solution approach on the
chosen (re)formulation, collecting and presenting the result to the core system, which will in turn
refactor them in the format of the original instance to present them to the front-end. Its interface
with the core system is the i-dare’s Enhanced Instance format i-dare(ei), itself composed by the
three (f, s, c) parts:

• SInstance is the actual encoding of the final instance, obtained at the end of the reformulation
process, represented in the structured instance format;

• Solver Tree is the description of the (set of) numerical solver(s) that has(have) been selected
by the search process as the most appropriate for the given SInstance; as previously men-
tioned, this is not just a solver but, in general, a structured collection of solvers, some of
which using others to cope with specialized structures;

I.4. THESIS STRUCTURE ix

• Configuration is the description of the configuration(s) that has(have) been selected by the
search process as the most appropriate for (each solver in) the Solver Tree and the given
SInstance.

The i-dare(solve) package will then have to orchestrate the actual solution process, possibly
taking into account issues like distributed computation, relying on the available set of Solver
Handlers (S-Handler), i.e., implementations of the general solver interface that allows to plug
specific solvers to the i-dare system.

I.4 Thesis structure

This Thesis is be divided in an Introduction, eight Chapters and the Conclusions. This subdivision
will provide the reader with a definition step by step of all modules in i-dare. Chapter 1, describes
how structure classes and their relations can be created and stored, by defining the i-dare(lib)
module. Chapter 2 defines the internal modeling language i-dare(im), formally describing all
concepts of well-formedness, from the dimensions and indexes, to leaf problems, blocks and formu-
lations. Chapter 3, specifies how the data can be attached to the formulations, by using the proper
format handlers and wrappers; concluding with the definition of the structured instance. Chapter
4, describes how solvers can be attached to i-dare, and how they can be configured and linked
to the structured instance, by means of a Solvers’ Tree. In chapter 5 we define all the necessary
theory related with reformulations; we describe the concept of Atomic Reformulation Rules (ARR),
how i-dare will treat them semantically, and how they can be applied to a formulation to define
the Reformulations’ Domain. Chapter 6 describes the i-dare(control) module; it will describe
the available search spaces and how can they be used to search for the “best” triple (formulation,
solver, configuration). In Chapter 7 we declare a set of “simple” structure classes’ examples that
will allow (by composition) the creation of complex models, and using these classes we will define
some reformulations in order to obtain a MILP (or LP) structure. Whereas, in Chapter 8 we will
focus on a set of structures for which there are specialized solution methods, and we will study
how we can relate them by applying the appropriate reformulation rules. Finally the conclusions
will sum up the results obtained and will describe the potentials and future research.

x INTRODUCTION

Chapter 1

i-dare(lib) – the structure library

Abstract

i-dare allows the construction of models based on an extensible structure class library.
This structure class library contains a set of basic components that enables the definition of
new classes of structures and how these classes will interact between each other. Components
of i-dare(lib) will be included inside a hierarchy, abstracting the main characteristics of each
structure class. Furthermore, this hierarchy enables the user, by adding new pieces, to enlarge
i-dare(lib)’s potential. This chapter defines i-dare(lib) in a bottom-up fashion, starting
from the most basic components like dimensions and parameters types, advancing to atomic
problems and ending with problems compositions (blocks). At the end of this chapter some
detailed examples are presented, together with a discussion about the usage of declarative
programming (in particular FLORA-2 – cf. Appendix A) to define i-dare(lib).

1.1 Basic components

Every structure class is ultimately reduced to a set of parameters (plus the semantical meaning of
the structure class). The parameters represent the characteristics of the input and output of the
structure class. For example, let’s examine a LP structure class:

min/max
∑

i

civi

s.t.
∑

i

c′j,ivi ≤ / = / ≥ bj for all j

To create an “instance” of the LP structure class, we need to specify the direction (min or max),
the vector in the objective function, the matrix in the constraints, the right hand side vector, the
relation that will be used in each constraint and the vector of variables on which the solution will
be stored. Moreover, we need to know how the cardinalities of the previous elements are related
to each other. Observe that the number of objective function constants must correspond to the
number of variables and the number columns in the constraint matrix. These cardinalities will
be called dimensions (see §2.1). For instance the previous LP structure class has two dimensions,
that can be called columns and rows.

Definition 1.1.1 (Dimension Meta Variable (dMV)) To define how many dimensions a struc-
ture class will have, i-dare(lib) will use the property dim var−>[d1, . . . , dk], where k is the number
of dimensions, and di and dj are identifiers, such that di 6= dj , ∀i, j ∈ [1..k]. Each di will be called
dimension Meta Variable (dMV) and it represents a set [0..‖di‖− 1]. ‖di‖ states for the dimension
cardinality (formally defined in 3.1.1).

2 CHAPTER 1. I-DARE(LIB) – THE STRUCTURE LIBRARY

For the LP structure class the dMV list may be, dim var −> [cols, rows].

1.1.1 Parameter Types

As mentioned previously, parameters are a key element in the definition of a structure class,
therefore when defining a structure class in i-dare(lib) we must be able to specify the types of
potential parameters. These potential parameter types can be,

• d var – Variable type

• d constant – Constant type

• d vector(?K,?S) – Vector type

• d rel – Relation type

• d direction – Direction type

Variable and Constant Types (d var and d constant)
These two types are used to denote the variables and constants of the structure class respec-

tively. For instance, in the previous LP structure class example, xi is of variable type and ci is of
constant type. Formal definition on well-formed variables and constants will be given in §2.3.

Vector Type (d vector(?K, ?S))
When we use dimensions while defining constants, variables, relations or even general expres-

sions a vector may be produced. The vector type is denoted using d vector(?K, ?S), where ?K ∈ {
d var, d constant, d rel } and ?S must be a non-empty list of dMVs. |?S| represents the number of
dimensions of the vector (e.g. a matrix is a 2-dimensional vector).

For instance, d vector(d constant, [cols]) represents a one dimensional vector of constants. On the
other hand, when {d vector(d constant, [cols]), d vector(d var , [cols])} appear in the same parameter
list (of a certain structure), it indicates that the number of elements of the first and second vector
are the same. Well-formed vectors will be formally defined in §2.3.

Relation Type (d rel)
Another kind of argument is the relation, denoted using d rel . Relations allowed by i-dare will

be binary over R× R, like, = (equality), =< (less than or equal) and >= (grater than or equal).

Direction Type (d direction)
There are structure class that may contain an objective function within them. In this case, the

structure class may require the specification of objective function’s direction as one of its parame-
ters. Supported directions are min and max. Although both directions are transformable multiplying
the objective function by −1, we decided to keep them both for the sake of expressibility.

1.2 Structure Classes

i-dare(lib) defines a basic hierarchy for the structure classes that one may create. This hierarchy
is composed of three classes, d Component C, d LeafProblem C and d Block C (see figure 1.1).

The most general structure class (d Component C) will define the most general behaviors that
every other structure class must implement. This class is defined as follows,

Listing 1.1: Component Class

1 d Component C [
2 abs t r act ,
3
4 // Methods and P r o p e r t i e s

1.2. STRUCTURE CLASSES 3

d_Component_C

d_LeafProblem_C d_Block_C

Figure 1.1: i-dare(lib) hierarchy

5 => we l l f o rmed ,
6 f r e e i n d s => l i s t ,
7 a l l i n d s => l i s t ,
8 pu r e i nd s => l i s t ,
9 v a r s => l i s t

10] .

Methods and Properties

• wellformed – tells whether a component is well-formed or not.

• vars – retrieves the list of variables used within a component.

• freeinds – retrieves the list of free indices of a component.

• pureinds – retrieves the list of all indices used as constants within expressions in the component.

• allinds – retrieves the list of all indices used within the component.

In the declaration of d Component C appears a class boolean field, named abstract. When this field
appears in a class definition the system will not allow the creation of instances from that class.

The definition of the d Component C class introduces for the first time the concept of index.
Indices will be formally defined in §2.2.3, but let’s give at least an empirical definition that may
be useful in the rest of the chapter.

An index is an identifier linked to a dimension (and used to iterate over that dimension). For
instance, xi from the LP example, uses the index i that iterates over dimension cols . The free
indices of a component in i-dare are the set of indices that are not fixed by any construct like
vectors or cumulative operators like

∑

. For example if we use the constant c′ij (with indices i, j)
which appears inside

∑

i c
′
ij then j would be a possible free index (if not fixed elsewhere).

All methods in d Component C are inherited and/or overwritten by all its descendant classes.

1.2.1 Leaf Problem Class

As a special case of component, i-dare(lib) defines the class of leaf problems. A leaf problem is
an atomic definition composed of at least an objective function or a constraint. For example, linear
problems, disjunctive constraints and quadratic objective functions are leaf problems. Henceforth
leaf problems will be called LfP.

All LfPs must inherit from the following class,

Listing 1.2: Leaf-Problem class

1 d LeafProblem C : : d Component C
2 [
3 abs t r act ,
4 [l o c a l]
5
6 // Methods and P r o p e r t i e s
7 d im va r => l i s t ,
8 [dim bound => l i s t ,]
9 a r g s => l i s t

10] .

4 CHAPTER 1. I-DARE(LIB) – THE STRUCTURE LIBRARY

Methods and Properties

• dim var – defines the list of dMVs of the LfP.

• dim bound – specifies which constants will have as domain a dMV’s set of values. optional

• args – defines the parameter types that the LfP will require.

The list of arguments args must be defined as a dictionary [name = parameter type ...] , where name

is an identifier unique inside the LfP.
A simple example of LfP would be the class of integer problems,

Listing 1.3: Leaf-Problem class example

1 d IC C : : d LeafProblem C
2 [
3 d im va r −> [d] ,
4 a r g s −> [
5 i v a r = d ve c t o r (d var , [d]) // v a r i a b l e s to be i n t e g e r
6]
7] .

This class will define the problems having a set of integer variables (ie. ivar i ∈ Z,i ∈ d). As another
example, one can define the class of linear constraints with its list of argument types.

Listing 1.4: Another Leaf-Problem class example

1 d L i n e a r C o n s t r a i n t s C : : d LeafProblem C
2 [
3 d im va r −> [d1 , d2] ,
4 a r g s −> [
5 x = d ve c t o r (d var , [d1]) , // v a r i a b l e s
6 A = d ve c t o r (d constant , [d2 , d1]) , // A matr i x
7 b = d ve c t o r (d constant , [d2]) , // b v e c t o r
8 r e l s = d ve c t o r (d r e l , [d2]) // r e l a t i o n s f o r each c o n s t r a i n t
9]

10] .

The LfP d Linear Constraints C represents all constraints with the form
∑

iAj,ixi relj bj ∀(j). We
may also define the class of linear problems (LP),

Listing 1.5: Yet another Leaf-Problem class example

1 d LP C : : d LeafProblem C
2 [
3 d im va r −> [c o l s , cons] ,
4 a r g s −> [
5 x = d ve c t o r (d var , [c o l s]) , // v a r i a b l e s
6 c = d ve c t o r (d constant , [c o l s]) , // p r i c e con s t a n t s
7 A = d ve c t o r (d constant , [cons , c o l s]) , // A matr i x
8 b = d ve c t o r (d constant , [cons]) , // b v e c t o r
9 r e l s = d ve c t o r (d r e l , [cons]) , // r e l a t i o n s f o r each c o n s t r a i n t

10 d i r = d d i r e c t i o n // o b j e c t i v e f u n c t i o n d i r e c t i o n
11]
12] .

Note that in this case we are defining a complete LP with objective function and constraints. Once
we use the parameter type d direction we are giving a hint that within that component there must
be an objective function. This leaf problem is represented algebraically in the following way,

dir
∑

i

cixi

s.t.
∑

i

Aj,ixi relj bj ∀(j)

1.2. STRUCTURE CLASSES 5

Looking at LfP’s properties we find one that has not been previously defined, the dim bound.
This property declares which constant parameter (vector or not) must have a domain restricted
by a dMV. The dim bound list must have the following form: [(CN,D),...] , where args [CN] = d constant

or d vector(d constant, ?), and D∈dim var. This property essentially constraints the parameter CN to
take values between 0 and ‖D‖ − 1.

The next example will be a Minimum Cost Flow LfP (MCF). For this LfP we used the classical
graph representation and we wrote it into i-dare(lib) syntax. This example will illustrate the
usage of dim bound

Listing 1.6: MCF class

1 d MCF C : : d LeafProblem C
2 [
3 d im va r −> [N, E] ,
4 a r g s −> [
5 SN = d ve c t o r (d constant , [E]) , // s t a r t nodes
6 EN = d ve c t o r (d constant , [E]) , // end nodes
7 SD = d ve c t o r (d constant , [N]) , // supp l y /demand
8 co s t = d ve c t o r (d constant , [E]) , // co s t pe r a r c
9 u = d ve c t o r (d constant , [E]) , // a rc c a p a c i t y

10 f l ow = d ve c t o r (d var , [E]) // f l ow v a r i a b l e s
11] ,
12 dim bound −> [(SN ,N) , (EN,N)]
13] .

We used two dMVs, one to represent the nodes (N) and the other to represent the arcs (E). Using
those dMVs we created a set of parameters, to represent:

• the arcs with SN and EN, so each arc will be <SNi,ENi >, i ∈ [0..|E| − 1];

• the supply/demand of each node, supply implies a positive value, demand a negative one,
otherwise must be 0 (SD);

• the the cost and the capacity of each arc (cost and u);

• the flow variables (output of the structure) (flow).

Note that the SN and EN parameters must have values between 0 and ‖N‖ − 1; in fact they are
restricted by the dim bound property.

A MCF may be also represented using a LP. If we define N+(i) = {j | (i, j) ∈ E} and N−(i) =
{j | (j, i) ∈ E}, representing the outgoing and incoming arcs, respectively, then

min
∑

(i,j)∈E

costijflowij

s.t.
∑

j∈N+(i)

flowij −
∑

j∈N−(i)

flowij = SDi i ∈ N

0 ≤ flowij ≤ uij (i, j) ∈ E

Using this LP formulation we may apply any LP solution approach to solve it. However,
explicitly recognizing MCF as a structure class, allow us to apply specific solution approaches,
like:

• Cycle Canceling: a general primal method [103];

• Minimum Mean Cycle Canceling: a simple strongly polynomial algorithm [78].

• Successive Shortest Path and Capacity Scaling: dual methods, which can be viewed as the
generalizations of the Ford-Fulkerson algorithm [62].

6 CHAPTER 1. I-DARE(LIB) – THE STRUCTURE LIBRARY

• Cost Scaling: a primal-dual approach, which can be viewed as the generalization of the
push-relabel algorithm [79].

• Network Simplex: a specialized version of the linear programming simplex method [124].

These algorithms have proved to be more efficient for several types of graphs, with respect to the
plain LP approach.

Local Leaf Problem Class

In the LfP class definition we specified an optional property local . When this property is present
it indicates that the potential instances will define all their data in a particular local format (e.g.
MPS, OSiL, DIMACS, etc). A LfP class that contains the property local will be called Local Leaf
Problem (LfPL) Class. An example of LfPL class may be,

Listing 1.7: Local Leaf-Problem class example

1 d LP MPS C : : d LeafProblem C
2 [
3 d im va r −> [c o l s , cons] ,
4 a r g s −> [
5 x = d ve c t o r (d var , [c o l s]) , // v a r i a b l e s
6 c = d ve c t o r (d constant , [c o l s]) , // p r i c e con s t a n t s
7 A = d ve c t o r (d constant , [cons , c o l s]) , // A matr i x
8 b = d ve c t o r (d constant , [cons]) , // b mat r i x
9 r e l s = d ve c t o r (d r e l , [cons]) , // r e l a t i o n s f o r each c o n s t r a i n t

10 d i r = d d i r e c t i o n // o b j e c t i v e f u n c t i o n d i r e c t i o n
11] ,
12 l o c a l
13] .

d LP MPS C represents a class of LPs that takes all data from MPS format files. The parameter
types in the case of LfPL classes represent what data the LfPL will export to be used globally.
At least variables should always be present in the parameter type list, otherwise there will be no
communication between the LfPL and the rest of the model. In any case, it is always advisable to
include the maximum possible set of parameter types, due to problem reformulation requirements
(see §5).

1.2.2 Block Class

Problems can be built from the composition of other subproblems. For instance, e MILP problem
can be seen as the composition of a LP and integer constraints. These compositions, will be called,
blocks. Every block must inherit from the following class.

Listing 1.8: Block class

1 d Block C : : d Component C [
2 abs t r act ,
3
4 //Methods
5 i d s => l i s t ,
6 subsC => l i s t ,
7 l i n k => l i s t ,
8 [r p lR => l i s t]
9] .

Methods

• ids – represents a list of identifiers, one for each substructure class.

• subsC – is the list of substructure classes.

• link – is a list that contains how the variables of the substructure classes must be related,

1.2. STRUCTURE CLASSES 7

• rplR – is an optional field that represents a list of elements of the form ?id = ?dt, where ?id ∈ ids

and ?dt must be an algebraic expression involving the following operands,

– a term A(d), where A ∈ ids and d ∈ A.dim var; or

– a template item (c.f. Definition 1.2.6).

The substructure classes will represent the structures that are grouped by this block, and the
link represents how the variables inside those structures will interact with each other (see §1.2.3
for formal definitions).

Here is an example to illustrate how a block could be constructed:

Listing 1.9: Block class example

1 d B MILP C : : d Block C
2 [
3 i d s −> [l p , i c] ,
4 subsC −> [d LP C , d IC C] ,
5 l i n k −> [[X ,Y] , [X]]
6] .

In this case we are defining the MILP class using a block construction. The first sub-structure is
a LP class and the second one is an Integrality Constraint (IC) class. But how do we ensure that
the set of variables to be integer is a subset of the variables in the LP sub-component? For doing
that we use the link list.

A link is a template of the variables to be used in the substructure of a block. Each member of
a link correspond to a substructure. For example, [X,Y] correspond to d LP C and [X] to d IC C. In
this case [X,Y] is telling us that the variables of its corresponding substructure have to be exported
in two groups, the variables linked to X and the variables linked to Y. But since there is a second
element in link , [X], we need to ensure that the variables exported by d IC C and the first group of
d LP C are the same.

There is a formal definition for link’s behavior, that can be seen in §1.2.3. The most important
part of this definition is the Different Name Unification rule DNU, that ensures that the link unifies
with the exported variables satisfying that equal templates must correspond to identical variable
groups and different templates must correspond to variables groups with no element in common.
The following example will illustrate this fact.

Listing 1.10: Another block class example

1 d B va rdept C : : d Block C
2 [
3 i d s −> [master , s l a v e] ,
4 subsC −> [d Component C , d Component C] ,
5 l i n k −> [[X ,V] , [X,W]]
6] .

In this case the first and second substructure class must export an identical group of variables for
X but must export groups of variables for V and W with no elements in common. In section §2.5,
we will see more detailed examples of how the variables can be exported ensuring the DNU rule.

1.2.3 Block - Formal definitions

This section will introduce step by step all the elements that compose a block, defining them
formally.

Definition 1.2.1 (Class item) Given ?C::d Component C, then a class item can be defined as one
of the following two terms:

1. ?C – represents one structure of class ?C for which the system will try to assign a solver,

2. d loc(?C) – represents one structure of class ?C for which the system will not try to assign a
solver

8 CHAPTER 1. I-DARE(LIB) – THE STRUCTURE LIBRARY

When the system is trying to assign a solver to a block, and it encounters a class item of the
form d loc(?C), it will completely ignore that substructure. The system will assume that the solver
assigned to the container block will deal with that substructure.

For instance we could modify the d B MILP C example indicating that the d IC C structure will
be treated inside the solver assigned to d B MILP C, using the d loc modifier.

Listing 1.11: MILP block class modification (d loc)

1 d B MILP C : : d Block C
2 [
3 i d s −> [l p , i c] ,
4 subsC −> [d LP C , d l o c (d IC C)] ,
5 l i n k −> [[X,Y] , [X]]
6] .

Using the previous definition we can define the subsC property of blocks, as a list of class
items. On the other hand, the ids property must be a list of non-repeated identifier, such that
| ids | = |subsC|.

While integrating several substructures together shared variables may occur. The following
four definitions will focus on how variables can be exported from substructures.

Definition 1.2.2 (Variable Tuple) Let V be a set of variables, then a variable tuple of V is
(v1,, vm), where 0 < m ≤ |V |, vi ∈ V, i ∈ [1..m], vi 6= vj , i 6= j ∈ [1..m]. If m = 1 the parenthesis
could be removed. The empty tuple will be represented by ().

For example if V = {v, w, x, y} then the following are variable tuples:

• (),

• w,

• (v, y),

• (y, v) and

• (w, y, x).

On the other hand, (w, y, w) is not a variable tuple, because the w is repeated. A permutation of a
variable tuple generates a different one. For example, (v, y) and (y, v) are different variable tuples.

Definition 1.2.3 (Disjoint Variable Tuples) Let vt and wt be two variable tuples of sets V
and W , respectively, then vt and wt are disjoint if they do not contain common variables.

For instance, (v, x) and (w, y) are disjoint, whereas (v, y) and (w, y, x) are not, because they
have y in common.

Then finally using variable tuples we will be able to construct lists of tuples that denote how
the block will recognize the variables of its sub-structures.

Definition 1.2.4 (Variable Pattern) Let V be a set of variables, then a pattern over V , is a

list L of variable tuples of V , such that
⋃|L|

i Li ⊆ V and Li ∩ Lj = ∅ for all i 6= j ∈ [1..|L|].

For example, the following are variable patterns:

• [v, (x, y)],

• [(w, x), (y, v)] and

• [v, y, w]

Also a permutation of the variable tuples inside a variable pattern generates a different one.
For instance, [v, y, w] and [y, v, w] are different variable patterns.

1.2. STRUCTURE CLASSES 9

Definition 1.2.5 (Disjoint Variable Patterns) Let vp and wp be two variable patterns of sets
V andW , respectively, then vp and wp are disjoint iff ∀(vt ∈ vp)∀(wt ∈ wp)[vt and wt are disjoint].

For instance, if W = v, w, r, t then [v, (x, y)] and [(r, t), w] are disjoint, whereas [v, (x, y)]
and [(r, t), (v, w)] are not disjoint, because v and (v, w) are not disjoint.

Block classes when using the list link define how the variable patterns of its potential substruc-
ture objects must be arranged. Next definitions are focused on that matter.

Definition 1.2.6 (Template Item) A template item will simply be an atomic identifier.

For example X, var are template items; and p(q) is not a template item.

Definition 1.2.7 (Template pattern) Given TI a list of template items with no repeated ele-
ments, and the atom d all (called modifier) then a template pattern is defined as,

1. TI or

2. (TI, d all).

For instance,

• [X, Y],

• ([X, Z], d all).

are template patterns. On the other hand, [X, X] is not a template pattern since X is repeated
inside the template pattern. The d all semantics will be describe later in this section while defining
unification.

Definition 1.2.8 (Variable Tuple - Template Item unification) Let vt be a variable tuple,
ti be a template item, then we say that vt and ti always unify.

Definition 1.2.9 (Template pattern - Variable Pattern unification) Let pt be a template
pattern and vp be a variable pattern constructed over the set of variables V , then pt unifies with
vp iff

1. if pt has not the form (spt, d all) then |pt| = |vp|,

2. if pt has the form (spt, d all) then |spt| = |vp| and vp has to contain all the variables in V .

For example ([X,Y,Z], d all) unifies with [(v, w), y, x] ∈ V , since X =(v, w), Y =y and Z =x and the
variable pattern uses all variables in V .

Using the definition of template pattern, we may define the link property of a block class as a
list of template pattern, such that |link| = |subsC|.

As a next step we will define the different name unification rule (DNU). This rule defines a
change in the classical unification extremely necessary for block specification (see §2.5).

Definition 1.2.10 (Different Name Unification rule) Let L be a link composed of tpi tem-
plate patterns, and V PL be a variable pattern list composed of vpi, then we say that L and V PL
ensure the Different Name Unification (DNU) rule iff

1. |L| = |V PL| and

2. tpi unifies with vpi and

3. Let t be a template item of tpi (without the modifiers) and Vt be the corresponding (unified)
variable tuple in vpi, then ∀(t)∀(t′)[t = t′ ⇒ Vt = Vt′] and ∀(t)∀(t′)[t 6= t′ ⇒ Vt ∩ Vt′ = ∅]
(i.e. the same template items in link must be unified with the same variable tuples and all
the different template items with disjoint variable tuples).

10 CHAPTER 1. I-DARE(LIB) – THE STRUCTURE LIBRARY

For instance if the link of a block class is [[X,Y], [X, Z]] and the variable pattern list of an object
created from that block class is [[(x, y), z], [(x, y), w]], then both of them ensure the DNU, being
X= (x, y) , Y = z and Z = w. But if the variable pattern were [[(x, y), z], [(x, y), (w, z)]] then there
would be a violation of the DNU. In this case the unification is Y = z and Z = (w, z) and see how
z is repeated in both Y and Z, which are different template patterns.

Finally we would like to talk about the functionality of the field rplR. This field represents what
we call replication relations, defining for the selected substructures the exact number of replications
that can be done, based on the cardinality of the dMV or the number of variables unified with a
template item. A substructure will be replicated depending on its free indices (see §2.5), hence
a real verification of the replication relations could only be done when we have knowledge of the
actual data (see §3.1.3).

1.3 Some Structure Class examples

In the first example we will define a LfP class for a really simple problem, but that will become
useful later on in the thesis. This LfP will be call Simple Selection and its algebraic representation
is the following,

dir
∑

i

fiyi

s.t.

yi ∈ {0, 1}

As can be seen this problem requires for its solution a mere inspection of the cost fi to decide
which yi will have value 0 or 1 in order to minimize or maximize the function. The i-dare(lib)
structure class representing the Simple Selection LfP will be,

Listing 1.12: Simple Selection LfP class

1 //∗∗ The v a r i a b l e s (y) w i l l be c o n s i d e r e d b i n a r y {0 , 1} .
2 d S imp l e S e l e c t i o n C : : d LeafProblem C
3 [
4 d im va r −> [d1] ,
5 a r g s −> [
6 d i r = d d i r e c t i o n ,
7 y = d ve c t o r (d var , [d1]) , // b i n a r y v a r i a b l e s
8 f = d ve c t o r (d constant , [d1]) // con s t a n t s
9]

10] .

Note that even if the basic numeric type in i-dare is R, a structure class may impose new con-
straints to that basic type, expressed in the structure class’ semantics. A similar situation was
already presented (d IC C) whereby the variables were constraint to be of integer type, and still
there are no explicit syntactical construct to express this basic type constraint. This is because
the structure classes define the parameter types just syntactically (i.e. the input/output of the
structure), while the rest lies in the semantical value of the structure, adequately documented.
This semantical information serves as a guideline to the potential solvers, that may eventually be
“registered” to that structure.

The next example, will be a Multi-commodity Minimum Cost Flow with Fixed-Charge LfP
(MMCF(FC)). This problem’s representation is very similar to the MCF LfP class (see Listing
1.6). It includes one new dimension K (commodities); the costs will now depend also on the
commodities; there are fixed costs per arc; the capacities are divided into single and mutual; and
there is a new set of variable, the design variables (boolean variables that determine which design
arc is being used).

Listing 1.13: MMCF(FC) class

1.3. SOME STRUCTURE CLASS EXAMPLES 11

1 //∗∗ Note tha t K r e p r e s e n t the commodi t i es and N the nodes
2 d MMCF FC C : : d LeafProblem C
3 [
4 d im va r −> [N, E ,K] ,
5 a r g s −> [
6 SN = d ve c t o r (d constant , [E]) , // s t a r t node
7 EN = d ve c t o r (d constant , [E]) , // end node
8 c = d ve c t o r (d constant , [K, E]) , // co s t pe r u n i t pe r a r c
9 f = d ve c t o r (d constant , [E]) , // f i x e d co s t pe r d e s i gn a rc

10 SD = d ve c t o r (d constant , [K,N]) , // supLfPy/demand
11 b = d ve c t o r (d constant , [K, E]) , // s i n g l e k c a p a c i t y pe r a r c
12 u = d ve c t o r (d constant , [E]) , // mutual a r c c a p a c i t y
13 f l ow = d ve c t o r (d var , [K, E]) , // f l ow v a r i a b l e s
14 desg = d ve c t o r (d var , [E]) // de s i gn v a r i a b l e s
15] ,
16 dim bound −> [(SN ,N) , (EN,N)]
17] .

The MMCF(FC) LfP class uses the dim bound property to constraint SN and EN to [0..‖N‖ − 1].
Using the same notation applied for MCF, we can derive an arc-based MILP representation of the
MMCF(FC) class,

min
∑

k∈K

∑

(i,j)∈E

c
k
ij ∗ flow

k
ij +

∑

(i,j)∈E

fijdesgij

s.t.
∑

j∈N+(i)

flow
k
ij −

∑

j∈N−(i)

flow
k
ji = SDk

i i ∈ N, k ∈ K

0 ≤ flow
k
ij ≤ b

k
ij (i, j) ∈ E, k ∈ K

∑

k∈K

flow
k
ij ≤ uij (i, j) ∈ E

∑

k∈K

flow
k
ij ≤ uijdesgij (i, j) ∈ E

flow
k
ij ≤ b

k
ijdesgij (i, j) ∈ E, k ∈ K

0 ≤ desgij ≤ 1 (i, j) ∈ E

desgij integer (i, j) ∈ E

Using the MILP formulation we could apply simplex-based cutting plane methods [27] that benefit
from the wide availability of codes for solving LP. However, these methods generally do not exploit
any underlying structure and the LPs may become huge. So, again in this case, the fact of
recognizing the MMCF(FC) structure explicitly allow us to apply focused solution methods like,
Lagrangian relaxations (flow, knapsack relaxations, etc) [69] and heuristics [55].

Finally, we will present a block class. This class will represent blocks that can be solved using
Lagrangian Relaxation Methods. This Lagrangian Relaxation structure will split the problem into
a substructure plus linear constraints.

Listing 1.14: Lagrangian Relax class

1 d B Lagrang i an Re l ax C : : d Block C [
2 i d s −> [sub , l i n k i n g] ,
3 subsC −> [d LR C , d l o c (d L i n e a r C o n s t r a i n t s C)] ,
4 l i n k −> [([X] , d a l l) , ([X] , d a l l)]
5] .
6
7 d LR C : : d Component C [ab s t r a c t] . // A u x i l i a r y s t r u c t u r e c l a s s

To create this block class, we used an auxiliary class (d LR C) that inherits directly from component
and its abstract, this class has an explicit semantical meaning strictly related with the interface of
its potential solvers (this topic will be treated in §4.4).

12 CHAPTER 1. I-DARE(LIB) – THE STRUCTURE LIBRARY

The d B Lagrangian Relax C block, has a substructure class and a linking structure class. Note
that the linking structure class (d Linear Constraints C) has the modifier d loc, indicating that there
will be no solver assignation for that substructure (i.e. the solver assigned to d B Lagrangian Relax C

must deal with it). In fact, this structure is used to construct the Lagrangian dual, by updating
the objective function information in the substructures (sub) [111].

1.4 Discussion

i-dare(lib) is an extensible library and the base of the modeling section of i-dare. Extending the
i-dare(lib) hierarchy we can define new problem classes and/or new combination of problems.
Each non-abstract class defined in i-dare(lib) represents an specific structure for which there
must exist solution techniques or at least reformulation rules (see §5).

The definition of all components inside i-dare(lib) using declarative programming (FLORA-2)
permits us to take advantage of the powerful deduction engine of FLORA-2 and the expressiveness
of its language. At the same time we use the object-oriented characteristics of FLORA-2 while
defining i-dare(lib) hierarchy.

Another cause that moved us to use declarative programming is that defining and implementing
the system becomes almost one task. Also the fact that we can change the code being executed
without stopping the system and apply changes dynamically, is another useful feature of FLORA-2
(generally present in Logic Programming).

i-dare(lib) is not a package that contains computationally heavy processes, in fact its main
purpose is to store all the structures and to define simple verification mechanisms to ensure well-
formedness of the classes.

To use FLORA-2 in i-dare(lib)’s definition gives us future query potentiality. Since i-dare(lib)
is essentially a “database” of structures, querying it will be crucial for future processes, like refor-
mulating or solving. Hence using FLORA-2 to define i-dare(lib) enables us to use Frame-Logic
+ HiLog + Transactional-Logic power to consult the structure class database.

Chapter 2

i-dare(im) – base modeling
environment

Abstract

Using the components defined in i-dare(lib) the user has at her disposal the structure base
to create models. For that purpose we define i-dare(im), an internal modeling environment
based on i-dare(lib) and also designed in FLORA-2 .

First we will see the main constructs that can be used, which will permit us to represent
dimensions, constants, variables, vectors and others. Furthermore, we will present their well-
formedness rules, until we arrive to a complete definition of a formulation, representing the
internal model (IM) of the problem. It is called internal model because above this modeling
environment we could create modeling languages (maybe graphical) that represent the models
in a more user friendly manner. i-dare(im) was chosen as base modeling environment because
it gives us a formal and sound way to create a formulation, and thus its design is based on
FLORA-2 its implementation becomes more natural.

To define i-dare(im) a bottom-up fashion will be used, starting from the dimension and
properties and ending with the leaf-problems, blocks and formulations.

2.1 Dimensions

Variables and constants may have one or more dimensions. A dimension is a finite set that defines
a way of indexing variables, constants, leaf problems and also blocks.

A dimension in i-dare(im) is represented by the fact d dimension(?id) where ?id is a unique atom.
We could define two dimensions as an example, the first referring to production plants and the
second one to products,

Listing 2.1: Example of dimensions

1 d dimens ion (p l a n t) .
2 d dimens ion (p roduct) .

2.1.1 Local dimensions

Dimensions can be also automatically defined by the system from LfPLs (see §2.4.1). In this case we
will add an extension to the d dimension/1 predicate (previously defined), a d dimension/2 predicate.

Listing 2.2: Local dimension definition

1 d dimens ion (?X , ? s t r u c t u r e) .

14 CHAPTER 2. I-DARE(IM) – BASE MODELING ENVIRONMENT

This predicate, like the previous one, specifies an atom representing the name of the dimension
(?X). As second argument it requires a component’s name (? structure), representing the LfPL that
defines the dimension.

For example, assume C is a LfPL that specifies the usage of a certain dimension D. Then the
system will generate the following dimension,

Listing 2.3: Example of local dimensions

1 d dimens ion (D, C) .

But now assume the user defined a dimension,

Listing 2.4: Another dimension

1 d dimens ion (D) .

This dimension defined by the user will be called global. When a global and a local dimensions
have the same name, both of them must represent the same set of elements and therefore have the
same cardinality.

2.2 Variables and Constants

Variables and constants can be seen as properties present in the problem being modeled. However,
we need to make a distinction between variables and constants because they will be treated differ-
ently while solving a problem. We will construct a common root class and using d var, d constant

and multi-inheritance, the mentioned distinction will be enabled.
The common root will be called d property and it is defined as follows,

Listing 2.5: Class of properties

1 d p r ope r t y
2 [
3 dims => l i s t ,
4 l ower => doub l e ,
5 upper => doub l e ,
6 => bounded
7] .

where

• dims – is the list of all dimension of the property,

• lower – is a lower bound to the property,

• upper – is an upper bound to the property,

• bounded – defines whether it is a bounded property or not.

A variable must be defined as an object which name is an atom and it is an instance of d property

and d var. For instance,

Listing 2.6: Example of variable

1 x : d va r .
2 x : d p r ope r t y
3 [
4 dims −> [d1 , d2]
5] .

defines an unbounded variable named x, which has two dimensions d1 and d2.
For constants the same principle is applied, but d constant is used instead.

2.2. VARIABLES AND CONSTANTS 15

2.2.1 Bounding

Defining the bounds of a property may be done using lower and/or upper. One may specify numerical
values, however i-dare(im) allows the usage of constants to define bounds. One may create a
bounded or partially bounded property p in two possible ways:

1. Using a number or

2. Using a constant c (c:d constant).

The first case is the simplest one, we should only place a number in the definition of the bound
and it is done. For instance, the following code,

Listing 2.7: Bounding example

1 x : d va r .
2 x : d p r ope r t y [
3 dims −> [d1 , d2] ,
4 l ower −> 0 ,
5 upper −> 1
6] .

defines a variable that has to take values greater or equal than 0 and lower or equal than 1.
The usage of constants is syntactically simple, but one may incur in some inconsistencies related

with the properties’ dimensions. For instance, if we take property x an try to lower bound it with
a constant c that has dimensions d3 that x does not have. In this case, when we try to obtain the
lower bound of xi,j (i ∈d1 and j ∈d2) we wont know which c to use, because we have no idea which
value must be assigned to dimension d3.

Since a property c may be bounded by a constant c’ that may be as well bounded by another
constant c ’’ , and so on, we need a way to synthesize this sequence of bounding applications. We
can thereby analyze what happens when we have cycles in those sequences.

Definition 2.2.1 (Bounding spanned sequence (BSS)) Let a1 be a constant and a1.b(a2)
be the fact that a2 is a bound (lower or upper) of a1, assuming we have the following sequence
a1.b(a2.b(a3.b(......an)), where an is an unbounded constant or bounded by a number, then the
sequence a1, ..., an will be a bounding spanned sequence (BSS) of a1.

Proposition 2.2.2 Let S be a BSS of a property p, then S is finite if there are no repeated elements
inside S.

The proof of this proposition is quite straightforward, assume S is the BSS of a constant c and
that c is repeated inside S, then S must recursively contain the BSSs of the repeated c, to which
the same principle applies. Therefore S is not finite.

Next definition summarizes the bounding conditions exposed above,

Definition 2.2.3 (Bounding Rule) Let p be a property and c a constant, if using c for bounding
p (second case) we have to ensure the following

• If Dp are the dimensions of the property and Dc are the dimensions of the constant, then
Dc ⊆ Dp.

• All bounding spanned sequences of p must not contain repeated elements. (no-cycle condi-
tion)

2.2.2 Property well-formedness

In this section we will formally define the well-formedness rules of properties in general, and its
particular cases: variables and constants.

16 CHAPTER 2. I-DARE(IM) – BASE MODELING ENVIRONMENT

Definition 2.2.4 (Property well-formedness) We say p is a well-formed property iff

1. p :d property, being p a unique atom,

2. p [dims −> ?L], where ?L is an empty list, or a list composed of well-formed dimensions,

3. bounding in p satisfy Rule 2.2.3 (Bounding Rule).

Definition 2.2.5 (Variable well-formedness) We say v is a well-formed variable iff

1. v is a well-formed property and

2. v :d var .

Definition 2.2.6 (Constant well-formedness) We say c is a well-formed constant iff

1. c is a well-formed property and

2. c :d constant.

2.2.3 Indexing

When accessing a property, indexing is required. Indexing will allow the future definition of vectors
(of variables or constants).

An index is an atom that it is associated to a dimension. It is declared using the fact
d index(?id , ?dim), where ?id is an atom and ?dim is a defined dimension (i.e. d dimension(?dim)).
There could be more than one index defined over one dimension. An index is well-formed iff ?id is
unique and ?dim is a well-formed dimension.

Let prop:d property be a property with dimensions [d1,...,dn] (n > 0), then we call the term
prop(i1,...,in) an indexed property, where d index(i1,d1), ..., d index(in,dn). If n = 0 then the indexed
property must just be the term prop.

For instance, assume we have the following piece of i-dare(im) model,

Listing 2.8: Dimensions and Constants in i-dare(im)

1 d dimens ion (p roduct) .
2 d dimens ion (p l a n t) .
3
4 d index (i , p roduct) .
5 d index (j , p l a n t) .
6
7 s t o ck : d cons tant .
8 s t o ck : d p r ope r t y
9 [

10 dims −> [product , p l a n t]
11] .

One possible indexed property of stock could be stock(i,j).
When indexing we may also consider the possibility of using several indices over a single dimen-

sion. For instance consider the property x with a single dimension D, we could declare an index i

over D and use the indexed property x(i). However, we could use more that one index over a single
dimension. For example, assume we have j over D1 and k over D2, then we could use the indexed
property x((j ,k)). Note that we grouped j and k using a tuple, this will imply that the actual index
that is going to used is the linear combination j∗ card(D1) + k (operator card will be explained in
the following section). The only condition we must satisfy is that the cardinality of the tuple must
be equal to the cardinality of the corresponding dimension.

An indexed property is well-formed iff the property is well-formed and the indices used are also
well-formed. We will also use the concept of well-formed indexed variable and well-formed indexed
constant, which definitions are straightforward from the previous ones.

2.2. VARIABLES AND CONSTANTS 17

2.2.4 Expressions

Once we have indexing we can define how expressions in i-dare(im) can be built. Expressions will
use a set of operators defined by the predicate d operator(?op, ?c), where ?op is the operator symbol
and ?c is the arity of the operator. An initial set of operators will be included in i-dare(im) like,
+, −, ∗, /, ˆ and the special operators card, up and lw (ˆ is the power operator, card applied to a
dimension retrieves its cardinality, up applied to a property returns its upper bound and lw applied
to a property returns its lower bound). There are also 0-ary operators, called system constants,
like pi (π constant), e (e constant), big (arbitrarily large positive number). If a property x is
asked for its upper/lower bound and the bound is not defined then the operator up(x)/ lw(x) will
return big/−1∗ big.

The priority of the basic operators is set as usual. The card, up and lw operators do not need
priority because they will never be applied in infix form. Expressions in i-dare(im) will take the

following operands:

• numbers,

• indices,

• direction,

• indexed properties and

• aggregators (see 2.2.4).

For example, a well-formed expression could be 1 + c(i)∗x(i , j), where c(i) is an indexed constant
and x(i , j) is an indexed variable.

An indexed property inside an expression produces a replication of the expression while gen-
erating the instance. This replication is done for each value taken by the indices of the indexed
property. For instance if i can take values over {1, 2} and j over {1, 2, 3} then the previous expres-
sion is replicated in the following way

1+ c(1) ∗ x(1, 1)

1+ c(1) ∗ x(1, 2)

1+ c(1) ∗ x(1, 3)

1+ c(2) ∗ x(2, 3)

1+ c(2) ∗ x(2, 3)

1+ c(2) ∗ x(2, 3)

As can be seen indices i and j in the previous expression are free indices. If they were fixed inside
the expression the outcome might be different, as will be seen in further examples.

When we use a direction as an operand the system will assume that min evaluates to 1 and
that max evaluates to −1. This permits, for instance, to dynamically unify the direction of two
linear objective functions. See that if we multiply the constants by the direction we are unifying
to a minimization function. If we use −1∗direction instead, then we are unifying to maximization
function. This will become very useful in the definition of some reformulations.

We will have a particular type of expression, called constant expression. A constant expression
can not contain any reference to an indexed variable. For instance the previous expression is not
a constant expression.

Conditions

While constructing a model we may need to use logical expressions. In i-dare(im) this logical
expressions are called conditions. A condition uses as operators the following fixed set:

• = - equality,

18 CHAPTER 2. I-DARE(IM) – BASE MODELING ENVIRONMENT

• =\= - not equality,

• < - less than,

• > - greater than,

• =< - less or equal than,

• >= - greater or equal than,

• , - conjunction,

• ; - disjunction and

• not - negation.

This set of operator is used to construct conditional expressions that will help us build the
models; there is no relation between this set of logical operators and the one represented by d rel .
The last one is used as a parameter type to structure classes, in order to represent inequations or
equations (the constraints in the structure).

Condition’s operands will be the atom true and constant expressions. For example c(i , j) < card(plant)

is a valid condition which involves an indexed property (c(i , j) and the cardinality operator applied
to a dimension (plant)).

Conditions’ well-formedness is exactly extracted from FLORA-2 ’s predicates definition, just
adding the concept of constant expression’s well-formedness.

Using conditions i-dare(im) enables the construction of case sequences. A case sequence will
define several choices of constant expressions, more or less like a switch-case operator in languages
like C++.

To build a case sequence we will use the cs(?S) operator, ?S being a non-empty list equal to
[?CE1−> ?C1, ..., CEk−> ?Ck, ?CEk+1], where

• ?CEi – is a constant expression or a d rel (see §1.1.1),

• ?Ci – is a well-formed condition.

For example, [c(i) −> (i > 3, i < 20), c(i)∗5 −> (i >= 20), 0], represents a case sequence with two
choices, if the index i∈ (3..20) it takes the value of constant c(i), if i>= 20 takes the value of constant
expression c(i)∗5, and if i<= 3 takes the value 0.

Note that case sequences require a final element that has no condition attached, this element
may be called the default element. A case sequence will be evaluated from left to right sequentially,
and it will stop at the first condition that turns out to be true. In case no condition is true, the
default is returned.

Aggregators

In i-dare(im) we have a special type of operator that aggregates replicated expressions. This
operator is called aggregator.

Aggregators are operators that deal with the free indices of an expression, iterating on some of
these indices. All aggregators must inherit from the class d aggregator. The class d aggregator defines
the signature of a boolean method, called wellformed. The semantics of wellformed changes from one
aggregator to another, as will be seen later.

Listing 2.9: Aggregator Class

1 d agg r ega to r
2 [
3 => we l l f o rmed ,
4 => con s we l l f o rmed ,
5 => exempt (? I) ,
6 f r e e i n d s => l i s t ,

2.2. VARIABLES AND CONSTANTS 19

7 a l l i n d s => l i s t ,
8 pu r e i nd s => l i s t ,
9 v a r s => l i s t

10 e v a l (? IW, ? FI) −> ? r e s
11] .

See that other methods must be defined

1. cond wellformed – Must verify whether the aggregator is well-formed and has no variables in it,

2. exempt(?I) – Given an index list, it must verify whether the aggregator and all within it does
not fix any of the ?I, but just for the variables,

3. freeinds – Must retrieve the free indices of the aggregator,

4. allinds – Must retrieve all the indices (free or not) used inside the aggregator,

5. pureinds – Must retrieve all the indices used as operands inside the aggregator (called pure
indices),

6. vars – Must retrieve all the variable names used inside the aggregator,

7. eval – Defines the semantics of the aggregator, it receives a wrapper to the instance data ?IW

(see §3.1), and the values of the indices that has already been fixed ?FI. It returns in ?res the
evaluation of the aggregator.

When creating an aggregator, we may do it in the following way,

Listing 2.10: Example of aggregator general form

1 ? i d (? expr , ? i nds , ? cond) : d agg r ega to r .
2
3 ? i d (? expr , ? i nds , ? cond) [we l l f o rmed] :− . . .
4 // implement a l l methods

where

• ?id, is a unique atom representing the name of the aggregator,

• ?expr, is the expression to aggregate,

• ?inds, is the list of indices that will be used to aggregate,

• ?cond, is a condition.

This is really a suggestion of how we may define an aggregator. At the end one can define the
aggregator however one likes, just ensuring the inheritance and the method implementations.

For example, lets see the aggregator a sum

Listing 2.11: Example of a specific aggregator

1 a sum (? expr , ? i nds , ? cond) : d agg r ega to r .
2 a sum (?E , ? I , ?C) [we l l f o rmed] :−
3 e x p r we l l f o rmed (?E) , // v e r i f i e s ?E i s a we l l−formed e x p r e s s i o n
4 e x p r f r e e i n d s (?E , ? e I) , // r e t r i e v e s f r e e i n d i c e s o f ?E (? e I)
5 s ub s e t (? e I , ? I , ?) , // v e r i f i e s t ha t ? I ⊆ ? e I
6 cond we l l f o rmed (?C) , // v e r i f i e s c o n d i t i o n we l l−f o rmednes s
7 c o n d f r e e i n d s (?C , ? c I) , // r e t r i e v e s f r e e i n d i c e s o f ?C (? c I)
8 s ub s e t (? e I , ? c I , ?) . // v e r i f i e s t ha t ? c I ⊆ ? e I
9 // implement a l l o t h e r methods

20 CHAPTER 2. I-DARE(IM) – BASE MODELING ENVIRONMENT

The aggregator identifier has to be added as an operator (d operator (a sum(? ,? ,?), 3)).
In the previous code example we showed the wellformed method implementation, that defines

when the a sum is well-formed or not. Observe that the last subset call enforces that the conditions
must not contribute to increase the free indices of an expression.

For example c(i) ∗ a sum(x(i , j), [j], j>0) is an expression that has i as free index, see how j is
in the list of indices of a sum and at the same time is used in the condition, to iterate over the x(i , j)

with j > 0.
Other aggregators can be defined like min(?L)/ max(?L), which return the minimum/maximum

of the specified list ?L.
Once the concept of aggregator is defined, we can formalize we can formalize some concepts

that we have been using so far, like free index of an expression and exempt for expressions.

Definition 2.2.7 (Free index of an expression) Let p be a property that belongs to an ex-
pression E and I the index list of p, then if there is an i ∈ I that is not contained in any aggregator
index list, it is called free index of E.

Definition 2.2.8 (Exempt for expressions) Let E be a well-formed expression and ?I a list of
indices, we say E is exempt(?I) iff

• E is a number, an index or a constant expression;

• if E is an indexed variable and vI the indices in E then ?I⊆ vI;

• if E is an aggregator and E1 is the expression within E with at least one variable reference
inside of it, then I ∩ (indices to be fixed by E) = ∅ and E1 [exempt(?I)] must be true;

• if O is the most external operator in E and LOE is the list of operands of O then ∀(ε ∈ LOE)
ε must be exempt(?I).

For example, if inside a structure C we have an indexed variable x(i, j) that is used inside an
expression like

∑

i x(i, j) then if we ask C whether it is exempt in [i , j] or not, the answer would
be no, because the index i is fixed and it is used inside an indexed variable (x(i, j)).

The exempt definition is only interested in ensuring that a certain index list is not fixed for
any variable (left as free indices).

2.3 Scalars and Vectors

Scalars and vectors define the division between the parameters with no dimensional replication
and parameters with dimensional replication, respectively. The scalars will be the set of constant
expressions, variables, directions and relations.

Definition 2.3.1 (Scalar well-formedness) A scalar s is well-formed

1. with respect to d var iff s is a well-formed indexed variable,

2. with respect to d constant if s is a well-formed constant expression (including case sequences),

3. with respect to d rel if s is a =, =< or >=,

4. with respect to d direction if s is min or max.

Scalars’ definition does not affect the free indices of its inner components. Therefore the free
indices of a scalar will simply be the free indices of the property or of the expression used to define
it. In case the scalar is of type d rel or d direction the free index set will always be ∅.

On the other hand vectors are always represented by the type d vector(?K, ?S) and represent the
multi-dimensional collections of parameters.

A vector in i-dare(im) is declared using two types of constructs:

2.3. SCALARS AND VECTORS 21

1. $(?x, ?inds) – where ?x is a scalar, ?inds is the list of indices or tuples of indices that will be
used to build the vector.

2. $(?KV) – where ?KV is a K-vector (cf. Definition 2.3.5).

For example, $(a(i,j), [j]) , with j∈ [0..2] generates the vector, 〈a(i, 0), a(i, 1), a(i, 2)〉.
In the second way of defining vectors we used a new concept called K-vector. A K-vector is a

structure built using a series of lists placed one inside the other to obtain a sort of multi-level list,
like a set of pyramids. This structure is used to concatenate multi-dimensional vectors.

For instance, assume we have the vectors $(a(i), [i]) and $(b(j), [j]) , we may want to obtain a
final vector product of the concatenation of the previous ones. To make the problem more complex
assume we want to concatenate 2-dimensional vectors or 3-dimensional vectors. The Figure 2.1,
show some graphical examples until 3 dimensions.

Figure 2.1: K-Vector examples

To formally define a K-Vector, we will first need several definitions. These definitions will guide
us step by step towards the final specification of K-Vector.

Definition 2.3.2 (Multilevel List) KV is called multilevel list iff

1. KV = [V1, ..., Vm] where Vi has the form $(?type, ?inds), or

2. KV = [KV1, ...,KVm] where KVi is a multilevel list.

A multilevel list is simply a collection of embedded lists using a level fashion, such that in the final
level we find vectors of the form $(?type, ?inds). For instance,
E = [[$(a(i, j), [i , j]), $(b(i1,j1), [i1 , j1])], [$(c(i2,j2), [i2 , j2])]] is a multilevel list.

Definition 2.3.3 (Levels’ description) Given a multilevel list KV , we define its levels’ descrip-
tion, denoted levels (KV), as folows,

1. if KV = [V1, ..., Vm], where Vi has the form $(?type, ?inds), then levels (KV) = [m].

2. if KV = [KV1, ...,KVm], where KVi is a multilevel list, then levels (KV) = [m|levels(KV1)].

For example, levels ([[$(a(i,j), [i , j]), $(b(i1,j1), [i1 , j1])], [$(c(i2,j2), [i2 , j2])]]) = [2,2].

Definition 2.3.4 (Deepness rule) A multilevel list KV satisfies the deepness rule iff

• KV = [V1, ..., Vm], where Vi is a vector of the form $(?type, ?inds); or

• KV = [KV1, ...,KVm], where KVi is a multilevel list, ∀i, j ∈ [1..m] levels (KVi) = levels(KVj),
and KVi satisfies the deepness rule.

22 CHAPTER 2. I-DARE(IM) – BASE MODELING ENVIRONMENT

Note that a multilevel list KV , with levels (KV) = [m|R], that satisfies the deepness rule, is
composed by m1 elements with identical levels’ description equal to [R]. Moreover, | levels (KV)|

denotes the deepness of the multilevel list. For instance, the previously defined E does not satisfy
the deepness rule since the multilevel sublists have different levels’ description [2] and [1] . An
example of multilevel list that satisfy the deepness rule may be,
E1 = [[$(a(i,j), [i , j]), $(b(i1,j1), [i1 , j1])], [$(c(i2,j2), [i2 , j2]), $(d(i3,j3), [i3 , j3])]] .

Definition 2.3.5 (K-Vector) Let:

• KV be a multilevel list that satisfies the deepness rule and has levels (KV) =l;

• KV [m0][m1]....[m|l|−1] =$(?typem0,...,m|l|−1
, ?indsm0,...,m|l|−1

), with mj ∈ [0..lj − 1] and j ∈
[0..|l| − 1];

• card(?indsm0,...,m|l|−1
[i]) be the cardinality of the dimension associated with the index ?indsm0,...,m|l|−1

[i],
with i∈ [0..|l| − 1],

then KV is a K-Vector iff ∀mj ∈ [0..lj − 1], ∀j ∈ [0..|l| − 1] and ∀i ∈ [0..lj − 1]

1. |?indsm0,...,m|l|−1
| = l; and

2. card(?indsm0,...,mi,...,m|l|−1
[|l|−i]) = card(?indsm0,...,mi,...,m|l|−1

[|l|−i]), ∀m′
i 6= mi ∈ [0..li − 1].

For example, E1 is a K-Vector if |i| = |i1|, |i2| = |i3|, |j| = |j2| and |j1| = |j3|. Henceforth, we will
access the vectors inside a K-vector as if it were flattened (there were no levels). This may simplify
the notation a little bit.

Definition 2.3.6 (Vector well-formedness) A vector v is well-formed with respect to d vector(?K, ?S)

iff

• if v has the form $(?x, ?inds) then

1. ?x must be a well-formed scalar with respect to ?K,

2. ?inds must be a list of well-formed indices or tuples of well-formed indices,

3. |?inds| = |?S|,

• if v has the form $(KV) then

1. KV is a K-Vector and | levels (KV)| = |?S|,

2. ∀v′ ∈ KV , v′ is a well-formed vector.

In practice vectors formed using a K-vector, will also accept scalars (if they are of the correct
type). Note that a scalar can easily be seen as a vector of one dimension of cardinality 1. For
instance, $([$(a(i), [i]), 1, 0]) is a well-formed vector, 1 and 0 are two scalars and they will be
appended at the end of the vector $(a(i), [i]) . Of course scalars can not be concatenated if the
K-Vector has more than one level.

Lets define the free indices of a vector.

Definition 2.3.7 Let v be a vector, if it is defined using

• $(?x, ?inds), then the free indices of v will be F−?inds, where F are the free indices of ?x,

• $(KV), then the free indices of v will be
⋃

i∈[1..n] Fi, where Fi are the free indices of vi ∈ KV .

To retrieve all indices and pure indices can be defined in an analogous way.
Lets also define when a vector is exempt(?I),

Definition 2.3.8 Let v be a vector, then v is exempt(?I) iff

• if v has the form $(?x, ?inds), then ?x has to be exempt(?I) and ?inds ∩ ?I = ∅.

• if v has the form $(KV), then v′ has to be exempt(?I) (∀v′ ∈ KV).

2.4. LEAF PROBLEM 23

2.4 Leaf Problem

A leaf problem (LfP) is represented in i-dare(im) using the following object definition,

Listing 2.12: LfP specification

1 ? i d : ? c l a s s
2 [
3 a r g s −> ? args ,
4] .

where

• ?id is a unique atom

• ? class :: d LeafProblem C[not abstract, not local] is a non abstract non local LfP class,

• ?args is the dictionary of arguments of the LfP, similar to the one used in §1.2.1.

LfP well-formedness will be mainly focused on ensuring the argument’s well-formedness. For
instance, if the type specified in the LfP class is a scalar (d var or d constant) then the LfP must
specify a valid scalar in the argument list, and the same if it is a vector, a relation or a direction.

Definition 2.4.1 (LfP well-formedness) A LfP Pk is well-formed iff

1. ?id is a unique atom,

2. ? class :: d LeafProblem C[not abstract, not local]),

3. |?args| = |? class . args|,

4. for all (?id = ?a) ∈?args,

(a) if ? class .?args [? id] ∈ {d var, d constant, d rel} then ?a must be a well-formed scalar with
respect to ? class .? args [? id];

(b) if ? class .?args [? id]=d vector(?K, ?S) then ?a must be a well-formed vector with respect to
? class .? args [? id];

(c) if ? class .? args [? id]= d direction then ?a∈ {min, max}.

The following LfP is an object instance of the LP class (see §1.2.1),

Listing 2.13: LfP example

1 ex1 : d LP C
2 [
3 a r g s −> [
4 x = $(x (i) , [i]) ,
5 c = $ (1 , [i]) ,
6 A = $(a (j , i) , [i , j]) ,
7 b = $(c s ([0−>(j <1) , 1]) , [j]) ,
8 r e l s = $(’=< ’ , [j]) ,
9 d i r = ’min ’

10]
11] .

Listing 2.13 can be represented algebraically as follows,

min
∑

i

1 ∗ xi

s.t.

∑

i

Aj,ixi ≤

{

0 , if j < 1
1 , otherwise

, ∀(j)

The next two definitions are targeted to LfP’s free indices and exempt concepts respectively.

24 CHAPTER 2. I-DARE(IM) – BASE MODELING ENVIRONMENT

Definition 2.4.2 (LfP’s free indices) Let P be a well-formed LfP, then
P . free inds = ∪(?id=?a)∈P.argsa.free inds will define the LfP’s free indices.

Definition 2.4.3 (Exempt for LfP) Let P be a well-formed LfP, then P .exempt(?I) is true iff
∀((? id = ?a)∈ P .args)[?a.exempt(?I) is true].

2.4.1 Local Leaf Problems

The previous definitions demand the LfP not to be local. When local is present in the LfP class
declaration all objects instanced from that class will be called local leaf problems (LfPL). There
will be a change in LfPL argument treatment. Local properties will be defined at a LfPL level,
instead of a global level as has been done until now.

Since we will not have a global declaration for the properties used in a LfPL, there must be a
way of expressing all the necessary information within the LfPL. For this purpose we will use a
different argument declaration,

Listing 2.14: LfPL specification

1 ? i d : ? c l a s s
2 [
3 a r g s −> [? props , ? f r e e i n d s]
4]

where,

• ?id is a unique atom

• ? class :: d LeafProblem C[not abstract, local] is a non abstract local leaf problem class,

• ?props is a dictionary and ? free inds is a list of indices.

In the case of LfPLs the well-formedness rules change drastically. Since all the data will be
defined a priori (in the data file) then the LfPL only needs to declare what it wants to export to
the rest of the formulation. At least there should be a variable declaration to communicate the
results.

Definition 2.4.4 (LfPL well-formedness) A LfPL Pk is well-formed iff

1. ?id is a unique atom,

2. ? class :: d LeafProblem C[not abstract, local],

3. ?props is composed of elements of the form ?id = ?p(?ind dims), where ?p is an identifier (unique
in ?props) and ?ind dims is a tuple made of elements of the form ?ind$?dim or tuples of them,
where ?ind and ?dim are atoms (representing an index and a dimension, respectively). In case
one of the elements of ?ind dims is a tuple of ?ind$?dim, all ?inds and ?dims must be globally
declared indices and dimensions, respectively.

4. for each (?id = p(?ind dims)) ∈ ?props,

(a) if ? class .? args [? id] ∈ {d var, d constant, d expr} then |?ind dims| = 0;

(b) if ? class .? args [? id]=d vector(?K, ?S) then |?ind dims| = |?S|.

5. ? free inds is a list of indices such that ∀(i ∈? free inds)[d index(i, ?dim) and d dimension(?dim)

(global dimension)].

The list of arguments in a LfPL is divided in two sub-lists, ?props and ? free inds . ?props contains
all the scalar and/or vector declarations. Instead of using the mechanism used in LfPs, LfPLs
declare local variables and constants. ?props contains all the information regarding property name,
indices and dimensions to be created automatically by the system.

2.4. LEAF PROBLEM 25

On the other hand ? free inds is a list of indices disjoint to the set specified in ?props; moreover,
they must be declared globally.

For example lets take the LfPL class d LP MPS C (see Listing 1.7), and build an object from it,

Listing 2.15: LfPL example

1 ex2 : d LP MPS C
2 [
3 a r g s −> [
4 [
5 x = x (i 1 $d1) ,
6 c = c (i 1 $d1) ,
7 A = A(j 1 $d2 , i 1 $d1) ,
8 b = b (j 1 $d2)
9] ,

10 []
11]
12] .

The list ?ind dims can be also specified using tuples, for example, A((i$d1, j$d2), k$d3). In this case
the cardinality of ?ind dims is 2. Once the property is extracted from the local file, the size of the
dimension linked to the first pair, must be equal to d1∗d2.

The definitions of free indices and exempt also change.

Definition 2.4.5 (LfPL’s free indices) Let P be a well-formed LfPL, such that P .args[? ,?fi],
then P .free inds = fi, defines the LfPL’s free indices.

Definition 2.4.6 (Exempt for LfPL) Let P be a well-formed LfPL, such that P .args[? ,?fi] then
P .exempt(?I) is true iff ?I⊆? fi .

LfPL’s semantics

Once the system encounters a LfPL declaration, besides verifying its well-formedness it makes some
preprocessing.

Let free inds be the list of free indices of a certain LfPL and free dims the corresponding list of
dimensions, then for each term p(ind1$dim1,...,indm$dimm) found in the list props of LfPL the system
creates the following property globally, (assume the LfPL’s identifier is pll)

Listing 2.16: Automatic property generation

1 p (p l l) : VC.
2 p (p l l) : d p r ope r t y
3 [
4 dims −> f r e e d im s ∪ [dim1 , . . . , dimm]
5] .

and for each dimi and indi (i∈ [1..m], the system will create the following dimension and index

Listing 2.17: Automatic dimension and index generation

1 d dimens ion (dimi , p l l) .
2 d index (i nd i , dimi) .

where VC is either d var or d constant depending on the corresponding parameter type in pll ’s class.
For example, for the LfPL

ex2 declared in the previous subsection, this is part of predicates
that the system will automatically generate,

Listing 2.18: Example of property and dimension generation

1 d dimens ion (d1 , ex2) .
2 d index (i1 , d1) .
3
4 x (ex2) : d va r .
5 x (ex2) : d p r ope r t y

26 CHAPTER 2. I-DARE(IM) – BASE MODELING ENVIRONMENT

6 [
7 dims −> [d1]
8] .

Properties defined in a LfPL can be accessed from other components of the model making
reference to its full name, for instance, x(ex2)(i1). Note that the name of the property changes to
be accessed globally by including the name of the component that declares it.

2.5 Blocks

Blocks will be used to represent composition of structures. A block in i-dare(im) is defined as
follows,

Listing 2.19: Block definition

1 ? i d : ? c l a s s
2 [
3
4 subs −> ? subs ,
5 subVP −> ?subVP ,
6 [f r e e I −> ? f r e e I]
7] .

where,

• ?id is a unique atom,

• ? class :: d Block C[not abstract] is a non abstract block class,

• ?subs is a list composed of atoms or tuples of atoms,

• ?subVP is a list of variable patterns (see §1.2.3),

• ? freeI is a list of indices. optional.

Assume we have a method vars that can be applied to any component and returns the set of all
variable identifiers used within the component. Let us also assume that when freeI is not present
in the block’s declaration then ? freeI = ∅ and that each substructure is considered a tuple (note
that only one structure is the tuple with one element).

Definition 2.5.1 (Block well-formedness) A block is well-formed iff

1. ?id is a unique atom,

2. ? class :: d Block C[not abstract],

3. |?subs| = |? class .subsC| = |?subsVP|,

4. ?subs[i]l:?class .subsC[i][wellformed],

5. ?subs[i]l[exempt(?freeI)] ,

6. ?subs[i]l.vars∩?subs[i]l.vars =∅,

7. ∀i 6=j∈ [0..|?subs|], ?subs[i] 6=?subs[j],

8. ?subVP[i] ⊆ ∪l?subs[i]l.vars,

9. ?subVP must unify with ? class . link ensuring the DNU rule (see definitions 1.2.9 and 1.2.10),

2.5. BLOCKS 27

When constructing a block the previous well-formedness rules must be guaranteed (and will
eventually be verified). Rules from 2 to 5 are related with the cardinalities, well-formedness and
exempt of the block’s sub-components. Each sub-component must be well-formed, different pair to
pair and exempt in the list ? freeI .

The second group of rules are the ones related to the link (i.e. how sub-components’ variables
will interact). Note that with this rule we enforce that we can not include new variables (i.e. vari-
ables not used in the sub-components) and we also define the way these variables will communicate
between each other.

A block uses its freeI list to control the inner replication of its sub-components, for example
if we have a block A with no freeI , such that ex2 ∈ A.subs, assume we add a dimension d3 as free
index of ex2; then in the final instance ex2 will be replicated ‖d3‖ times (see figure 2.2).

Figure 2.2: Replication inside blocks

On the other hand, when a block B defines a list of free indices (in freeI), it means that B
may be replicated inside a parent block. Let’s assume B will be replicated k times, then B needs
all its substructures variables to be partitioned in k disjoint subsets (i.e. there is no variable that
links one replication of B with the other). This fact is ensured with the condition 5 of the block’s
well-formedness definition.

The following examples will illustrate how blocks can be defined. Assume we have the following
d LP C and d IC C instances.

Listing 2.20: LP and Integrality constraint

1 ex3 : d LP C
2 [
3 a r g s −> [
4 x = $ ([$(x (k1) , [k1]) , $(y (k2) , [k2])])
5 c = $ (1 , [i]) ,
6 A = $(a (j , i) , [i , j]) ,
7 b = $(c s ([0−>(j <1) , 1]) , [j]) ,
8 r e l s = $(’=< ’ , [j]) ,
9 d i r = ’min ’

10]
11] .
12
13 i c : d IC C
14 [
15 a r g s −> [$(y (k2) , [k2])]
16] .

In ex3 definition we use a K-vector (line 4), because variables will be divided in integer and real.
Note that when creating the instance, i-dare will verify that k1 + k2 = i.

Using ex3 and ip we can create an instance of block class d B MILP C.

Listing 2.21: MILP block instance

1 milpB : d B MILP C
2 [
3 subs −> [ex3 , i c] ,
4 subVP −> [[y , x] , [y]]
5] .

We can build another example using d B vardept C block class

28 CHAPTER 2. I-DARE(IM) – BASE MODELING ENVIRONMENT

Listing 2.22: Another block example

1 b lock1 : d B va rdept C
2 [
3 subs −> [ex3 , i c] ,
4 subVP −> [[y , x] , [y , ()]]
5] .

Note the usage of () to represent the second group of variables of ic . Since d B vardept C defines
that for its second argument the template must be [X, W], the exported variables must have the
same cardinality. In this case the usage of the empty variable tuple () is allowed because W must
be disjoint to V (from the first template [X, V]).

The two previous examples use a particularity of the global structures, that is being able to use
K-Vectors. Note that the parameter x of ex3 is built using a K-Vector that concatenates the global
variables x and y. This variable partition allows easily to create the milpB block’s variable patterns.
Assume we wanted to create a MPS representation of the MILP block. One possible solution is
to use d LP MPS C as a substructure. However, since MPS has a way of distinguishing integer from
real variables (’MARKER’ ’INTORG’ and ’MARKER’ ’INTEND’), we could create a LfPL class for MILP
that uses directly the MPS format.

Listing 2.23: MILP MPS LfPL class

1 d MILP MPS C : : d LeafProblem C
2 [
3 d im va r −> [cons , co l sR , c o l s I] ,
4 a r g s −> [
5 x r = d ve c t o r (d var , [co l sR]) ,
6 x i = d ve c t o r (d var , [c o l s I]) ,
7 c r = d ve c t o r (d constant , [co l sR]) ,
8 c i = d ve c t o r (d constant , [c o l s I]) ,
9 Ar = d ve c t o r (d constant , [cons , co l sR]) ,

10 Ai = d ve c t o r (d constant , [cons , c o l s I]) ,
11 b = d ve c t o r (d constant , [cons]) ,
12 r e l s = d ve c t o r (d r e l , [cons]) ,
13 d i r = d d i r e c t i o n
14] ,
15 l o c a l
16] .

This LfPL class represents a MILP with the data in MPS format, note that the cols dMV (of d LP C)
is split into two dMVs, one for the columns related to real variables and the other for the columns
related with integer values. Of course, we could also create a LfP class for MILP (d MILP C) very
similar to d MILP MPS C. Note that for each LfP we might create respective LfPLs representing
specific formats. Therefore, a big amount of structure classes may be created, making difficult the
selection of structures while building the model. In chapter 5 we will see how we can deal with
this problem from a reformulation viewpoint, sometimes abstracting the user from the particular
formats.

The following definitions will specify how free index and exempt are done in blocks.

Definition 2.5.2 (Block’s free indices) Let B be a well-formed block, then B . freeI defines the
block’s free indices.

When generating the instance if freeI is not present, the block will replicate all the inner
components covering all their free indices.

Definition 2.5.3 Let B be a well-formed block, then B [exempt(?I)] is true iff B . freeI=?I.

See that exempt verification for blocks is pretty simple, since a block ensures exemption of all
its substructure’s variables based on its freeI list.

2.6. FORMULATION 29

2.6 Formulation

Using the previously defined constructs we can build a formulation of a problem. From now on we
will assume that when talking about components we will be talking about well-formed components.

A formulation will be an instance of the following class,

Listing 2.24: Formulation class

1 d Formu la t i on
2 [
3 d imens i ons => l i s t ,
4 i n d i c e s => l i s t ,
5 p r o p e r t i e s => l i s t ,
6 r oo t => d Component C
7] .

where

• dimensions – is a list of well-formed dimensions,

• indices – is a list of well-formed indices,

• properties – is a list of well-formed properties,

• root – is an instance of d Component C such that root [wellformed] is true.

A formulation does not explicitly store all the components, instead it only needs to know the
root component and due to the well-formedness rules all the other components must be contained
in a tree structure starting from root.

When creating a formulation we must ensure that there are no repeated components. Even
if we ensure that all sub-components of a block are different, it is not enough to ensure that all
components starting from root are different. For example, assume the component composition
exposed in figure 2.3.

Figure 2.3: An example of wrong component tree

Observe that C, B and A satisfy the rule of not repeated sub-components. However, we can see
that E is repeated in C and B. This is because, a block check just for its immediate sub-components.
Then, at a formulation level there can appear component repetitions. Therefore we need enforce
a global component non-repetition in the formulation well-formedness rule.

Definition 2.6.1 (Formulation well-formedness) A formulation Φ is well-formed iff

1. ∀d ∈ Φ .dimensions, d is well-formed,

2. ∀p ∈ Φ . properties , p is well-formed,

3. ∀i ∈ Φ . indices , i is well-formed,

30 CHAPTER 2. I-DARE(IM) – BASE MODELING ENVIRONMENT

4. Φ . root [wellformed] is true, and

5. if ∆ is the set of all δ: d Component C ∈ Φ (deductible from root) then ∀(δ, δ′ ∈ ∆)[δ 6= δ′]
(no cycle in the components’ tree).

Putting together some of the examples we presented in previous sections, we may build a
complete formulation,

Listing 2.25: Full formulation example

1 //∗∗ Dimens ions
2 d dimens ion (d1) .
3 d dimens ion (d2) .
4 d dimens ion (d11) .
5 d dimens ion (d12) .
6
7 //∗∗ i n d i c e s
8 d index (i , d1) .
9 d index (j , d2) .

10 d index (k1 , d11) .
11 d index (k2 , d12) .
12
13 //∗∗ P r o p e r t i e s
14 a : d cons tant .
15 a : d p r ope r t y
16 [
17 dims −> [d2 , d1]
18] .
19
20 x : d va r .
21 x : d p r ope r t y
22 [
23 dims −> [d11]
24] .
25
26 y : d va r .
27 y : d p r ope r t y
28 [
29 dims −> [d12]
30 upper −> 1 ,
31 l ower −> 0
32] .
33
34 //∗∗ Lea f Problems
35 ex3 : d LP C
36 [
37 a r g s −> [
38 x = $ ([$(x (k1) , [k1]) , $(y (k2) , [k2])])
39 c = $ (1 , [i]) ,
40 A = $(a (j , i) , [i , j]) ,
41 b = $(c s ([0−>(j <1) , 1]) , [j]) ,
42 r e l s = $(’=< ’ , [j]) ,
43 d i r = ’min ’
44]
45] .
46
47 i c : d IC C
48 [
49 a r g s −> [$(y (k2) , [k2])]
50] .
51
52 //∗∗ Blocks
53 milpB : d B MILP C
54 [
55 subs −> [ex3 , i c] ,
56 subVP −> [[y , x] , [y]]
57] .

2.7. DISCUSSION 31

58
59 //∗∗ Formu la t i on
60 form1 : d Formu la t i on
61 [
62 d imens i ons −> [d1 , d2 , d11 , d12] ,
63 i n d i c e s −> [i , j , k1 , k2] ,
64 p r o p e r t i e s −> [x , y , a] ,
65 r oo t −> milpB
66] .

Note that in this example the variable y it is not just integer, but also binary, due to the
specified bounds.

2.7 Discussion

The internal model (IM) is based on a set of defined structure classes (i-dare(lib)), it offers an
expressive way of constructing structured well-formed models. i-dare(im) defines all the constructs
that allow us to verify for well-formedness of an incoming formulation. Moreover, i-dare(im) offers
an initial set of tools for querying the IM, we could ask for free indices of variables, leaf-problems,
blocks; or we could retrieve whether a component is going to be replicated or not. Queries may
become more complex depending on the developers needs.

FLORA-2 plays an important part in i-dare(im), because it allows us to define all the syntactic
constructs together with the semantic using a formal language that at the same time enables us
to implement all those definitions.

A declarative definition of the problem’s formulation, enables us to construct a set of wrappers
around the formulation to allow data manipulation, increasing the amount of information that can
be queried (this is done in package i-dare(ei)). This means that the model will become a huge
source of organized information.

Building and solving a model is not i-dare’s only goal, as it is for many modeling environments.
With i-dare we are interested in creating an environment that allows us to build a model, to
exploit all the information that model can bear, and use that information for reformulating it
and finally solving it. The usage of declarative programing in the design of i-dare(lib) and
i-dare(im) permits us to take advantage of that information and also leaves the door opened for
other developers that may come up with more powerful queries.

With the formal definition of well-formed Formulation, we lay the foundations for creating the
reformulation package. While defining this package we will see how querying the model+data
becomes crucial.

32 CHAPTER 2. I-DARE(IM) – BASE MODELING ENVIRONMENT

Chapter 3

i-dare(ei) – the enhanced instance

Abstract

Once the internal model is built and verified for well-formedness, we need to construct the
instance to feed it to the solvers. i-dare introduces a type of instance called enhanced instance

(i-dare(ei)) which uses the structural information contained in the internal model.
This chapter will define i-dare(ei) as a wrapper to the enhanced model that will provide

information regarding to the data and also will generate the enhance instance data file structure

that will be used by the solving part of i-dare.

3.1 Instance Wrapper (IW)

Once we build the internal model and verify it for well-formedness, we need to construct an
instance of this model using the problem data. For this purpose, i-dare provides a module called
i-dare(ei). i-dare(ei) defines a formulation’s wrapper class called d InstanceWrapper, that defines
the guidelines of how the data must be arranged to eventually generate the final instance.

The d InstanceWrapper class allows the system to access the data related with dimensions and
scalars of global and local components. This is the class definition,

Listing 3.1: Instance Wrapper

1 d Ins tanceWrapper
2 [
3 // P r o p e r t i e s
4 f o rmu l a t i o n => d Formu la t i on ,
5 g l o b a l => d DataHandler ,
6 l o c a l (? prob) => l i s t , // o f Data Hand l e r s
7
8 // Methods
9 d imS i z e (? dn) => i n t e g e r , // Gets a d imens i on ’ s s i z e

10 cons tVa l (? i c o n s) => doub l e , // Gets a con s t a n t v a l u e
11 upperBnd (? i v a r) => doub l e , // Gets the upper bound o f a v a r i a b l e
12 lowerBnd (? i v a r) => doub l e // Gets the l ower bound o f a v a r i a b l e
13] .

formulation – must be a property that sets which formulation the wrapper will handle.

global – must be the Data Handler that will deal with the global data (see §3.1.2).

local (?prob) – must be a list of Data Handlers that will deal with the data of the LfPL
?prob:d LeafProblem C[local].

dimSize(?dn) – retrieves the cardinality of a certain dimension ?dn (see §3.1.4 for a more accurate
definition).

34 CHAPTER 3. I-DARE(EI) – THE ENHANCED INSTANCE

constVal(? icons) – retrieves the value of a certain indexed constant ?icons (see §3.1.4).

upperBnd(?ivar) – retrieves the upper bound of a certain indexed variable ? ivar (see §3.1.4).

lowerBnd(?ivar) – retrieves the lower bound of a certain indexed variable ? ivar (see §3.1.4).

In the definition of the d InstanceWrapper we used d DataHandler. A d DataHandler is an interface that
abstracts the format in which the data is represented. Also, note that we used a property global

and a property local . Global refers to all the data related with LfP, whereas local refers to the
data handlers linked to the LfPL.

The parameterized property local (?prob) must define a list composed of objects DH such that
DH:d DataHandler and DH is registered to the class of ?prob (see §3.1.2).

To specify the properties local (?prob) must guarantee, we must first make some definitions,

Definition 3.1.1 (Single Dimension-Index Cardinality) Let ?IW be an instance wrapper and
di be a dimension or an index, then di’s cardinality will be defined by

‖di‖ =

{

?IW.dimSize(di) if d dimension(di) or d dimension(di,?pll)
?IW.dimSize(?d) if d index(id,?d) and (d dimension(?d) or d dimension(?d,?pll)).

Definition 3.1.2 (Multiple Dimension-Index Cardinality) Let DI be a list of dimensions
and/or indices, then DI’s cardinality will be defined by,

‖DI‖ =
∏

d∈DI

(‖d‖).

Having the previous definitions we can specify the property local (?prob) must always ensure that
given an IW:d InstanceWrapper,

|IW.local(?prob)| =

{

‖?prob.freeinds‖ or 1 if |?prob.freeinds| > 0

1 otherwise

This rule forces the user to supply a data handler for each replication the LfPL or one data
handler common to all replications of the same LfPL.

3.1.1 Global Data

Building the model of a problem is not enough, in order to solve the problem we also need the
data that will instantiate the model pieces, say dimensions, constants, leaf problems and blocks.

Since i-dare(im) give the possibility to explicitly define LfP and LfPLs, the data will be divided
in two groups, global data and local data.

Data for dimensions and properties explicitly declared in the internal model (i.e. not the ones
generated by the system) will be provided in a global data file. This file must contain the sets
composed by the dimensions’ cardinalities and the values of the constants.

i-dare(ei) provides us with a default format for defining a global data file based on XML.
This format will be defined as follows,

Listing 3.2: XML global data format

1 <DIMS>
2 <DIMENSION name=”dim name” ca rd=” c a r d i n a l i t y o f d i m e n s i o n ”/>
3 . . .
4 </DIMS>
5 <CONS>
6 <CONSTANT name=” constant name ” d e f a u l t=” o p t i o n a l d e f a u l t v a l u e ”>
7 <VALUE dim=” d im va l 1 , . . . , d im v a l n ” v a l u e=” c on s t a n t v a l u e ”/>
8 . . .
9 </CONSTANT>

10 . . .
11 </CONS>

3.1. INSTANCE WRAPPER (IW) 35

where

• dim name – is the global dimension’s name in the internal model,

• cardinality of dimension – specifies the cardinality of the dimension,

• constant name – is a name of a constant property in the internal model,

• dim val i – is an integer number that has to correspond to the proper dimension specified for
the property in the internal model,

• constant value – is a double that has to satisfy the bounding of the corresponding property,

• optional default value – is a double that will be assigned automatically by the system to the
indexings not present in the file. If the optional default value is not present the system will
assume 0 as default value.

For example, say we have the following piece of internal model,

1 d imens i on (d1) .
2 d imens i on (d2) .
3
4 b : d cons tant .
5 b : d p r ope r t y
6 [
7 dims −> [d1]
8] .
9

10 a : d cons tant .
11 a : d p r ope r t y
12 [
13 dims −> [d1 , d2]
14] .
15

One possible XML global data file for that model could be,

1 <DIMS>
2 <DIMENSION name=”d1” ca rd=”3”/>
3 <DIMENSION name=”d2” ca rd=”2”/>
4 </DIMS>
5 <CONS>
6 <CONSTANT name=”b”>
7 <VALUE dim=”0” v a l u e=” 2 .5 ”/>
8 <VALUE dim=”1” v a l u e=”1”/>
9 <VALUE dim=”2” v a l u e=” 5 .67 ”/>

10 </CONSTANT>
11 <CONSTANT name=”a”>
12 <VALUE dim=”0 ,0 ” v a l u e=” 0 .2 ”/>
13 <VALUE dim=”1 ,0 ” v a l u e=” 0 .6 ”/>
14 <VALUE dim=”1 ,1 ” v a l u e=”−2”/>
15 <VALUE dim=”2 ,1 ” v a l u e=”3”/>
16 </CONSTANT>
17 </CONS>

Note that for the instanced indexed constants a(2,0) and a(0,1) the value will be 0 (default by
omission).

On the other hand, when we are in presence of a LfPL, we will need to handle local data. Local
data contains information that may appear in a wide variety of formats depending on the structure
we are handling. For example, the LfPL class d LP MPS C, defines a class of LP which data comes
from a MPS file [97].

There is one thing in common between global and local data, it is that for both of them we
will need a data handler. Note that in the end, the XML file for global data could be seen as a
specific format. It is also true that it is a format highly influenced by the information required by

36 CHAPTER 3. I-DARE(EI) – THE ENHANCED INSTANCE

the global part of the internal model. Therefore the XML data handler will generally be used to
deal with global data. The following subsections will define how a Data Handler can be designed
and implemented.

3.1.2 Data handler (DH)

There must be a unique interface in i-dare(ei) to read data files, regardless of the format in which
the data is written. This interface is d DataHandler and is defined as follows,

Listing 3.3: DH Class

1 d DataHandler
2 [
3 // Methods
4 => g e n e r a l c h e c k (?S) ,
5 => f d che ck (? fdS)
6 d imS i z e (? dn) => i n t e g e r ,
7 cons tVa l (? i c o n s) => doub l e ,
8 upperBnd (? i v a r) => doub l e ,
9 lowerBnd (? i v a r) => doub l e ,

10 dataTag (?IW , ?C , ? ID) => l i s t
11] .

Note that more than the half of the methods have the same signature to the ones present
in d InstanceWrapper. This means that d InstanceWrapper makes delegation on the d DataHandlers when
accessing the data.

The DH class introduces three new methods,

general check (?S) – must be implemented to make initial verifications and initializations depending
on the structure ?S.

fd check(?fdS) – must control whether the DH can provide different data instances for ?fdS replica-
tions of the LfPL. Note that if the structure is global , no verification must be done.

dataTag(?IW, ?C, ?ID) – must generate a two elements list, the first being a list of XMLNodes (fol-
lowing the XSB Prolog specification [147]), and the second is the list of instanced indexed
variables inside the component ?C. ?ID is a dictionary composed of pairs index = val for all
indices external to the LfPL (?C), that enables the DH to instantiate the variables. The
XMLNode returned by this method contains the information of how the data will be repre-
sented (see MPS example in following sections).

Registration and some examples

Data handlers must be subscribed to the structures they can be applied to. The subscription
procedure will take place using the following predicate,

Listing 3.4: Data Handler subscription predicate

1 d DHsub s c r i p t i on (? s t r u c t u r e c , ?DH c , ? d im d i c t , ? p r o p d i c t) .

where,

• ? structure c – is the atom global or a LfPL class name (i.e. ? structure :: d LeafProblem C[not abstract, local]),

• ?DH c – is a DH class (i.e. ?DH c::d DataHandler),

• ?dim dict and ?prop dict – are dictionaries that depend on the DH and the structure classes.
This dictionaries must resolve name differences between the actual data file and the struc-
ture’s class we are planning to handle (see examples bellow).

For example, we may create a DH class to deal with the XML data file presented in §3.1.1.

3.1. INSTANCE WRAPPER (IW) 37

Listing 3.5: XML Data Handler Class

1 d XMLDataHandler : : d DataHandler
2 [
3 // P r o p e r t i e s
4 x m l f i l e => s t r i n g
5] .
6
7 d DHsub s c r i p t i on (g l oba l , d XMLDataHandler , [] , []) .
8
9 ?X : d XMLDataHandler [g e n e r a l c h e c k (?S)] :−

10 ?X[i n i t c h e c k (?S)] ,
11 ?X[x m l f i l e −> ? f i l e name] ,
12 load XML (? f i l ename , ? data) ,
13 i n s e r t {?X[data −> ? data] } .
14 // / Rest o f the methods

In the general check (?S) method we first call initcheck (?S) that will verify whether ?S = global and will
look for the subscription. Later on, other verification are done, by checking for the XML file
existence and by loading the data present in that file.

Note the for the particular case of d XMLDataHandler the method fd check(?fdS) is not defined,
since the data the DH manipulates will always be global data. Moreover, the dictionaries in the
subscription are both empty ([]). This can be done because the names in the XML file correspond
one to one to the names in the model (see §3.1.1).

Lets see how an IW can be created for the formulation form1 in Listing 2.25 in the previous
chapter,

Listing 3.6: IW example

1 gxml : d XMLDataHandler
2 [
3 x m l f i l e −> ’ data . xml ’
4] .
5
6 iw1 : d I ns tanceWrapper
7 [
8 f o rmu l a t i o n −> form1 ,
9 g l o b a l −> gxml

10] .

Since form1 has no LfPL in its structures’ tree, there is no need for iw1 to use the local (...)−>...

properties to assign the DHs of the LfPLs.

On the other hand, we may define a handler to deal with MPS data files, which can be subscribed
to structure classes like d LP MPS C or d MILP MPS C,

Listing 3.7: MPS Data Handler Class

1 d MPSDataHandler : : d DataHandler
2 [
3 MPSf i l e => s t r i n g
4
5 // C l a s s P r o p e r t i e s
6 dims −> [’ rCOLS ’ , ’CONS’ , ’ iCOLS ’] ,
7 props −> [’ rOF ’ , ’ rMATRIX ’ , ’ rVARS ’ , ’RHS’ , ’RELS ’ , ’DIR ’ , ’ iOF ’ , ’ iMATRIX ’ , ’ iVARS ’]
8] .
9

10 d DHsub s c r i p t i on (d LP MPS C , d MPSDataHandler ,
11 [c o l s =’rCOLS ’ , cons=’CONS’] ,
12 [c=’rOF ’ , x=’rVARS ’ , A=’rMATRIX ’ , b=’RHS’ , r e l s =’RELS ’ , d i r =’DIR ’]) .
13
14 d DHsub s c r i p t i on (d MILP MPS C , d MPSDataHandler ,
15 [co l sR=’rCOLS ’ , c o l s I =’iCOLS ’ , cons=’CONS’] ,
16 [c r =’rOF ’ , c i =’iOF ’ , x r=’rVARS ’ , x i =’iVARS ’ ,
17 Ar=’rMATRIX ’ , Ai=’rMATRIX ’ ,
18 b=’RHS’ , r e l s =’RELS ’ , d i r =’DIR ’]) .

38 CHAPTER 3. I-DARE(EI) – THE ENHANCED INSTANCE

19
20 // . . . v e r i f i c a t i o n and data r e t r i e v a l methods

Note that in this case, the d MPSDataHandler defines the set of dimension names and property names
that are independent from the ones in the structure classes it may be registered to. In fact, in the
subscriptions can be seen how these names are matched to the ones in the structure classes.

Since the MPS data file may represent a pure LP or also a MILP, the d MPSDataHandler divides
the columns into real and integer (using the prefixes r and i , respectively). In the d LP MPS C

subscription, it only specifies the name conversions for the real part, but in the d MILP MPS C

subscription it uses all of them (real and integer part).
We will not show all verification methods because the code is a little bit long. However, we

would like to stop a second at the fd check(?fdS) method, because d MPSDataHandler is used for local
data (as every other DH except for d XMLDataHandler). For a DH assigned to a certain LfPL (i.e.
local (?Pll) −> ?DHL) there are three possible scenarios,

1. ‖?Pll. freeinds ‖ = 1 or ?Pll . freeinds= ∅ – then there is no replication of ?Pll , therefore ?DHL = [?DH],
where ?DH must be a data handler subscribed to ?Pll .

2. ‖?Pll. freeinds ‖ > 1 – then

(a) if |?DHL|=‖?Pll.freeinds‖ – then all ?DH∈?DHL will be used to read one instance of ?Pll .

(b) if |?DHL|=1 – then the system will ask the only ?DH∈?DHL to fd check(‖?Pll. freeinds ‖),

i. The ?DH checks for and supplies ‖?Pll. freeinds ‖ different instances

ii. or the ?DH has only one instance that will be shared to all replications of ?Pll .

Notice that when only one DH is specified in the local section of a certain LfPL, the fd check(?fdS)

is invoked, in order to verify whether the DH internally provides the right number of different data
instances. For example, a MPS file may contain more than one RHS vector. This fact may be
used to store several different data instances in a single MPS file (changing the RHS parts of the
equations). So, the d MPSDataHandler must verify in its fd check(?fdS) method whether the number
of RHS vectors is 1 or ?fdS.

Data Access

One of the two main functionalities of a DH is to access the data. For doing so they define certain
methods that allow the retrieval of dimension cardinalities, constant values and variable bounds.
This data access is done through four methods,

• dimSize(?dim) −> ?size,

• constVal(? icons) −> ?val,

• upperBnd(?ivar) −> ?bnd and

• lowerBnd(?ivar) −> ?bnd.

For the global DH these methods will be called using the names defined in the model. For
instance, if there is a dimension, declared d dimension(plant), then to know the size of plant, one will
call ?gDH[dimSize(plant) −> ?size], where ?gDH is the global DH. For constants values is essentially the
same, just that the indexed constant we pass as argument, must have the indices instantiated (e.g.
instead of A(j , i), we must substitute i and j by values in [0..‖i‖-1] and [0..‖j‖-1], respectively).

The bound methods will be completely ignored in a global DH, since the bounds will be deduced
from the model (and the constant values).

On the other hand, for the rest of DH handlers (the ones used for LfPLs) the arguments’
meaning will slightly change. This change will be in part influenced by the fact that there may
be a different DH for each replication of the LfPL. Since the amount of replications of a LfPL is
‖LfPL.freeinds‖, the free indices of that LfPL will play a crucial part while determining which DH
will be used.

3.1. INSTANCE WRAPPER (IW) 39

Definition 3.1.3 (Instanced indices) Let I be a list of indices then the set of instanced indices
is defined by,

Iξ = {(Iv1 , ..., I
v
|I|) | I

v
j ∈ [0..‖Ij‖ − 1], with j ∈ [1..|I|]}.

The set of instanced indices defines the set of all possible combinations of values assigned to indices.
Notice that for a list of indices I, |Iξ| = ‖I‖.

Definition 3.1.4 (Linearization function) Let I be a list of well-formed indices, and (Iv1 , ..., I
v
|I|) ∈

Iξ then

ζ(Iv1 , ..., I
v
|I|) =

∑

j∈[1..|I|]

Ivj ∗
∏

k∈[j+1..|I|]

(‖Ik‖)

will defined the linearization function of a list of indices.

For example assume we have indices i and j with sizes 3 and 5 respectively. If we instance the
indices i = 1 and j = 2 then ζ(1, 2) = 5, being 5 the linear position. Note that, to linearize a two
dimensional position is to see the matrix as big sequence of concatenations of that matrix’s rows.
The ζ definition generalize that concept to n dimensions.

Assume we have a LfPL of class ?C, with free indices ?fiL , then for the access methods,

• dimSize(?dim) −> ?size,

• constVal(? icons) −> ?val,

• upperBnd(?ivar) −> ?bnd and

• lowerBnd(?ivar) −> ?bnd.

we have that,

• ?dim – must be a term of the form ?dname(ζ(fi1, ..., fn)) where ?dname ∈ ?C.dim var and (fi1, ..., fn) ∈
?fiLξ. If n = 0 ?dim must be equal to ?dname.

• ?icons – must be a term of the form ?cname(ζ(fi1, ..., fn), ?ii1,...,?iik), where ?cname is a parameter
identifier of ?C such that (?cname = ?type) ∈?C.args; (fi1, ..., fn) ∈ ?fiLξ; and

– if ?type = d vector(?T, ?S) and ?T 6= d var then k =?S and (? ii 1 ,...,? ii k) ∈ ?Sξ,

– if ?type 6= d vector(? , ?) and ?type 6= d var then k = 0.

Note that ?cname must correspond to a constant, relation or direction type (or the respective
vectors).

• ? ivar – will have the same structure as ?icons, but it must refer to a variable type (or a vector
of variables).

The DHs will implement these methods according to its data format and the dictionaries
specified in the subscription. For example, d MPSDataHandler will search for the corresponding
dimension, constant or variable name in the subscription dictionaries, and then using the internally
loaded data it will provide with the adequate response. Note that the DH may use the ? fi to look
for the corresponding internal replication, in the particular case of d MPSDataHandler, it will look for
the corresponding RHS.

40 CHAPTER 3. I-DARE(EI) – THE ENHANCED INSTANCE

3.1.3 IW - Data Validation

The instance wrapper will initially ensure that certain properties of the model are still satisfied
once the data is present. These properties are mainly the consistency of dimension sizes, vector
sizes and constant values.

In the case of global data there are some rules that the XML must satisfy, rules that depend
exclusively on the model the XML is linked to.

Definition 3.1.5 (XML – Rules) Given ?F:d Formulation a well-formed formulation, and a XML
global data file (see format in Listing 3.2),

1. ∀(dim name)[dim name ∈ ?F.dimensions ∧ d dimension(dim name)];

2. ∀(constant name)[constant name:d constant ∧ constant name:d property ∧ constant name ∈ ?F.properties ∧

optional default value ∈ [constant name.lower..constant name.upper] ∧ ∀(dim vali), with i ∈ [1..n],

(a) n =|constant name.dims|,

(b) dim vali ∈ [0..‖constant name.dims[i]‖ − 1], and

(c) constant value i ∈ [constant name.lower..constant name.upper].

3. ∀(constant name) if there is a ?Pl of class ?C::d LeafProblem C[not local], for which (?pn = constant name) ∈?Pl.args

and (?pn, ?dn) ∈?C.dim bounds, then ∀constant value of constant name (including the default one),
constant value ∈ [0..‖?dn‖ − 1].

Note that rule 3 has only effect when ?C.dim bounds is defined, otherwise it will be ignored.

There is an important rule related to the vector sizes.

Definition 3.1.6 (Vector sizes – Rule) For each ?Pl:?C in ?F:d Formulation, such that ?C::d LeafProblem C;
let CS be the list composed of the cardinalities of all dMVs in ?S, such that (?id = d vector(?K,?S)) ∈?C.args;
and v be a the vector, such that (?id =v) ∈?Pl.args, then the |v| = CS.

The size of a vector |v| is computed depending on how it is built. When it is a simple vector
the size will be computed based directly on the index list sizes. On the other hand, when it is
K-vector the size will be the sum in each dimension of the appended simple vectors.

For instance let’s revisit the example in Listing 2.25. In this example we have a LfP structure
(ex3) of type d LP C,

1 ex3 : d LP C
2 [
3 a rg s −> [
4 x = $ ([$(x (k1) , [k1]) , $(y (k2) , [k2])])
5 c = $ (1 , [i]) ,
6 A = $(a (j , i) , [i , j]) ,
7 b = $(c s ([0−>(j <1), 1]) , [j]) ,
8 r e l s = $(’< ’ , [j]) ,
9 d i r = ’min ’

10]
11] .

1 d LP C : : d LeafProb l em C
2 [
3 d im va r −> [c o l s , cons] ,
4 a rg s −> [
5 x = d vec to r (d var , [c o l s]) ,
6 c = d vec to r (d constant , [c o l s]) ,
7 A = d vec to r (d constant , [cons , c o l s]) ,
8 b = d vec to r (d constant , [cons]) ,
9 r e l s = d vec to r (d re l , [cons]) ,

10 d i r = d d i r e c t i o n
11]
12] .

Once the formulation is linked to the data, cols and cons will have an actual size, that in this case
will depend on |k1|+|k2| and |i| (for cols), and on |j| (for cols). The vector sizes’ rule will ensure this
relation in all the vectors in ex3. Using classic unification mechanism, the system will deduce the
sizes of cols and cons and verify that all the sizes are correct depending on the vectors’ disposition
within d LP C.

The Vector sizes’ rule (3.1.6) is of particular interest in the case of LfPs, because they have a
more rich mechanism of constructing vectors that may provoke an inconsistency of the rule. For
LfPLs, ensuring this rule is more simple, since the way vector parameters are specified is very
close to the type representation. However, when we use global dimensions in the LfPL’s vector
specification there must be a correspondence between the expected size and the global dimension’s
cardinality (or the product if more than one).

This last assessment take us to this rule.

3.1. INSTANCE WRAPPER (IW) 41

Definition 3.1.7 (Mixed dimensions - Rule) Let ?d be a dimension such that d dimension(?d)

and d dimension(?d, ?p) then the global ?d size must be equal to the size of ?d extracted from the DH
assigned to ?p.

Since, a dimension may be shared between the local and global parts of the data, the system
must verify a shared dimension’s consistency (no multiple cardinalities). This validation is done
applying the Mixed dimensions’ rule.

Involving dimensions and blocks, there is another thing we have to verify. When a block class
defines the rplR (replication relations) field, we need to ensure that the amount of replications of
the substructures inside the block corresponds to the expressions specified in rplR. For doing so we
use the following rule,

Definition 3.1.8 (Replication Relations - Rule) Let ?b be a block, such that ?b:?Cb, ?Cb::d Block C,
then for all (?id = ?expr) ∈ ?Cb.rplR,

‖(?id.freeinds − ?b.freeinds)‖ = eval(?expr),

where eval (?expr) evaluates the expression by substituting all dMVs and template items by the
corresponding cardinalities.

3.1.4 IW - Access methods

Once the data is verified to be consistent with the model, one may access the model’s data related
information, through the IW’s access methods.

• dimSize(?dim) −> ?size,

• constVal(? icons) −> ?val,

• upperBnd(?ivar) −> ?bnd and

• lowerBnd(?ivar) −> ?bnd.

For accessing the data through IW, there two possibilities, the first one is to use the global
names (even the ones automatically generated for LfPLs) and the second one is to use an internal
parameter type identifier or a dMV (for dimensions). For example, we may want to know the size
of a dimension named d1 or the size of a dMV of a certain structure.

Let’s define how both type of access work for each argument of the previously mentioned access
methods,

• For ?dim

– case 1 (using global names):

∗ When we ask for a dimension defined as d dimension(?d), then ?dim = ?d

∗ When the dimension is defined solely as d dimension(?d, ? pll), if ? pll . freeinds = ∅ then
?dim = ?d , otherwise, ?dim = ?d(fi 1 ,..., fi n) where (fi 1 ,..., fi n) ∈ ?pll.freeindsξ.

– case 2 (using dMV names): Given ?P:?C and ?C::d LeafProblem C (LfP or LfPL) if we want
to know the size of a dMV ?d∈?C.dim var for that ?P then

∗ if ?P. freeinds = ∅ or ?C[not local] then ?dim = ?P(?d) .

∗ otherwise, ?dim = ?P(?d(fi1 ,..., fi n)) where (fi 1 ,..., fi n) ∈ ?pll.freeindsξ.

• For ?icons

– case 1 (using global names):

∗ if we ask for an indexed constant of the form ?c(i1 ,..., in) then ?icons = ?c(iv1 ,..., ivn) ,

where (iv1 ,..., ivn) ∈ (i1,...,in)ξ.

42 CHAPTER 3. I-DARE(EI) – THE ENHANCED INSTANCE

∗ if the indexed constant has the form ?c(? pll)(i1 ,..., in) then ?icons = ?c(?pll)(iv1 ,..., ivn) ,

where (iv1 ,..., ivn) ∈ (i1,...,in)ξ and ? pll :d LeafProblem C[local].

– case 2 (using type parameter names): Given ?P:?C and ?C::d LeafProblem C (LfP or LfPL)
if we want to know the value of a type parameter ?tid such that (? tid = ?type) ∈?C.args

then

∗ if ?P. freeinds = ∅ and ?type is not a vector type then ?icons = ?P(?tid) .

∗ if ?P. freeinds = ∅ and ?type = d vector(?K, ?S) then ?icons = ?P(?tid(iv1 ,..., iv
|?S|

)) , where

(iv1 ,..., iv
|?S|

) ∈ ?Sξ.

∗ if ?P. freeinds 6= ∅ and ?type is not a vector type then ?icons = ?P(?tid(fi 1 ,..., fi n)) ,

where (fi 1 ,..., fi n) ∈ ?P.freeindsξ.

∗ if ?P. freeinds 6= ∅ and ?type = d vector(?K, ?S) then ?icons = ?P(?tid(fi 1 ,..., fi n,iv1 ,..., i
v
|?S|

)) ,

where (iv1 ,..., iv
|?S|

) ∈ ?Sξ and (fi 1 ,..., fi n) ∈ ?P.freeindsξ.

• For ? ivar is the same as ?icons but instead of constant identifier we use variable identifiers.

The IW’s access methods will rely on the DH’s access methods. The IW will transform each
access method’s argument to be used by the DH, according to the specification given in §3.1.2.
Therefore all global names will be converted to the corresponding dMV name (in case of a dimen-
sion) or the type parameter name (in case of a constant or variable).

When manipulating LfPLs elements, the IW will also try to retrieve the corresponding DH,
based on the LfPL free indices. If the LfPL has more than one DH, the IW will linearize the
instanced free indices to a value i and using i-th DH will call the corresponding DH access method.
However, if the amount of DHs is 1, then the IW will pass to that DH the ζ(fi1,...,fin) so that the
DH searches and returns the proper dimension size (or constant value or variable bound).

3.2 Structured Instance Generation

Besides accessing the data of a certain model, the IW enables i-dare to generate a structured
instance (SI). The SI will be composed of a main XML file called Meta Data and a set of external
references (see Figure 3.1). As will be seen later, the external references may be to data files or
remote data files. There is no restriction in how a external reference is designed, it only requires
that the corresponding DH (and eventually the solver) knows how to deal with it.

Figure 3.1: Structured Instance

3.2.1 Meta Data File

The meta data file will be a XML containing all the necessary information about the structure
and the external references. The meta data file will be structured like the internal model, starting
from the root node and unfolding towards the leaf problems. To show how the meta data file is
formed we will use a bottom up fashion, from the leafs to the root.

3.2. STRUCTURED INSTANCE GENERATION 43

Leaf Problems

A leaf problem is represented using the following XML tag,

Listing 3.8: LEAF Node general form

1 <LEAF type=” c l a s s ”>
2 <VARS>
3 <V n=” f u l l n ame ”/>
4
5 </VARS>
6 <DATA s i z e=” r ep s ”>
7
8 </DATA>
9 </LEAF>

The main tag contains a parameter named type which must be a ?C::d LeafProblem C. Observe
there is no need to store the name of the leaf problem we are writing, we just need the its class name.
Structures’ names play an important part during all pre-solving phases, but once the model+data
is adequately validated there is no need of them, anymore. The solvers only need the to know
which class the structure is, not its name in the model.

Immediately afterwards, there is a tag named VARS that contains a sequence of tags V repre-
senting the leaf problem variable names. Each V tag has a n parameter to which we assign the full
name of an indexed variable belonging to the leaf problem we are writing. The full name is a term
?id(iv1 ,..., ivn), where ?id :d var and (iv1 ,..., ivn) ∈ (i1,...,in)ξ, assuming |?id.dims|=n.

For example if we have a variable named x with dimensions d1 and d2, assuming d1= {0, 1}
and d2= {0, 1, 2} and that d1 is a free dimension for the leaf problem we are trying to represent,
then since d1 is a free dimension we will write the leaf problem two times for d1= 0 and for d1= 1.
Taking d1= 0 then it will be generated one V tag for each of the following x(0,0), x(0,1) and x(0,2).

The DATA tag is defined depending on whether the leaf problem is local or not. Given an
instance wrapper ?IW, ?P:?C, ?C::d LeafProblem C, for each (fi 1 ,..., fi n) ∈ ?P.freeindsξ we define a dictio-
nary ?ID ={?P.freeinds[1] = fi1,...,?P. freeinds [n] = fin} then if

• ?C[not local] – let ?gDH be the DH defined for global , then
?gDH[dataTag(?IW, ?P, ?ID) −> [?xmltags, ?vars]] defines the XML Nodes to be added to DATA

(?xmltag) and a set of variables to be added to VARS (?vars).

• ?C[local] – let ?lDH be the DH obtained from ?IW.local(?P)[ζ(fi1,...,fin)], then
?lDH[dataTag(?IW, ?P, ?ID) −> [?xmltags, ?vars]] defines the XML Nodes to be added to DATA (?xmltag)
and a set of variables to be added to VARS (?vars).

The parameter size of tag DATA will be equal to |?P.freeindsξ| (i.e. the amount of replications of the
leaf problem depends on the amount of instanced free indices).

For example,

piece of a model

1 ex2 : d LP MPS C
2 [
3 a r g s −> [
4 [
5 x = x (i 1$d1) ,
6 c = c (i 1$d1) ,
7 A = A(j 1$d2 , i 1 $d1) ,
8 b = b (j 1$d2)
9] ,

10 [f i]
11]
12] .

enhanced instance declaration

1 mpsdh : d MPSDataHandler
2 [
3 MPSf i l e −> ” data . mps”
4] .
5
6 iw : I n s tanceWrapper
7 [
8 . . .
9 l o c a l (ex2) −> [mpsdh]

10] .

Assuming the MPS file ”data.mps” contains 3 variables and defines 2 RHS vectors, and that fi has
size 2, then the meta data file generation algorithm will create the following LEAF tag,

LEAF XML Node

44 CHAPTER 3. I-DARE(EI) – THE ENHANCED INSTANCE

1 <LEAF type=”d LP MPS C”>
2 <VARS>
3 <V n=”x (ex2) (0 , 0) ”/>
4 <V n=”x (ex2) (0 , 1) ”/>
5 <V n=”x (ex2) (0 , 2) ”/>
6 <V n=”x (ex2) (1 , 0) ”/>
7 <V n=”x (ex2) (1 , 1) ”/>
8 <V n=”x (ex2) (1 , 2) ”/>
9 </VARS>

10 <DATA s i z e=”2”>
11 <MPSFile name=”data . xml ” i r h s=”0”/>
12 <MPSFile name=”data . xml ” i r h s=”1”/>
13 </DATA>
14 </LEAF>

Observe that the dataTag method of the d MPSDataHandler generates a series of MPSFile tags, depending
on the amount of RHS vectors and free indices of the LfPL. Each MPSFile tag will contain the
reference to the MPS data file and which RHS vector is used. The variables have two indices,
because a LfPL property adds at the beginning of its dimensions the LfPL’s free index dimension
(see §2.4.1). Note that using the internal DH replication one may economize the space used to
store the final structured instance. In this case the main problem structure is shared and the RHS
vector change.

Another way of obtaining a similar result is by having two MPS data files with same main
structure only changing the RHS vector.

enhanced instance declaration

1 mpsdh1 : d MPSDataHandler
2 [
3 MPSf i l e −> ”data1 . mps”
4] .
5
6 mpsdh2 : d MPSDataHandler
7 [
8 MPSf i l e −> ”data2 . mps”
9] .

10
11 iw : d In s tanceWrapper
12 [
13 . . .
14 l o c a l (ex2) −> [mpsdh1 , mpsdh2]
15] .

LEAF XML Node

1 <LEAF type=”d LP MPS C”>
2 <VARS>
3 <V n=”x (ex2) (0 , 0) ”/>
4 <V n=”x (ex2) (0 , 1) ”/>
5 <V n=”x (ex2) (0 , 2) ”/>
6 <V n=”x (ex2) (1 , 0) ”/>
7 <V n=”x (ex2) (1 , 1) ”/>
8 <V n=”x (ex2) (1 , 2) ”/>
9 </VARS>

10 <DATA s i z e=”2”>
11 <MPSFile name=”data1 . xml” i r h s=”0”/>
12 <MPSFile name=”data2 . xml” i r h s=”0”/>
13 </DATA>

In this case the replication is not done inside the d MPSDataHandler. The IW will call first the dataTag

method of mpddh1 and then the one from mpsdh2. Each one of the previous calls returns one MPSFile

tag, pointing to the corresponding MPS file and to the only RHS vector inside of it.

Since the difference between data1.mps and data2.mps is only the RHS vector, it is recommendable
to use only one file and thus only one DH. The feature of internal replication depends on how one
implements the DH (see §3.1.2).

To show how the same mechanism works for a LfP instead of a LfPL, we will use the following
example,

3.2. STRUCTURED INSTANCE GENERATION 45

piece of a model

1 d d imens ion (d1) .
2 d d imens ion (d2) .
3
4 d index (i , d1) .
5 d index (j , d2) .
6
7 a : d cons tan t .
8 a : d p rope r ty
9 [

10 dims −> [d2 , d1]
11] .
12
13 x : d va r .
14 x : d p rope r ty
15 [
16 dims −> [d1] ,
17 upper −> 1 ,
18 l ower −> 0
19] .
20
21 ex1 : d LP C
22 [
23 a r g s −> [
24 x = $(x (i) , [i]) ,
25 c = $ (1 , [i]) ,
26 A = $(a (j , i) , [i , j]) ,
27 b = $(c s ([0−>(j <1) , 1]) , [j]) ,
28 r e l s = $(’< ’ , [j]) ,
29 d i r = ’min ’
30]
31] .
32

data.xml

1 <DIMS>
2 <DIMENSION name=”d1” ca rd=”3”/>
3 <DIMENSION name=”d2” ca rd=”3”/>
4 </DIMS>
5 <CONS>
6 <CONSTANT name=”a”>
7 <VALUE dim=”0 ,0 ” va l u e=” 0 .2 ”/>
8 <VALUE dim=”1 ,0 ” va l u e=” 0 .6 ”/>
9 <VALUE dim=”1 ,1 ” va l u e=”−2”/>

10 <VALUE dim=”2 ,1 ” va l u e=”3”/>
11 <VALUE dim=”1 ,2 ” va l u e=”2”/>
12 </CONSTANT>
13 </CONS>

enhanced instance declaration

1 gdh : d XMLDataHandler
2 [
3 xm l f i l e −> ”data . xml”
4] .
5
6 iw : d In s tanceWrapper
7 [
8 . . .
9 g l o b a l −> gdh

10] .

To write this LfP the Meta Data generator will use the DH subscribed to global (d XMLDataHandler).
The dimensions and constants will be extracted from the global XML data file, and using them
the system will create the following LEAF XML node,

LEAF XML Node

1 <LEAF type=”d LP C”>
2 <VARS>
3 <V n=”x (0) ”/>
4 <V n=”x (1) ”/>
5 <V n=”x (2) ”/>
6 </VARS>
7 <DATA s i z e=”1”>
8 <ARGS>
9 <VECTOR name=”x” type=” d va r ” s i z e=”3”>

10 <V i=”0” v=”x (0) ” up = ”1” l o = ”0”/>
11 <V i=”1” v=”x (1) ” up = ”1” l o = ”0”/>
12 <V i=”2” v=”x (2) ” up = ”1” l o = ”0”/>
13 </VECTOR>
14 <VECTOR name=”c” type=” d con s t a n t ” s i z e=”3”>
15 <V i=”0” v=”1”/>
16 <V i=”1” v=”1”/>
17 <V i=”2” v=”1”/>
18 </VECTOR>
19 <VECTOR name=”A” type=” d con s t a n t ” s i z e=”3 ,3 ”>
20 <V i=”0 ,0 ” v=” 0 .2 ”/>
21 <V i=”1 ,0 ” v=” 0 .6 ”/>
22 <V i=”1 ,1 ” v=”−2”/>
23 <V i=”2 ,1 ” v=”3”/>
24 <V i=”1 ,2 ” v=”2”/>
25 </VECTOR>
26 <VECTOR name=”b” type=” d con s t a n t ” s i z e=”3”>
27 <V i=”1” v=”1”/>
28 <V i=”2” v=”1”/>
29 </VECTOR>
30 <VECTOR name=” r e l s ” type=” d r e l ” s i z e=”3”>
31 <V i=”0” v=”&l t ; ”/>
32 <V i=”1” v=”&l t ; ”/>
33 <V i=”2” v=”&l t ; ”/>
34 </VECTOR>
35 <DIRECTION name=” d i r ” va l u e=”min”/>
36 </ARGS>

46 CHAPTER 3. I-DARE(EI) – THE ENHANCED INSTANCE

37 </DATA>
38 </LEAF>

The dataTag method of d XMLDataHandler returns a series XML Nodes named ARGS (depending on
the LfP’s free indices). ARGS will contain one XML Node for each LfP’s argument. In the previous
example, note that the vectors contain one tag for each non-zero value.

Blocks

In the enhanced instance there must be a block representation, in order to export to the solver the
model’s structure composition. A block is written inside the meta data file in the following way,

Listing 3.9: BLOCK Node general Form

1 <BLOCK type=” tn ”>
2 <SUBS>
3 <SUB name = ” i d ” , s i z e = ” rep ”>
4 . . .
5 </SUB>
6 . . .
7 <SUBS/>
8 </Block>

Assuming we are trying to write a block ?B:?C[not abstract], where ?C::d Block C, then a tag BLOCK

will be created with type = ”?C” for each free index of ?B. For each substructure ?B.subs[i] the system
will create a tag SUB, with size = ”‖?B.subs[i].freeinds − ?B.freeinds‖” and name = ”?C.ids[i]”. Note that
size represents the amount of replications of the substructure inside ?B. Hence, for each instance of
the free indices, the meta generation algorithm will be called to create the tags of the substructures.

For example, if we have the following block inside a model,

piece of model

1 milpB : d B MILP C
2 [
3 subs −> [ex3 , i c] ,
4 subVP −> [[y , x] , [y]]
5] .

Then the meta generation algorithm will create this BLOCK tag,

BLOCK XML Node

1 <BLOCK type=”d B MILP C”>
2 <SUBS>
3 <SUB name = ” l p ” , s i z e = ”1”>
4 <−− LEAF Node gene r a t ed from ex3 −−>
5 </SUB>
6 <SUB name = ” i c ” , s i z e = ”1”>
7 <−− LEAF Node gene r a t ed from i c −−>
8 </SUB>
9 <SUBS/>

10 </Block>

Assume now the ex3 substructure has one free index of size 3. Then the BLOCK tag will look
like,

BLOCK XML Node

1 <BLOCK type=”d B MILP C”>
2 <SUBS>
3 <SUB name = ” l p ” , s i z e = ”3”>
4 <−− LEAF Node gene r a t ed from ex3 f o r f r e e i ndex i n s t a n c e 0 −−>
5 <−− LEAF Node gene r a t ed from ex3 f o r f r e e i ndex i n s t a n c e 1 −−>
6 <−− LEAF Node gene r a t ed from ex3 f o r f r e e i ndex i n s t a n c e 2 −−>
7 </SUB>

3.3. DISCUSSION 47

8 <SUB name = ” i c ” , s i z e = ”1”>
9 <−− LEAF Node gene r a t ed from i c −−>

10 </SUB>
11 <SUBS/>
12 </Block>

Observe that ex3 will be replicated for each instance of its free index, since the block’s free indices
is ∅. If milpB had defined the freeI method, including the same free index of ex3 as its own free
index, then the system would have generated 3 BLOCK tags.

Formulation

Finally there is an outer tag that contains the whole formulation, defined as follows,

1 <FORMULATION name=” form name”>
2 . . . <−− Component t r e e , s t a r t i n g wi th the r oo t component −−>
3 <FORMULATION/>

The FORMULATION tag has a name parameter, which must be the formulation identifier, and only
one child tag that could be a collection of BLOCK tags or LEAF tags depending on the formulation’s
root. Note that the collection size directly depends on ‖root.freeinds‖ (i.e. amount of root’s free index
instances).

3.3 Discussion

In this chapter we defined how the actual problem’s data is integrated in a harmonic way with the
IM of the problem. i-dare(ei) defines an extension to the formulation, called Instance Wrapper
(IW), that using the previously registered Data Handlers (DH), enables the user to query the
extended model.

The DHs allow the system to treat a wide variety of data formats, offering the system a
transparent interface to verify and access the data. At the same time the IW takes the abstraction
to a higher level, by making transparent the DHs it will use to retrieve the data. The IW allows
to query the model’s data by using global names, dMV and even type identifiers, automatically
detecting which DH must be used.

The IW has another functionality (other than querying the data), it generates the structured
instance, to be passed to the solvers (together with the Solvers’ Tree and the Configurations (cf.
4)). The SI is generated in a structured way, separating the meta data file (with the structural
information) from the local data (that may be represented in any format and support). This way
the data may remain decentralized and may favor the distributed application of solvers.

48 CHAPTER 3. I-DARE(EI) – THE ENHANCED INSTANCE

Chapter 4

i-dare(solve) – solving the model

Abstract

This chapter will describe the solving module of i-dare (i-dare(solve)). This module
is responsible for actually performing the solution approach on a formulation + instance,
collecting and presenting the result to the core system. Here we will define the concept of
Solvers’ Tree as the description of the (set of) numerical solver(s) that has(have) been selected
by the search process as the most appropriate for the given SI; this is not just a solver but, in
general, a structured collection of solvers, some of which using others to cope with specialized
structures. The i-dare(solve) module will orchestrate the actual solution process relying on
the available set of solvers plus their configurations, i.e., implementations of the general solver
interface that allows to plug specific solvers to the i-dare system.

4.1 Structured Modeling and Solving Methods

The first stage for solving any problem, is to obtain an informal specification of it. Generally these
informal specifications are given by a person who is not a specialist in MO. This specification is
then refined and finally taken by an expert and transformed into a mathematical model. Usually
there is a lot of difference between the final model and the informal specification. Moreover, in the
transformation process structural information about the problem may be lost.

The following four sections will show examples of different structures that are implicitly present
in problems. In addition, it will be shown that specific algorithms (or combination of them) can
be applied for tackling the problem and obtain a solution in a reasonable amount of time, once the
structure is recognized.

4.1.1 Some initial formulation

Assume the expression xy appears somewhere in a model, where x ∈ [0, u] ⊆ R and y ∈ {0, 1},
makes the model nonlinear. Observe that xy = 0 iff y = 0 or x = 0.

Therefore, one could make another equivalent formulation of that expression, substituting xy
by x, eliminating the bounding constraint x ∈ [0, u] ⊆ R and adding the following

0 ≤ x ≤ yu

y ∈ {0, 1}

x ∈ R

The obtained formulation is a MILP one, and for this reason it would typically be preferred
by the vast majority of experts, who 1) are more accustomed with MILP models, and 2) think
that MILP formulations are more efficient than nonlinear ones. But the unexperienced user, who

50 CHAPTER 4. I-DARE(SOLVE) – SOLVING THE MODEL

does not know about reformulation tricks between nonlinear models and linear ones, and does
not want to be confronted with the algorithmic difference between a MILP model and a nonlinear
one, will most likely find the “xy” formulation much more natural, compact and easy to understand.

Furthermore, let us consider the binary constraint y ∈ {0, 1}. A binary constraint is typically
seen as an “atomic” object by a person who is specialist in MILP modeling, but in a very nonlinear
problem where this is the “only” discrete part, it may be more reasonable to “nonlinearize” it rather
than working with the discrete object.

Therefore the previous binary constraint could be reformulated as the nonlinear (nonconvex)
constraint y(1−y) = 0, where y ∈ R. Alternatively this could be also reformulated as y(1−y) ≤ 0,
where y ∈ [0, 1] ⊂ R. Both reformulations enforce that y must be binary, since the zeros of the
function are exactly 0 and 1, see figure 4.1.

Figure 4.1: Representation of y(1-y) function

4.1.2 Knapsack constraints

Certain products should be loaded on a truck of capacity c. Let S be the set of products and wl

the weight of an unit of l (l ∈ S), then must be enforced that
∑

l∈S wlxl ≤ c, where xl is the
amount of units of l that will be loaded on the truck.

This problem can be modeled by knapsack packing constraints. Assume ksPack(x, w, c) is a
description of a knapsack packing constraint, where x are the element amounts to be loaded, w are
the weights for unit of each element and c is the capacity in weight of the knapsack. Constructs
like this one can be use inside a modeling language for expressing in a concise and structured way
knapsack packing constraints.

Additionally, knapsack packing constraints can be also modeled using a MILP approach,
∑

l∈S

wlxl ≤ c (4.1.1)

xl ∈ N0

In this case the complexity of the constraint and the MILP model seems similar. However,
acknowledging that one is using the knapsack packing constraint allows to apply specific bound
propagation. The domain of xl could be represented as a set {Ll, Ll+1, ..., Ul−1, Ul} of consecutive
integers. Then bound propagation will tighten the upper bounds (U).

If there is a knapsack packing constraint, then for all l ∈ S

xl ≤

c−
∑

l′∈S
l′ 6=l

(wl′xl′)

wl

≤

c−
∑

l′∈S
l′ 6=l

(wl′Ll′)

wl

the second inequality is due to xl ≥ Ll and wl > 0, ∀l ∈ S. Then the upper bounds can be
recalculated as follows,

U ′
l = min

Ul,

c−
∑

l′∈S
l′ 6=l

(wl′Ll′)

wl

(4.1.2)

4.1. STRUCTURED MODELING AND SOLVING METHODS 51

where ⌊α⌋ is α rounded down.

Assume now that instead of enforced a capacity constraint, a demand must be satisfied. Then
the constraint changes in the following way,

∑

l∈S wlxl ≥ d.

This problem now can be modeled by knapsack covering constraint (ksCover(x, w, d)), where x

are the element amounts to be loaded, w are the weights for unit of each element and d is the
demand in weight of the knapsack.

MILP could be applied for modeling knapsack covering constraints,

∑

l∈S

wlxl ≥ d (4.1.3)

xl ∈ N0

In this case, the knapsack covering constraint helps to tighten lower bounds in the following
way,

L′
l = max

Ll,

d−
∑

l′∈S
l′ 6=l

(wl′Ul′)

wl

(4.1.4)

where ⌈α⌉ is α rounded up.

In the presence of both knapsack packing and covering constraints in the same problem involving
common variables, successive applications of (4.1.2) and (4.1.4), may help to tighten the bounds
of the variable domains. This bound propagation can be combined with linear programming
relaxation, which removes the integrality constraints and a branch and bound technique. Based
on generated cuts (from bound propagation) branch and bound decides whether a relaxed solution
is acceptable or not [94].

0-1 Knapsack constraints

A particular case of a knapsack problem is when, instead of loading a certain amount xl, one must
decide whether l is going to be loaded or not i.e. xl ∈ {0, 1}. This transformation makes the
previous knapsack problems into binary ones, also known as 0-1 knapsack problem.

0-1 Knapsack constraints can also be modeled by ksPack(x, w, c) and ksCover(x, w, d), considering x

are binary variables. However, for making clear the difference between the 0-1 knapsack constraint
structure and the non binary one, ks01Pack(x, w, c) and ks01Cover(x, w, d) will be used in the binary
case.

Recognizing explicitly this structure, gives the possibility of applying specific techniques. For
instance, cuts could be derived from cover inequalities and then a lifting process could be applied
to strengthen these inequalities [26].

Define a cover for ks01Pack(x, w, c) to be an index set J ⊆ {1, ..., |S|} for which
∑

j∈J wj > c. A
cover is minimal if no proper subset is a cover. If J is a cover, the following is a cover inequality,

∑

j∈J

xj ≤ |J | − 1 (4.1.5)

Only minimal covers will be considered.

Cover inequality (4.1.5) generates a cutting plane, which could be stronger if lifted to higher
dimensional space, by adding new terms as follows,

∑

j∈J

xj +
∑

j∈J′

πjxj ≤ |J | − 1 (4.1.6)

52 CHAPTER 4. I-DARE(SOLVE) – SOLVING THE MODEL

where J ∩ J ′ = ∅ and every new πk with k /∈ L = J ∪ J ′ is calculated as,

πk = |J | − 1− max
xj∈{0,1}
for j∈L

∑

j∈J

xj +
∑

j∈J′

πjxj

∣

∣

∣

∣

∣

∣

∑

j∈L

wjxj ≤ c− wk

(4.1.7)

One can also make a reformulation of ks01Pack(x, w, c) as a directed acyclic graph (DAG). Let
G(N,E) be a DAG, where N and E ⊂ N × N are constructed sequentially from 1 to |S|. Each
node will be labeled with nl,β, where l ∈ S ∪{0} and 0 ≤ β ≤ c. Let f : E −→ R be the weights of
the arcs in E. Assume elements in S are consecutive numbers from 1 to |S|. Let n0,0 be an initial
node in N , then for each nl,β ∈ N the following must be done,

• add N = N ∪ {nl+1,β}, E = E ∪ {〈nl,β, nl+1,β〉}and f(〈nl,β , nl+1,β〉) = 0 if l + 1 ≤ |S|,

• add N = N ∪ {nl+1,β+wl+1}, E = E ∪ {〈nl,β, nl+1,β+wl+1〉} and
f(〈nl,β , nl+1,β+wl+1〉) = −1 if l + 1 ≤ |S| and β + wl+1 ≤ c

this process will be repeated for each new addition to N until no further addition can be made.
Then, finally n|S|+1,c+1 will be added to N and for each n|S|,β, 〈n|S|,β, n|S|+1,c+1〉 will be added
to E, with f(〈n|S|,β, n|S|+1,c+1〉) = 0.

Let sl,β be a net supply associated with each node nl,β , such as,

• s0,0 = 1,

• s|S|+1,c+1 = −1 and

• for any other, sl,β = 0

and let y〈n
l,β ,nl′,β′

〉 be a real-valued flow variables associated with every arc.
Then the following constraints,

∑

〈nl,β ,nl′,β′〉∈E

y〈n
l,β,nl′,β′

〉 −
∑

〈nl′,β′
,nl,β〉∈E

y〈n
l′,β′

,nl,β〉 = s〈n
l,β ,nl′,β′

〉, for all nl,β ∈ N (4.1.8)

∑

〈nl,β ,nl,β′ 〉∈E

y〈n
l,β ,nl,β′

〉 = 1, for all l ∈ S (4.1.9)

ensures flow conservation in G using a unique path.

Therefore if

xl =

{

1 if
∑

〈nl−1,β ,nl,β′
〉∈E

y〈n
l−1,β ,nl,β′

〉f(nl−1,β , nl,β′

) = −1

0 otherwise

then a feasible solution of the flow problem allows to construct a feasible solution of ks01Pack(x, w, c).
In fact, constraints (4.1.8) and (4.1.9) define a convex hull of integer feasible solutions to the
problem.

Semi-assignment constraints

Semi-assignment constraints are a very particular case of 0-1 knapsack constraints, which ensures
that a sum of binary variables is exactly 1,

∑

j

yij = 1 ∀i (4.1.10)

yij ∈ {0, 1} ∀i, j

4.1. STRUCTURED MODELING AND SOLVING METHODS 53

it means that one thing can be assigned to a set of other things, but it cannot be assigned to more
than one.

The semi-assignment constraints have the integrality property, i.e. there is no tricky trans-
formation needed for having the convex hull of the integer solutions. Putting together two semi-
assignment constraints

∑

i

yij = 1 ∀j (4.1.11)

∑

j

yij = 1 ∀i (4.1.12)

yij ∈ {0, 1} ∀i, j

an assignment problem is obtained, which can be solved in polynomial time (it is a special case of
the min-cost flow problem, which can be solved also in polynomial time even for integer variables
if all data is integer).

Therefore there will be a specific identifier for the semi-assignment constraint, semiassign(x[i , j]) ,
where x[i , j] is a matrix of variables (i are the rows and j are the columns). For each row there will
be a constraint which will enforce that the sum of every x in that row is exactly equal to 1.

There could also be defined a semi-assignment structure which transforms the equality into
an inequality, i.e. instead, of being exactly 1, the sum can be ≤ 1. For this case the following
signature can be used, semiassignLEQ(x[i , j]) (LEQ meaning Less or EQual).

Independent set constraints

When we are in presence of a set of 0-1 knapsack packing constraints, which ensure that the sum
of certain pairs of variables have to be less or equal than 1, we are dealing with another specific
structure, called independent set constraints.

yi + yi′ ≤ 1 ∀i, i′ that satisfy a certain condition (4.1.13)

yi ∈ {0, 1} ∀i

finding a feasible solution on the previous constraints is equivalent to find an independent set on
a graph G(V,E) where each yi defines a node in V and a constraint between yi and yi′ defines an
arc in E. A set I ⊆ V is considered independent iff 〈v, w〉 /∈ E for all v, w ∈ I. An independent
set of nodes in G is a feasible solution for the independent set constraints.

It is also important to underline the importance of specifying an explicit identifier for the
independent set constraints structure, indset (x, cond), where x is a vector of binary variables and
cond is a logical proposition for building the independent set constraints (arcs in G) between the
members of x. An independent set constraint will relate two variables of x, one referred as xi
and the second as xi′ , then in cond for making reference to the indices of the second variable one
shall use “ ’ ”. The usage of a logical proposition in cond to construct the graph might bring an
unwanted complexity while evaluating each possible arc, therefore in real implementations may be
used simple logical formulas or a set of arcs instead of a logical condition.

Finding independent sets in a graph is a widely studied problem, for which, despite the efforts,
there is no polynomial time algorithm (is a NP-Complete problem). But there are many algorithms
that have an average good performance like [148, 139].

The complement of G will be the graph G(V,E), where E = {〈v, w〉|v, w ∈ V, v 6= wand〈v, w〉 /∈
E}. I ⊆ V is an independent set of G iff I is a clique of G. Therefore all the algorithms developed
for finding cliques in a graph can be applied to find independent sets on its complement [150, 158].

54 CHAPTER 4. I-DARE(SOLVE) – SOLVING THE MODEL

4.1.3 Logical Formula

Suppose that while making an informal specification of a problem, a logical proposition like the
following is stated, “there is an empty truck or there is a partially loaded truck and it goes to the
same destination I want to go”. Then the truth value of that proposition can be codified by the
following equation,

d = a ∨ (b ∧ c) (4.1.14)

where,

a represents the proposition there is an empty truck,

b represents the proposition there is a partially loaded truck and

c represents the proposition it goes to the same destination I want to go.

d represents the truth value of the proposition there is an empty truck or there is a partially loaded
truck and it goes to the same destination I want to go.

Equation (4.1.14) can be transformed in the following linear system,

c′ ≤ b

c′ ≤ c

c′ ≥ b + c− 1

d ≥ a

d ≥ c′

d ≤ a+ c′

In the moment (4.1.14) is transformed in a linear system all the structural information is lost.
Assuming these linear inequalities are part of a larger model, then a solver will never be aware that
they where a logical formula, where satisfiability algorithms could be applied, like, Davis-Putnam-
Loveland (DPL) algorithm; also inference methods like, unit resolution [94] or parallel resolution
[94]; as well as convex hull relaxations for logical formulas [91].

4.1.4 Disjunctive Scheduling

A Distribution Center with one truck platform must decide when to attend n trucks in such a way
that they do not overlap. Each truck has a starting time ei ∈ [L,U] ⊆ R and a processing time
pi, which defines how long the truck will remain at the platform; L and U are the opening and
closing time of the distribution center and i ∈ [1..n]. Which values are assigned to ei in such a
way that ej ≥ ei + pi or ei ≥ ej + pj , ∀i, j ∈ [1..n] must be decided, meaning that there must not
be overlapping at the platform.

The previous problem could be modeled using a CP global constraint named disjunctive schedul-
ing constraint. Disjunctive scheduling constraint signature could be disjunct (e, p) where e represents
a tuple of real variables indicating the starting time of each event and p represents a vector of pro-
cessing times. Then disjunct (e, p) could be used to build a concise model for the previous problem,
that may be directly used within a modeling language to indicate this particular structure, where
e are the variables representing the starting times in which the trucks are going to be attended and
p are the processing times for each truck.

disjunct (e, p) can be formulated as the following MILP,

ej ≥ ei + pi −M(1− bij)

ei ≥ ej + pj −Mbij

}

∀i, j with i < j ∈ [0..n]

4.1. STRUCTURED MODELING AND SOLVING METHODS 55

bij ∈ {0, 1}, ∀i, j

L ≤ ei ≤ U, ∀i ∈ [0..n]

where M is a large constant (and has to be computed out of the data of the problem, then the
continuous relaxation of that constraint will typically give a very weak bound). Binary variables
bij define whether one constraint or the other will be ensured. The combination of bij with M
makes possible that if bij = 1 then the second constraint is satisfied independently of the values of
ei and ej, and if bij = 0 then the same happens to the first constraint. The usage of M and bij
allows the creation of a MILP formulation for modeling disjunction of constraints, but uses O(n2)
number of constraints plus the new binary variables.

The fact of knowing the problem structure allow the use of proper methods for tackling the
problem. In this case, a flat MILP representation of the disjunctive scheduling would ignore the
presence of this kind of structure. Whereas considering explicitly this form of structure allows
the application of specific methods like timetabling [67, 132], edge finding [46, 47, 48] and not-
first/not-last rules [152], for filtering the variable domains (reduce the domains of the ei as much
as possible) and the generation of proper logic-based Benders cuts [90].

4.1.5 Product Loading

We now consider a more complex example, where a company must load products from plants to
trucks and each product l ∈ S has a weight wl > 0 and a cost costl,i to be loaded at plant i ∈ P .
For each plant i ∈ P is defined a loading time tLi . All the products are available in all plants. For
each truck k ∈ F is defined

• ck capacity in weight of truck k,

• costk cost of using truck k

Trucks will be located in a common parking lot. Therefore moving from the parking lot to the
plants will take some time, represented by di,k, which is the time k will be available at plant i.

The main goal is to decide how the fleet of trucks is going to be used, ensuring that every
product l is loaded exactly on one truck and there is not overlapping of loads, minimizing the
truck usage cost + product loading cost.

The following MILP model for the previous problem will contain the variables

xi,l,k → boolean variable indicating whether l ∈ S is loaded on k ∈ F at i ∈ P ,

yi,k → boolean variable representing whether k ∈ F will be used at i ∈ P

si,k → loading time of k ∈ F at i ∈ P .

Assume that global opening is at time 0 and closing at time CT , for every plant, then,

min
∑

i∈P

∑

k∈F

(

yi,kcostk +
∑

l∈S

xi,l,kcostl,i

)

s.t.
∑

l∈S

wlxi,l,k 6 ck i ∈ P, k ∈ F (4.1.15)

∑

i∈P

∑

k∈F

xi,l,k = 1 l ∈ S (4.1.16)

xi,l,k 6 yi,k i ∈ P, l ∈ S, k ∈ F (4.1.17)
∑

i∈P

yi,k ≤ 1 k ∈ F (4.1.18)

56 CHAPTER 4. I-DARE(SOLVE) – SOLVING THE MODEL

si,k ≥ si,k′ + tLi yi,k′ −M(1− bi,k,k′)

si,k′ ≥ si,k + tLi yi,k −Mbi,k,k′

}

i ∈ P,

(k, k′) ∈ F 2|k′ < k
(4.1.19)

si,k ∈ [di,k, CT] ⊂ R

xi,l,k ∈ {0, 1}

yi,k ∈ {0, 1}

bi,k,k′ ∈ {0, 1}

Constraints (4.1.15) enforce that truck capacities are not exceeded and (4.1.16) ensures that
each product is loaded exactly once.

Constraints (4.1.17) ensure that if at least one product is loaded on a truck in a certain plant
then the corresponding yi,k will be 1, otherwise will be 0. Constraints (4.1.18) enforce that trucks
are used just once.

Constraints over starting times xs are built using the binary variables yi,k and (4.1.19), enforcing
that no overlapping can exist on the plants when scheduling the trucks for loading.

Structured formulation

Structures like knapsack, semi-assignment and disjunctive scheduling can be detected in the pre-
vious MILP model. Constraints (4.1.15) expose 0-1 knapsack packing constraints. Constraints
(4.1.16) can be substituted by a semi-assignment constraint and (4.1.18) by a semi-assignment
(LEQ) constraint. Moreover, constraints (4.1.19) can be replaced by disjunctive scheduling con-
straints.

The new formulation will be

min
∑

i∈P

∑

k∈F

(

yi,kcostk +
∑

l∈S

xi,l,kcostl,i

)

s.t.

ks01Pack({xi,l,k}l∈S , {wl}l∈S , ck) i ∈ P, k ∈ F (4.1.20)

semiassign({xi,l,k}[l∈S,(i∈P,k∈F)]) (4.1.21)

xi,l,k 6 yi,k i ∈ P, l ∈ S, k ∈ F

semiassignLEQ({yi,k}[k∈F,i∈P]) (4.1.22)

disjunct({si,k}k∈F , {tLi yi,k}k∈F) i ∈ P (4.1.23)

si,k ∈ [di,k, CT] ⊂ R

xi,l,k ∈ {0, 1}

yi,k ∈ {0, 1}

A structured formulation, like the previous, allows the usage of specialized solution methods
for dealing with each different structure (see §4.1.2, §4.1.2 and §4.1.4). It makes the application of
relaxation techniques more viable, for splitting the model and being able to attack each structure
separately.

Another structured formulation

Another transformation could be done to the MILP model, consisting in incorporating the time as
another dimension to the model, instead of dealing with it as a variable. If all loading times (tLi)
are N (also Q, since it is numerable), then one could transform the model, automatically, in such
a way the minimum unit of time is 1.

How to replace the overlapping constraints? Since yi,k will be transformed in yi,k,t, then for
each i must be verified that for each pair 〈(k, t), (k′, t′)〉, where k, k′ ∈ F and t ≤ t′ < t + tLi
(t ∈ [di,k, CT] and t

′ ∈ [di,k′ , CT]), the sum yi,k,t+yi,k′,t′ is less or equal than 1. These constraints
define incompatibilities between trucks and times for each plant, therefore it can be modeled with

4.1. STRUCTURED MODELING AND SOLVING METHODS 57

indset (x, cond) where x could be the variables yi,k,t and cond the logical condition t ≤ t′ < t + tLi
which defines the pairs of variables that are incompatible.

Dimension t in all constraint must be ≥ di,k, to enforce that no truck is used before its arrival
time to the plant.

Then the formulation should be

min
∑

i∈P

∑

k∈F

∑

t∈[di,k,CT]

(

yi,k,tcostk +
∑

l∈S

xi,l,k,tcostl,i

)

s.t.

ks01Pack({xi,l,k,t}l∈Si
, {wl}l∈Si

, ck) i ∈ P, k ∈ F, t ∈ [di,k, CT]

semiassign({xi,l,k,t}[l∈S,(i∈P,k∈F,t∈[di,k,CT])])

xi,l,k,t 6 yi,k,t
i ∈ P, l ∈ S, k ∈ F,

t ∈ [di,k, CT]

semiassignLEQ({yi,k,t}[k∈F,(i∈P,t∈[di,k,CT])]) (4.1.24)

indset({yi,k,t}k∈F,t∈[di,k,CT],

t ≤ t′ < t+ tLi)
i ∈ P (4.1.25)

xi,l,k,t ∈ {0, 1}

yi,k,t ∈ {0, 1}

In this case, structure in 4.1.23 is substituted by several incompatibility constraints 4.1.25, that
avoid the overlapping.

Let be n = max{|P |, |S|, |F |, |[di,k, CT]|}, then one can estimate the amount of variables as
O(n3) and the amount of constraints as O(n3) in formulation 4.1.5, whereas in this formulation
(4.1.5) the amount of variables and constraints are increased to O(n4), due to the addition of time
as a dimension.

Despite the increase of constraints and variables, in some cases it might be more viable to solve
the problem through formulation 4.1.5; mainly when the amount of time intervals is no so big,
since in 4.1.5 scheduling constraints are substituted by independent set constraints. Which, due
to the elimination of “big M” on the MILP formulation, may provide better continuous bounds on
a LP relaxation.

Yet another structural formulation

Instead of using structures (4.1.24) and (4.1.25), one could use only one.

A semi-assignment constraint, when it does not enforce equality, can be seen as a set of in-
compatibility constraints that defines a complete graph. Then adding the proper condition in
(4.1.25) the resulting incompatibility graph will containt cliques representing the semi-assignment
constraints. Then the resulting model would be

min
∑

i∈P

∑

k∈F

∑

t∈[di,k,CT]

yi,k,tcostk +
∑

l∈S

xi,l,k,tcostl,i

s.t.

ks01Pack({xi,l,k,t}l∈Si
, {wl}l∈Si

, ck) i ∈ P, k ∈ F, t ∈ [di,k, CT]

semiassign({xi,l,k,t}[l∈S,(i∈P,k∈F,t∈[di,k,CT])])

xi,l,k,t 6 yi,k,t i ∈ P, l ∈ S, k ∈ F, t ∈ [di,k, CT]

indset({yi,k,t}k∈F,i∈P,t∈[di,k,CT],

(t ≤ t′ < t+ tLi ∧ i = i′)∨

(k = k′ ∧ i 6= i′ ∧ t 6= t′))

(4.1.26)

58 CHAPTER 4. I-DARE(SOLVE) – SOLVING THE MODEL

xi,l,k,t ∈ {0, 1}

yi,k,t ∈ {0, 1}

(4.1.26) is a single constraint that embraces constraints (4.1.24) and (4.1.25).

This formulation uses less structures, concentrating two former structures on one huge struc-
tured constraint. However this formulation relies on the efficiency of the solvers for tackling this
huge constraint.

4.2 Shared Variables – Blocks – Relaxation

A block describes a tree where each substructure node must be a LfP (or LfPL) or a block. A block
also enables the controlled sharing of variables. This sharing is managed by the template patterns
(see §1.2.3), which define how the variables exported by the substructures must be arranged.

Several cases of template patterns may appear, Let Xi, Yj be template items then the following
links may be built,

1. [X,Y1], ..., [X,Yn],

2. [X1], ..., [Xn] and [X1, ..., Xn],

3. [X1, X2], [X2, X3], ..., [Xn, Xn+1]

For dealing with shared variables, relaxations could be applied. When the amount of shared
variables is large and they are partitioned over all substructures except for one that contain all
shared variables (these substructure can be also called linking substructure), then Lagrangian
Relaxation [111] can be applied over these linking substructures considering them in the cost
function, and allowing to deal with the independent substructures separately. When in presence
of multicommodity network flow problems, a specialized Interior-Point method [51, 98] can be
applied. In [83] there is an application of parallel Interior-Point for dealing with block-structured
matrices.

When the formulation is linear a graphic representation of shared variables spread over linking
substructures, can be seen in figure 4.2 a).

Figure 4.2: a) Shared variables partitioned over substructures (except for one) in a linear model
b) Variables shared by all substructures in a linear model

If shared variables are just a few and distributed over many substructures, see figure 4.2 b),
something like Benders Decomposition [33] (extended for nonlinear [77]) may be applied.

4.2. SHARED VARIABLES – BLOCKS – RELAXATION 59

4.2.1 Returning to the Product Loading problem

Returning to the formulation made in §4.1.5, one can make a diagram relating constraints with
variables (see Figure 4.3).

Figure 4.3: Graphic relating constraints with variables for formulation §4.1.5

In figure 4.3 the following structures are represented

A 0-1 knapsack packing constraints and semi-assignment constraints

B unstructured inequalities

C semi-assignment constraints

D disjunctive scheduling constraints

One can apply Lagrangian Relaxation to eliminate linking constraints B, separating A from D and
C.

Since B represents the constraints xi,l,k ≤ yi,k, ∀i ∈ P, l ∈ S, k ∈ F , then when spanned will
look like,

...
0 · · · 0 1 0 · · · 0 −1 0 · · · 0

...

...
xi,l,k
...
yi,k
...

6

...
0
...
0
...

(4.2.1)

The number of equations in 4.2.1 is |P | ∗ |S| ∗ |F |. If one multipies (4.2.1) by the Lagrangian
multipliers (· · · λi,l,k · · ·) then one can obtain the following,

∑

i∈P

∑

l∈S

∑

k∈F

[xi,l,kλi,l,k]−
∑

i∈P

∑

l∈S

∑

k∈F

[yi,kλi,l,k] (4.2.2)

Then adding (4.2.2) to the objective function and eliminating constraints in B, the problem
will be separated in the following two sub-problems,

min
∑

i∈P

∑

l∈S

∑

k∈F

[xi,l,k (costl,i + λi,l,k)]

s.t.

ks01Pack({xi,l,k}l∈Si
, {wl}l∈Si

, ck) i ∈ P, k ∈ F

semiassign({xi,l,k}[l∈S,(i∈P,k∈F)])

xi,l,k ∈ {0, 1}

(4.2.3)

60 CHAPTER 4. I-DARE(SOLVE) – SOLVING THE MODEL

min
∑

i∈P

∑

k∈F

[

yi,k

(

costk −
∑

l∈S

λi,l,k

)]

s.t.

semiassignLEQ({yi,k}[k∈F,i∈P])

disjunct({si,k}k∈F , {tLi yi,k}k∈F) i ∈ P

si,k ∈ [di,k, CT] ⊂ R

yi,k ∈ {0, 1}

(4.2.4)

For solving subproblem (4.2.4) one can apply Benders Decomposition [33, 77]. The master
problem can be written,

min
∑

i∈P

∑

k∈F

[

yi,k

(

costk −
∑

l∈S

λi,l,k

)]

s.t.

semiassignLEQ({yi,k}[k∈F,i∈P])

Benders Cuts

yi,k ∈ {0, 1}

(4.2.5)

If yhi,k is the solution of (4.2.5) at iteration h, then the subproblem separates into the following
scheduling problem for each plant.

min
∑

i∈P

∑

k∈F

[

yhi,k

(

costk −
∑

l∈S

λi,l,k

)]

s.t.

disjunct({si,k}k∈F , {t
L
i y

h
i,k}k∈F) i ∈ P

si,k ∈ [di,k, CT] ⊂ R

(4.2.6)

Note that the objective function in (4.2.6) is a constant, then one will be looking for a valid
schedule for each plant. If no feasible solution is found for plant i then the following cut will be
added to the master,

∑

k∈Ki,h

(1− yi,k) ≥ 1

where Ki,h = {k ∈ F |yhi,k = 1} are the trucks scheduled in i ∈ P . These cuts will exclude at least
one truck in Ki,h.

To solve (4.2.3) one can also apply Benders Decomposition, taking as master the semi-assignment
problem. In this case solving the subproblem (knapsack) will be just verifying that the solution of
the master is feasible for the knapsack constrains, because they share the same variables.

Then solutions of subproblems (4.2.3) and (4.2.4) will be used by the Lagrangian dual for
obtaining the solution of the problem.

4.2.2 Tackling the other formulations

For formulations made in §4.1.5 and §4.1.5, one can also make diagrams relating constraints with
variables, Figure 4.4.

In figure 4.4 a) are represented the following structures

A 0-1 knapsack packing constraints

4.3. SOLVERS’ TREE 61

Figure 4.4: Graphic relating constraints with variables for formulation a) §4.1.5 and b) §4.1.5

B unstructured inequalities

C semi-assignment constraints

D independent set constraints

in this case if one relaxes constraints in B then one will obtain a Lagrangian term similar to (4.2.2),
only that the amount of Lagrangian multipliers will be O(n4) instead of O(n3). The model then
will be divided in two subproblems the first similar to (4.2.3) and the second will be something
like,

min
∑

i∈P

∑

k∈F

∑

t∈[di,k,CT]

[

yi,k,t

(

costk −
∑

l∈S

λi,l,k,t

)]

s.t.

semiassignLEQ({yi,k,t}[k∈F,(i∈P,t∈[di,k,CT])])

indset({yi,k,t}k∈F,t∈[di,k,CT],

t ≤ t′ < t+ tLi)
i ∈ P

yi,k ∈ {0, 1}

(4.2.7)

Subproblem (4.2.7) can be solved applying Benders Decomposition, but a branch and relax
scheme, solving the continuous relaxation at each step, could also be applied. If the solution of
the continuous relaxation is feasible in (4.2.7), then it is the optimal; otherwise cuts are generated
analyzing which constraints are violated. As a consequence, the resulting continuous relaxation
might give a tighter bound.

In figure 4.4 b) are represented the following structures

A 0-1 knapsack packing constraints

B unstructured inequalities

C independent set constraints

when eliminating B, constraints A remain the same, but in C there will be only one complicated
constraint, which, nevertheless is structured and can be tackled using algorithms for independent
set constraints §4.1.2.

4.3 Solvers’ Tree

The previous section showed how solution methods applied to structured models are far from simple
and linear concatenations of solvers that deal with the sub-problems. Since the block structure

62 CHAPTER 4. I-DARE(SOLVE) – SOLVING THE MODEL

gives the model a tree fashion, the solution methods must be also assigned and executed using a
similar fashion.

Consider we have a d B Lagrangian Relax C block (§1.3), that ensures a variable and substructure
disposition suitable for applying Lagrangian Decomposition. Assume we have a solver to deal with
this kind of block. Note that when arrived to the point of solving the sub-problems, the solver
may delegate on sub-solvers assigned to the corresponding substructures. Then we also need to
assign a solver to the substructures, except when in presence of the modifier d loc (see §1.2.3), that
explicitly says that the modified substructure will be tackled directly by the block’s solver.

Returning to the d B Lagrangian Relax C block, note that solvers must be assigned to the first
substructure, besides the one assigned to the block itself. But if we assume the the first substructure
is also a block, this will generate a solver assignment that will look like a tree (see Figure 4.5).

Figure 4.5: Solver Tree assignment

Besides the structured instance, i-dare(solve) (the solving part of i-dare), will also take as
input the way solvers are assigned to the structures. The Solver’s Tree specifies how solvers must
be later called, for obtaining the problem’s solution. In the following definition we will use the
concept of solver registered to a structure class, that will be formalized in the next section.

Definition 4.3.1 (Solvers’ Tree of a Leaf Problem) Let ?P:?C, ?C::d LeafProblem C and I a list
of already fixed indices, then we say that the Solvers’ Tree of ?P is defined by the term st (s1 ,..., sk),
where si is a solver registered to ?C, i ∈ [1..k], and k = ‖?P.freeinds‖ − ‖I‖.

Definition 4.3.2 (Solvers’ Tree of a Block) Let ?B:?C, ?C::d Block C and I a list of already fixed
indices, then we say that the Solvers’ Tree of ?B is defined by the term
st (s1(st10 ,..., st

1
m),...,sk(st

k
0 ,...,st

k
m)), where si is a solver registered to ?C, i ∈ [1..k], k = ‖?P.freeinds‖; and

stij is the Solvers’ Tree of ?B.subs[j] considering I ∪ ?B.freeinds as the list of already fixed indices,
j ∈ [0..m], m = |?B.subs| − 1.

Definition 4.3.3 (Solvers’ Tree of a Formulation) Let ?F::d Formulation and ?C the class of
?F.root (?F.root:?C), then we say that the Solvers’ Tree of ?F if equal to the Solver’s Tree of
?F.root considering ∅ as the list of already fixed indices.

For instance consider the formulation diagram in Figure 4.6, then if we assume ‖I‖ = 2, ‖I1‖ = 3

Figure 4.6: Formulation Diagram

and ‖I2‖ = 2, then the following Solvers’ Tree may be generated,

4.4. SOLVERS AND STRUCTURES 63

1 s t (s o l v e r (A)1 (
2 s t (s o l v e r (B)1,1 (

3 s t (s o l v e r (D)1,1) ,

4 s t (s o l v e r (E)1,1,1 ,

5 s o l v e r (E)1,1,2)

6) ,
7 s o l v e r (B)1,2 (

8 s t (s o l v e r (D)1,1) ,

9 s t (s o l v e r (E)1,2,1 ,

10 s o l v e r (E)1,2,2)

11) ,
12 s o l v e r (B)1,3 (

13 s t (s o l v e r (D)1,1) ,

14 s t (s o l v e r (E)1,3,1 ,

15 s o l v e r (E)1,3,2)

16)
17) ,
18 s t (s o l v e r (C)1)
19) ,
20 s o l v e r (A)2 (
21 s t (s o l v e r (B)2,1 (

22 s t (s o l v e r (D)2,1) ,

23 s t (s o l v e r (E)2,1,1 ,

24 s o l v e r (E)2,1,2)

25) ,
26 s o l v e r (B)2,2 (

27 s t (s o l v e r (D)2,1) ,

28 s t (s o l v e r (E)2,2,1 ,

29 s o l v e r (E)2,2,2)

30) ,
31 s o l v e r (B)2,3 (

32 s t (s o l v e r (D)2,1) ,

33 s t (s o l v e r (E)2,3,1 ,

34 s o l v e r (E)2,3,2)

35)
36) ,
37 s t (s o l v e r (C)2)
38)
39)

4.4 Solvers and Structures

As could be seen in the previous sections, explicitly recognizing the structures in Mathematical
Models, allows us to apply specific and efficient solution methods. This is one of the reasons behind
the explicit structure manipulation i-dare has. The i-dare(solve) package, defines an extensive
library of solution methods, that will be related to the structure classes defined in i-dare(lib).
i-dare(solve) will be composed of a C++ side and a FLORA-2 side. A solver must have a
C++ wrapper that integrate it to the system, and at the same time must have a FLORA-2
representation.

Figure 4.7 represents how solvers are organized in C++ and FLORA-2 . The main idea in the
C++ part is to use a dynamic library loading mechanism to add new solution methods to the
system. We have two kinds of registrations, solver registration and blueprint registration.

The solver registration adds a new solution method to a specific structure class. This solution
method may then be used to form the Solvers’ Tree and finally solve the problem. On the other
hand, the blueprint registration defines the representative solver for a structure class. The blueprint
is simply a solver that inherits directly from c solver , it defines the beginning of the sub-hierarchy of
solvers for tackling the structure class the blueprint is registered to. A structure class is represented
by only one blueprint. If by any mistake there are two blueprints representing the same structure
class, i-dare(solve) will report a warning and will ignore one of them (so it will ignore all the
sub-hierarchy that descends from that blueprint).

Observe, each solver makes reference to an object of type c solution . This class will represent
a basic solution containing only a dictionary of the variables and their values. It is well known
that some solvers may provide more information as a solution, for instance the dual values of the
constraints. One may create, a new class of solutions inheriting from c solution , that includes those
dual values. Hence, there will also be a solution hierarchy.

Each solver must export themselves to the FLORA-2 solvers’ hierarchy, specifying an object
instance of the following class,

Listing 4.1: Solver Root Class

1 d s o l v e r

64 CHAPTER 4. I-DARE(SOLVE) – SOLVING THE MODEL

Figure 4.7: C++ vs. FLORA-2 hierarchies

2 [
3 s t r u c t u r e => d Component C ,
4 confTemplate => term
5] .

where,

• structure – is the ?C::d Component C class to which the solver will be registered to,

• confTemplate – defines how the configuration of the solver may be (see 4.4.2).

But if the solver represents a blueprint, it is responsible of exporting a little more than that.
Each blueprint must also export an object instance of the following class,

Listing 4.2: Blueprint exported to the FLORA-2 file

1 d b l u e p r i n t
2 [
3 s t r u c t u r e => d Component C ,
4 retType => d s o l u t i o n ,
5 ? s i gna tu r e1 ,
6
7 ? s i gna tu r eK
8] .

where

• structure is the representative structure class,

• retType is d solution or any ?X such that ?X:: d solution ,

• ? signatureI is a property with the following format ?name(?argtypes) −> ?retType where

– ?name is a method identifier included by the blueprint (in i-dare(solve)),

4.4. SOLVERS AND STRUCTURES 65

– ?argtypes is an ordered comma list of the argument type names of each parameter of
?name,

– ?retType is the return type name of ?name.

When a blueprint does not include any new method (with respect to c solver) then there will
be no signatures.

i-dare(solve) offers a basic class to create a solution, d solution . However, a solver may extend
this class to return more richer solutions (for example, including dual values). This solution hierar-
chy must also be exported automatically to FLORA-2 . For instance if we have, the i-dare(solve)
class solution dual that extends from d solution , then the following will be generated

Listing 4.3: Example of solution hierarchy

1 s o l u t i o n d u a l : : d s o l u t i o n .

4.4.1 Solvers exported and new Structure relations

The FLORA-2 -side of i-dare(solve), has two main purposes. The first one is to provide the bases
for the Solvers’ Tree generation, that will mainly use the d solver objects. The second is to define
a new type of relations between structure classes.

Let’s go back to the d B Lagrangian Relax C class,

1 d B Lagrang i an Re l ax C : : d Block C [
2 i d s −> [sub , l i n k i n g] ,
3 subsC −> [d LR C , d l o c (d L i n e a r C o n s t r a i n t s C)] ,
4 l i n k −> [([X] , d a l l) , ([X] , d a l l)]
5] .
6
7 d LR C : : d Component C [ab s t r a c t] . // A u x i l i a r y s t r u c t u r e c l a s s

With the inheritance relation (::) used so far, the only way of creating an instance of d B Lagrangian Relax C

is by creating instances of d LR C. But that would be impossible, since d LR C is abstract. Therefore,
i-dare defines a new way of dynamically verifying for structure classes equivalence based on the
blueprint specification.

Besides all semantical meaning a structure class may have, the most important characteristic
is the way its blueprint is defined (which solution type it provides, which methods it defines). For

instance,

1 d LR C b l u ep r i n t : d b l u e p r i n t
2 [
3 s t r u c t u r e −> d LR C ,
4 retType −> s o l u t i o n d u a l ,
5 // s i g n a t u r e s
6 add to OF ([’ v ec to r<double > ’]) −> ’ vo id ’
7] .

defines the blueprint for d LR C. Notice the signature add to OF([’vector<double>’]) −> ’void’, that
specifies that all solvers descending from that blueprint must implement/use that method. This
method is intended to update the objective function of the structure being solved, functionality
important in a Lagrangian Relaxation solution method.

Now, if another structure class has a blueprint that contains at least that signature and any
descendant of that solution type, the system will consider it of type d LR C. To formalize this
concept we will use the blueprint equivalence relation. But first we need to define when to signatures
are equivalent. For doing so, we will follow a naive approach, meaning that if two signatures are
identical the system will assume that the corresponding methods will perform equivalent actions.
There will not be sub-typing rules [133] defined for argument types and return type (this will be
left for future research).

Therefore two signatures ?n1(?at1)−>?rt1 and ?n2(?at2)−>?rt2 will be considered equivalent iff
?n1=?n2, ?at1=?at2 and ?rt1=?rt2.

66 CHAPTER 4. I-DARE(SOLVE) – SOLVING THE MODEL

Definition 4.4.1 (Blueprint equivalence relation rule) Given two blueprints B1 and B2, B2

is equivalent to B1, denoted by B2 ; B1 iff

• B2 .retType :: B1 .retType and

• ∀(?n(?at)−>?rt∈ B1) ∃(?n’(?at’)−>?rt’∈ B2) such that ?n(?at)−>?rt and ?n’(?at’)−>?rt’ are equiv-
alent.

For instance,

1 d MCF C b luepr i n t : d b l u e p r i n t
2 [
3 s t r u c t u r e −> d MCF C ,
4 retType −> s o l u t i o n du a l ,
5 // s i g n a t u r e s
6 add to OF ([’ v ec to r<double > ’]) −> ’ vo id ’ ,
7
8] .

may be the blueprint of d MCF C class, and it is equivalent to d LR C blueprint, due to rule 4.4.1.

Proposition 4.4.2 (; - property) Let B be the set of all blueprints, then the ; relation over
B × B is a partial order relation over B.

Proof. For ; to be a partial order it must be reflexive, antisymmetric and transitive.

• ∀(B ∈ B) B .retType ::B .retType and ∀?n(?at)−>?rt∈ B, it is equivalent to itself, then B ; B.

Therefore ; is reflexive .

• ∀(B1, B2 ∈ B) if B1 ; B2 and B2 ; B1 then

– B1 .retType ::B2 .retType and B2 .retType ::B1 .retType, thus B1 .retType =B2 .retType, due to
:: definition;

– ∀(?n(?at)−>?rt∈ B1) ∃(?n’(?at’)−>?rt’∈ B2) such that ?n(?at)−>?rt and ?n’(?at’)−>?rt’ are
equivalent, and ∀(?n(?at)−>?rt∈ B2) ∃(?n’(?at’)−>?rt’∈ B1) such that ?n(?at)−>?rt and
?n’(?at’)−>?rt’ are equivalent, thus B1’s signature set is equal to B2’s signature set, due
to set definition and signature equivalence definition.

Hence, B1 = B2. Therefore ; is antisymmetric .

• ∀(B1, B2, B3 ∈ B) if B3 ; B2 and B2 ; B1 then

– B3 .retType ::B2 .retType ::B1 .retType, thus B3 .retType ::B1 .retType, due to :: definition;

– ∀(?n(?at)−>?rt∈ B1) ∃(?n’(?at’)−>?rt’∈ B2) such that ?n(?at)−>?rt and ?n’(?at’)−>?rt’ are
equivalent, and ∀(?n’(?at’)−>?rt’∈ B2) ∃(?n ’’(? at’’)−>?rt ’’∈ B3) such that ?n’(?at’)−>?rt’

and ?n ’’(? at’’)−>?rt ’’ are equivalent, thus ∀(?n(?at)−>?rt∈ B1) ∃(?n ’’(? at’’)−>?rt ’’∈ B3)
such that ?n(?at)−>?rt and ?n ’’(? at’’)−>?rt ’’ are equivalent, passing through the ?n’(?at’)−>?rt’∈
B2).

Hence, B3 ; B1. Therefore ; is transitive .

The fact ; is a partial order as well as :: , suggests us that a simple extension of :: can be
done, to ensure that if two blueprints are equivalent, it means that the corresponding structure
classes are equivalent as well. The point being that when a structure ?P is present inside a block,
the only thing that block cares about is that its corresponding solvers are able to use the solver of
?P. So, the block is only interested in whether the two structure classes have equivalent blueprints.

To make this process transparent to the user, i-dare uses this dynamic extension of the
FLORA-2 operator :: .

4.4. SOLVERS AND STRUCTURES 67

Listing 4.4: Extension of :: FLORA-2 operator

1 ?X : : ? C :− ?X : : d Component C [not ab s t r a c t] ,
2 ?C : : d Component C [ab s t r a c t] ,
3 ?xb : d b l u e p r i n t [s t r u c t u r e −> ?X] ,
4 ? cb : d b l u e p r i n t [s t r u c t u r e −> ?C] ,
5 ?xb ; ? cb .

So now the fact of d LR C being abstract, will not longer be a problem, since d MCF C :: d LR C

will be true due to Listing 4.4. Therefore all objects ?O:d MCF C will automatically be considered
?O:d LR C, so one may use ?O inside a d Lagrangian Relax C block.

Proposition 4.4.3 Let be ?C1::d Component C[abstract] and ?C2::d Component C[not abstract], such that
?cb1 : d blueprint [structure −> ?C1] and ?cb2: d blueprint [structure −> ?C2], then the usage of a ?O:?C2

in a place where ?C1 is required do not create any well-formedness problem iff ?cb2 ; ?cb1.

Proof. To prove this proposition, let’s consider the places where this substitution may create any
problem, and there is only one place, wherein ?C1 is a substructure of a certain block, so ?O:?C1

must be true to ensure well-formedness. And in fact it is true, since ?O:?C2 and ?cb2 ; ?cb1, so
?C2::?C1 (due to Listing 4.4). Therefore, ?O:?C1 is true.

Note also that to consider the “blueprint equivalence” generated class relation do no create any
semantic problem (due to the substitution of one structure by another), because the structure we
are replacing will always be abstract. Abstract structures do not represent any “directly solvable”
class of problems, generally they refer to a wide set of problems defined by how the provide their
solution and the way other classes can interact with them.

4.4.2 Configuration Templates

As previously mentioned, each solver must define how it must be configured. For this purpose
i-dare(solve) defines Configuration Templates (CT). A CT is a hierarchical structure defining
the relevant algorithmic parameters and the possible range of their values. Hence, CTs can be
easily used to describe single configurations by simply forcing each parameter to have a single-
valued domain.

Two descriptions of CTs are available: the “external” and the “internal” one. The external
one is in terms of an XML file that specifies parameters and their domains. CTs currently support
four base parameter types: integer, double, choice and vector. The integer type defines bounds of
the parameter and a default value. For instance,

Listing 4.5: Example of Integer parameter type

1 <INT name = ”param1” bounds = ”0 :1 , 4 , 8 : 10 ” d e f v a l = ”0”/>

defines an integer parameter that can take values 0, 1, 4 and from 8 to 10, with default value set
to 0. The attribute bounds will be a list composed by integer numbers or pairs of the form l :u.
Each pair l :u specifies a lower and upper bound of a subset in the domain of the parameter. The
elements of the bounds list must be disjoint.

The double type defines also bounds and default value. It also includes a step that specifies
the increment that will be used to iterate between the bounds. For instance,

Listing 4.6: Example of Double parameter type

1 <DOUBLE name = ”param2” bounds = ”0 : 0 . 01 :1 , 4 : 6 . 5 ” d e f v a l = ”0”/>

defines a double parameter that can take values between 0 and 1, with increment (step) set to 0.01
and between 4 and 6.5 also with step 0.01, and default value set to 0. Note that in this case there
is a new kind of element in the bounds list, l : s :u, that represents a lower bound, step and upper
bound. When there is an interval without step, in the bounds list, the minimum step (present in the
list) will be taken; but if there is no step defined at all, a system predefined step will be assumed.

68 CHAPTER 4. I-DARE(SOLVE) – SOLVING THE MODEL

The vector type defines a parameter that may contain a multi-dimensional vector. It specifies
the dimension bounds, the type of each vector’s element and a default value. For instance,

Listing 4.7: Example of Integer parameter type

1 <VECTOR name=”param3” dims = ” 2 |3 ”>
2 <INT name=” i n t e r n a l 1 ” bounds=”−1: 100 ” d e f v a l = ”3”/>
3 <DEF VAL dims=” 2 |2 ”>
4 <V v a l = ”−1”/>
5 <V v a l = ”2”/>
6 <V v a l = ”34”/>
7 <V v a l = ”4”/>
8 </DEF VAL>
9 </VECTOR>

defines a vector parameter with two dimensions, the first one bounded to 2 and the second one to
3. It also specifies that each vector’s element must be of integer type (with the stated bounds and
default value). Note that a vector type’s default value is defined using a vector tag that sets the
dimensions (respecting the bounds) and each element. The elements are represented in a linear
form, even if it has more than one dimension; of course, the total amount of elements must be
equal to Πd∈dimension‖d‖.

Finally, the choice type defines a nominal parameter that may be used to describe, for instance,
a method to be used inside the solver. This type specifies all the nominal values it may take. Each
nominal value is a configuration template as well. For instance,

Listing 4.8: Example of Choice parameter type

1 <CHOICE name=”param4” d e f v a l = ” cho i c e1 ”>
2 <E name = ” cho i c e1 ”/>
3 <E name = ” cho i c e2 ”>
4 <DOUBLE name=”subparam1 ” bounds=” 0 .01 : 0 . 005 : 0 . 5 ” d e f v a l = ” 0 .05 ”/>
5 </E>
6 </CHOICE>

defines a domain of two choices. The second choice specifies a sub-parameter of type double;
within the tag E, a whole CT may appear. This allow us to create hierarchical configurations,
where the set of parameters in the configuration is not always the same (although of course the
total set of parameters which may appear in any configuration pertaining to a CT is fixed). This
is useful because solvers may support more than one different algorithm, and some parameters
may not have a meaning for some of them. For instance, Linear Program solvers may employ
either simplex approaches or interior-point ones; while some algorithmic parameters are typically
common to both approaches, there are others that only make sense for one of them.

When a solver is exported to the FLORA-2 file, it exports also its CT. Therefore, the “internal”
representation of the CT in FLORA-2 is automatically constructed as an instance of the classes:
configuration T , confInt T, confDouble T, confVector T and confChoice T,

1 c o n f i g u r a t i o n T .
2
3 confNumber T [
4 bounds => l i s t ,
5 d e f v a l => number
6] .
7
8 con f I n t T : : confNumber T .
9

10 confDouble T : : confNumber T .

1
2 con fVecto r T [
3 dims => l i s t ,
4 type => confNumber T ,
5 d e f v a l => [l i s t , l i s t]
6] .
7
8 con fCho i ce T [
9 d e f v a l => c o n f i g u r a t i o n T

10] .

For instance, the FLORA-2 file corresponding to the parameter types exposed in Listings 4.5,
4.6, 4.7 and 4.8 would look like

4.4. SOLVERS AND STRUCTURES 69

1 param1 : con f I n t T [
2 bounds

−> [(0 , 1) , 4 , (8 , 1 0)] ,
3 d e f v a l −> 0
4] .
5
6 param2 : confDouble T [
7 bounds

−> [(0 , 0 . 0 1 , 1) , (4 , 6 . 5)]
8 d e f v a l −> 0
9] .

10
11 i n t e r n a l 1 : c on f I n t T [
12 bounds −> [(−1 , 100)] ,
13 d e f v a l −> 3
14] .
15
16 param3 : con fVecto r T [
17 type −> i n t e r n a l 1 ,
18 dims −> [2 , 3] ,
19 d e f v a l −> [[2 , 2] , [− 1 , 2 , 3 4 , 4]]
20] .

1 cho i c e1 : c o n f i g u r a t i o n T .
2
3 subparam1 : confDouble T [
4 bounds

−> [(0 . 0 1 , 0 . 0 0 5 , 0 . 5)] ,
5 d e f v a l −> 0 . 05
6] .
7
8 subparam1 : cho i c e2 .
9 cho i c e2 : c o n f i g u r a t i o n T .

10
11 cho i c e1 : param4 .
12 cho i c e2 : param4 .
13 param4 : con fCho i ce T [
14 d e f v a l −> cho i c e1
15]
16
17 param1 : confTemplate1 .
18 param2 : confTemplate1 .
19 param3 : confTemplate1 .
20 param4 : confTemplate1 .
21 confTemplate1 : c o n f i g u r a t i o n T .

Note that when a parameter type is meant to have sub-types it is expressed with the : re-
lation (has a relation). This way one may easily consult the configuration database; for in-
stance, ?X:confTemplate1 will retrieve all the sub-types in confTemplate1. More in general, the powerful
FLORA-2 queries make it very easy to deal with CTs, by implementing operations like expanding
all possible configurations represented by a template, constructing the union or the intersection of
two CTs, and so on. This is very useful for the different uses of CTs described later on.

4.4.3 Solution Generation

Given the model has been solved, hence the solvers have returned back the solution objects with the
variables and their values, the system will automatically generate a XML file with the processes’
result.

1 <STATUS va l u e=” s t a t u s ”/>
2 <VARIABLES>
3 <V n=”var name ” v=” v a l u e ”/>
4 . . .
5 </VARIABLES>
6 <OTHER>
7 . . .
8 </OTHER>

This file is formed by a first tag STATUS, where value describes the exit status of the solution process
(at this point we only report if the process succeed in finding a solution or not, of course this must
be improved with more detailed information). In case a solution was found, the file will contain a
tag VARIABLES with the values of all variables.

This first two tags are generated by the default implementation of the class c solution . This
class also offers an empty extendable method otherinfo () that returns a list of XML nodes. This
method may be extended by any c solution ’s descendant and the XML Node generated will always
be placed inside the tag OTHER.

Note that the only solution object that will be asked to provide the XML file, is the one returned
by the solver applied to the root structure in the formulation.

4.4.4 The overall solution process

When the SI is generated, the Solvers’ Tree assigned and the configurations decided, i-dare(solve)
is ready to start the solution process. This process will commence by the invocation of a Dispatcher

70 CHAPTER 4. I-DARE(SOLVE) – SOLVING THE MODEL

that deals with the Meta Data file in SI, initializes the solution process by creating a tree of solver
invocations depending on the solvers’ disposition inside the Solvers’ Tree.

Note that each solver invocation must be parametrized with the piece of instance it needs and
the corresponding configurations. See Figure 4.8

Figure 4.8: Overall solution process

The dispatcher is designed to contribute little overhead to the overall solution process. The
overall execution time will be mainly influenced by the running times of the used solvers.

Chapter 5

i-dare(t) - the reformulation
system

Abstract

Once a formulation is defined, and the enhanced instance has been generated using the
data of the actual instance at hand, we could directly pass this instance to the solvers and
obtain the solution. However, there may be equivalent (re)formulations for which a more
efficient solution methods could be applied. This chapter will present i-dare’s methodology
for creating (and semantically dealing with) these reformulations.

5.1 Atomic Reformulation Rules

Reformulations in i-dare will be done using an approach based on mapping the input and output
of the structures involved. If we want to reformulate structure class A into B we need to define
a map from A’s arguments to B’s arguments and another map from B’s answer (variables) to A’s
answer. These mappings will conform a reformulation rule between A and B. The set of all specified
reformulation rules, plus their semantics will define i-dare(t), the reformulation system.

One common point of every structure class (?C::d Component C) is that they ultimately need
arguments and provide with an answer. Arguments, as defined in §1.1.1, are lists composed of
variables, constants, expressions, relations and/or direction. On the other hand, answers are the
values taken by the variables that are present in the argument list (these values are assigned by
the solvers).

To make a reformulation of a certain model, i-dare(t) applies step by step a set of Atomic
Reformulation Rules (ARR). Each ARR will deal with a particular structure, transforming it into
another equivalent structure. All ARRs must be an instance of the following class,

Listing 5.1: ARR class definition

1 d ARR
2 [
3 A => d Component C ,
4 B => d Component C
5] .

where A and B are the components involved in the reformulation (from A to B).
i-dare(t)’s set of ARRs will be divided in two main categories, algebraic and algorithmic. The

first one defines the mappings using the constructs offered by i-dare(im) to build expressions (see
2.2.4). The data will be transformed automatically using implemented handlers (to deal with the
reading and writing of the data). To finally solve the problem, the applied ARR will induce the

72 CHAPTER 5. I-DARE(T) - THE REFORMULATION SYSTEM

automatic generation of a C++ solver that will use the transformed input, delegate its solution to
a B’s solver and transform back the answers to A.

On the other hand, the second one relies on already C++ implemented delegation solvers that
will deal with the transformation of the data and answers. This type of reformulation can be seen
as delayed, since it is applied only when the instance is being solved. In this case the delegation
solver will be implemented in order to convert the input, delegate the solution on another known
solver and transform back the answer.

We will not be able to create reformulation rules directly from d ARR. In fact, in sections to
come we will enter in the particular aspects of each type of ARR, explaining how we can effectively
create reformulation rules from them. However, we will first need to clarify some aspects common
to both types of ARR.

5.1.1 Abstract structure classes

ARRs allow us to represent a reformulation rule from one structure class to another. To build
an ARR the only information we have is the classes stored in A and B. When dealing with non
abstract classes we have all the information we may need about the structure in order to design an
ARR. We can access the dMVs, the parameters, the substructure classes, the linking information,
we even know all the semantical value enclosed in that structure class.

However, the usage of an abstract structure class or of a block class that contains abstract
structure class in it, when declaring A or B inside an ARR, may conduct us to the problem of not
having enough information to build that ARR.

For instance, the block class d B vardept C has as substructure class d Component C. Having this
kind of block classes in A or B’s declaration makes it impossible to access the inner substructure
parameters while defining the argument and/or answer mappings. Other abstract descendants of
d Component C may present an issue, for instance d B Lagrangian Relax C uses an abstract class when
defining its substructures (d LR C). This class only defines how the equivalent blueprints must be,
but has no structural information whatsoever to build an ARR.

Therefore we need a way to avoid the usage of abstract structure classes while defining an ARR,
but still being able to build ARRs that involve classes like d B Lagrangian Relax C or d B vardept C.
i-dare(t) defines a way of narrowing down a structure class that may contain abstract classes.

Definition 5.1.1 (Narrowed Leaf Problem) Let ?pl :: d LeafProblem C then we say that ?pl is
a narrowed leaf problem, iff ?pl [not abstract]. If ?pl is not narrowed then ?npl :: ?pl, such that
?npl [not abstract], is called a narrowing of ?pl.

A narrowing of a leaf problem (and also of a block) will consider the extension of the :: operator
based on the blueprint equivalence rule (see Definition 4.4.1 and Listing 4.4).

Definition 5.1.2 (Narrowed Block) Let ?bl :: d Block C, such that ?bl [not abstract] then we say
that ?bl is a narrowed block, iff ∀?sub ∈ ?bl.subsC ?sub is narrowed. A narrowing for ?bl is defined by
the following term, ?bl(?nsub1 ,...,?nsub|?bl.subsC|), such that

?nsubi =

{

? if ?bl.subsC[i] is narrowed
a narrowing of ?bl.subsC[i] otherwise.

For a block’s narrowing, we say that ?bl(?nsub1 ,...,?nsub|?bl.subsC|) :: ?C, where ?bl ::?C (i.e. the class
of the narrowing is the class of its functor).

The narrowing of a substructure can be done using a tuple of different structures classes. For
instance, assume we have

• the class d B Lagrangian Relax C;

• that d MCF C blueprint and d Simple Selection C blueprint are the blueprints of d MCF C and d Simple Selection C ,
respectively; and

5.1. ATOMIC REFORMULATION RULES 73

• d MCF C blueprint;d LR C blueprint and d Simple Selection C blueprint ;d LR C blueprint;

then a narrowing for d B Lagrangian Relax C could be d B Lagrangian Relax C((d MCF C, d Simple Selection C), ?).
In this example d LR C is narrowed to the tuple (d MCF C, d Simple Selection C) and d Linear Constraints C

is already narrowed, hence ? appears in its place. Also note that the variables for d MCF C and
d Simple Selection C will be created to be disjoint, in order to create a well-formed block (see Defini-
tion 2.5.1).

From these previous definitions, we will imply the following rule that must be applied to all
ARRs.

Definition 5.1.3 (ARR narrowing rule) Let ?arr :d ARR, such that ?arr [A −> ?a] and ?arr [B −> ?b],
then ?a and ?b must be narrowed structure classes or narrowings.

We can also register a solver to a narrowing, instead of registering it to the original class name.
This may become handy, when we do not have a solver for the general not narrowed block, but we
do know how to tackle a particular narrowing of that block.

5.1.2 Track Structures

When an ARR is applied to a structure inside a formulation, it must leave a track of that appli-
cation. A mere exchange of structures may seem appropriate, however it is highly problematic. It
may create well-formedness problems and incompatibilities when applying the solvers. Moreover,
it may be costly to maintain a record of the ARR already applied.

i-dare(t) proposes a different policy instead. Each time an ARR is applied to a structure it
will leave a trace on that structure name. That trace will be called track structure.

Definition 5.1.4 (Track structure) A track structure is a term with the following form tr (s , b1 ,..., bm),
where s is a structure or a structure class, m > 0, bi is a narrowed structure class or a track struc-
ture, s 6=bi and bi 6=bj , with i 6= j ∈ [1..m].

Note that a track structure will not allow repeated structures within it.
The system will allow the application of certain operations to a track structure. Let tr (b0, b1,...,bm)

be a track structure then

• tr (b0, b1,...,bm):?C, will be defined as b0:?C. The class of the track structure is the class of its
first structure.

• tail (tr (b0, b1,...,bm)) = bm,

• head(tr (b0, b1,...,bm)) = b0,

• rest (tr (b0, b1,...,bm)) = tr (b0, b1,...,bm−1) (or b0 if m = 1),

• addS(tr(b0, b1,...,bm), bm+1) = tr (b0, b1,...,bm, bm+1),

• tr (b0, b1,...,bm)[j] = bj , with j ∈ [0..m].

• from(j, tr(b0, b1,...,bm)) = tr (bj ,..., bm), with j ∈ [1..m].

• until (j, tr(b0, b1,...,bm)) = tr (b0 ,..., bj), with j ∈ [1..m].

• ∀ Method(...), tr (b0,b1,...,bm).Method(...) = b0.Method(...). For example tr (b0,b1,...,bm).freeinds =
b0.freeinds

Proposition 5.1.5 (Track structure innocuousness) Given a well-formed formulation F::d Formulation

that contains a structure s :d Component C, then we can substitute s inside of F by any track structure
ts, such that head(ts) = s, and F will remain well-formed.

74 CHAPTER 5. I-DARE(T) - THE REFORMULATION SYSTEM

Proof. Assume the contrary, F do not remain well-formed. This means that ts is of the wrong
structure class, or one method of ts gave an unacceptable value in the well-formedness verification.
But, since the class of ts is the same class of s, and all ts methods are equal to the s methods, F

would have been not well-formed even in its original form (with s inside instead of ts). Then by
absurd, F remains well-formed.

Track structures give us the means to store inside a formulation the trace leaved by the appli-
cation of ARRs. But not all track structure represents a sequence of ARR application, so we need
a rule to control the track structures’ creation.

The track structures enables us to apply the ARRs in a transitive way, by expanding the track
structure.

Definition 5.1.6 (Track structure creation rule) Given that ?arr :d ARR, such that ?arr [A −> ?ac]

and ?arr [B −> ?bc], ?F:d Formulation, ?ts ∈ ?F is a track structure (or a normal structure) such that
tail (?ts)::? ac, and ?arr is applicable to tail (?ts), then a new ?nts will be created, to substitute ?ts

inside of ?F, such that,

?nts =

{

tr(?ts, ?bc) ,if ?ts 6= tr(...)

addS(?ts, ?bc) ,otherwise

The track structure creation rule define how track structures are incrementally formed from the
application of the ARRs. Note the previous definition uses the concept of applicable ARR, which
will be defined in §5.2.7 and §5.3.1.

5.2 Algebraic ARR

As its name already states, an Algebraic ARR (ARR
∑

) uses only algebraic constructs to perform
both mappings. To build these algebraic constructs we will need to access the values (of constants
and variables), the cardinality of the dimensions, the existing relations and direction. But when

building an ARR
∑

the only information we have in our hands is the structure classes A and B. We
then need a way to access all the data inside those structure classes.

For that purpose i-dare(t) defines the binary operator A.. f (extraction operator).

Definition 5.2.1 (Extraction Operator) Let ?A::d Component C be any non abstract structure
class, then the extraction operator ?A.. f is defined as follows,

• if ?A::d LeafProblem C and f is an ?id such that (?id , ?type) ∈ ?A.args, then

– if ?type is d var, d constant, d rel or d direction then A.. f represents the value of that variable,
constant, relation or direction, respectively.

– if ?type = d vector(?K, ?S) and assuming we have one index ij for each ?S[j], j ∈ [0..|?S| − 1]

then ?A.. f(i0 ,..., i |?S|−1) represents the value of the vector in the specified position.

• if ?A::d LeafProblem C and f is a ?dimvar ∈ ?A.dim var then ?A.. f represents that dimension’s meta
variable.

• if ?A::d Block and f is an ?id ∈ ?A.ids, then ?A.. f represents the substructure ?A.subsC[?id].

Observe that if we have a block class ?A that has a substructure with identifier id, then we can
apply the extraction operator on that substructure by doing ?A.. id .. f. This way we can access a
whole block structure.

ARR
∑

will use the extraction operator applied to the properties A and B. For instance, assume
we have an ARR

∑

for which A −> d LP C, then we could do the following extraction operations,

• A.. cols retrieves one of the dimensions of d LP C to which the cardinality operator can be
applied, card(A.. cols);

• A.. dir retrieves the direction of d LP C;

5.2. ALGEBRAIC ARR 75

• A..c(i), with i an index over cols , retrieves the values of the price constants of the objective
function of d LP C.

The extraction operator plays an important role in the definition of an ARR
∑

. Let’s now define
how ARR

∑

can be created as an object derived from the following class,

Listing 5.2: ARR
∑

class definition

1 d ARR Algebra i c : : d ARR
2 [
3 i ndexA => l i s t ,
4 i ndexB => l i s t ,
5 dimRel => l i s t ,
6 arg map => l i s t ,
7 ans map => l i s t ,
8 f i x T I => l i s t , // on l y i f B : : d Block C
9 [c o n d i t i o n => term]

10] .

where

• indexA and indexB – are lists of ARR
∑

index declarations (see §5.2.1),

• dimRel – is a list of ARR
∑

dimension relations (see §5.2.2),

• arg map – is a list of ARR
∑

argument mappings (see §5.2.3),

• ans map – is a list of ARR
∑

answer mappings (see §5.2.3),

• fixTI – is a list of fixed template items (see §5.2.4), that must only be defined if B::d Block C,

• condition – is an optional conditional expression that must be satisfied for the ARR
∑

to be
used.

5.2.1 ARR
∑

– Index declarations

While defining the extraction operator we made reference to declared indices. But since the ARR
∑

is working at a structure class level, there are no index declared. Therefore, we need to specify
those indices inside the ARR

∑

. For that purpose are the index declarations indexA and indexB.

indexA will be a list containing elements of the form ?d = (i0 ,..., im), where A..?d is a valid ex-
traction operation of a dMV and i j is a unique identifier in indexA that will represent an index for
dimension A..?d. If m = 1 then we can suppress the parenthesis. For indexB the specification is
analogous, but using structure class B instead.

For example, if A were d LP C then we could create the following index declaration, indexA −> [cols=(i, j), cons=k].

When the structure in A is a block that has a substructure s such that A. freeinds∩s.freeinds 6= ∅,
then s will be replicated inside of A. This situation implies that we would want to access each
replication of s independently. At this point, using dMV to declare the indices may not be enough.
In fact, we will need to declare an index over A. freeinds∩s.freeinds.

Definition 5.2.2 (Free Index Difference) Let A be a block and s a substructure of A, then the
free index difference of s in A, is denoted by fiD(s) =‖A.freeinds∩s.freeinds‖.

Note that due to block well-formedness (cf. Definition 2.5.1) the A. freeinds ⊆ s.freeinds. Therefore
A. freeinds∩s.freeinds ⊆ s.freeinds.

Then ?d besides being a dMV it may be fiD(s), if s is a substructure of A (or B if we are defining
indexB). Of course this can only occur when A (or B) is a block.

76 CHAPTER 5. I-DARE(T) - THE REFORMULATION SYSTEM

5.2.2 ARR
∑

– Dimension relations

When reformulating one structure into another, it is imperative to know how the dimensions of
both structures are related between each other. In the case of ARR

∑

this relation will be through
an expression that involves as operators: dMVs and numeric constants.

This relations between dimensions will be contained in the dimRel list. Each element of dimRel

will have the form, ?d=expr, where B..?d is a valid extraction operation of a dMV, and expr is
an expression that uses as operands: A..?d1 (a valid extraction operation of a dMV), free index
difference operations and/or numeric constants.

For instance assume we are reformulating the d LP C into d LP MPS C. In this case the dimension
relation must be dimRel −> [cols=cols, cons=cons]. More complex example will be seen later on.

The dimension relation list of an ARR
∑

must guarantee that all dMV of the structure class B

are computed inside dimRel. For formalizing such a rule, we need to define how to extract all dMVs
from any structure class (even from blocks).

Definition 5.2.3 (dMV Join for Leaf Problems) Let ?P::d LeafProblem C, then the dMV Join
of ?P, will be defined as ?P.dmv join = ?P.dim var.

Definition 5.2.4 (dMV Join for Blocks) Let ?B::d Block C, then the dMV Join of ?B, will be
defined as

?B.dmv join = {?id..f|?id ∈ ?B.ids ∧ f ∈ ?B.subsC[?id].dmv join}

In the previous definition we used the operator .. to access a parameter of even a substructure
inside a block. When a block has a substructure composed by a tuple of structures, for instance,
B −> d B Lagrangian Relax C((d MCF C, d Simple Selection C), ?)), we can access the parameters of the
elements of the tuple individually by doing B..sub(d MCF C) for the first element of the tuple and
B..sub(d Simple Selection C) for the second one.

The following definition declares a rule that all ARR
∑

must satisfy.

Definition 5.2.5 (Dimension Relation Rule) Let ?arr be an ARR
∑

, then ∀?d ∈ ?arr.B.dmv join

there must be a ?d=expr ∈ ?arr.dimRel.

5.2.3 ARR
∑

– Mappings

The argument mapping defines how the parameter of one structure are transformed into the other’s.
The main idea resides in specifying for each parameter of B how it will be built depending on A’s
parameters. Of course this depends on the type of the B parameter we are trying to compute.

First we will need to describe how the expressions used for mapping will be constructed. As
in the case of dimensions, mapping expressions will use a particular set of operands, which are:
extraction operations (e.g. A..c(i,j)), numeric constants, relations (=<, >=, =) and/or directions
(min, max).

For instance, if are trying to compute a constant, the following expression could be valid for
doing so, A..c(i)∗2 + card(A.. cols), if A −> d LP C.

When A is a block and s is a substructure of A, such that A. freeinds∩s.freeinds 6= ∅, then we will be
able to do the following A..s(f), where f is an index over fiD(s). Note that this is a way of accessing
a particular replication of s.

Now let’s define, for each type of parameter, how the mappings must be specified.

Definition 5.2.6 (Scalar Mapping) Let B.. f be of scalar type, then a scalar mapping must be
done, and it is defined as follows, B.. f = ?MP, where

• if (f=d constant) ∈ B.args then ?MP is a constant expression involving the following operands: ex-
traction operations of type d constant, numeric constants, cardinality operators (e.g. card(A.. cols)),
and/or directions (seen as their numeric values (1, -1)).

• if (f=d relation) ∈ B.args then ?MP must be exactly one extraction operation of type d relation

or a relation constant (=<, >= or =).

5.2. ALGEBRAIC ARR 77

• if (f=d direction) ∈ B.args then ?MP must be exactly one extraction operation of type d direction

or a direction constant (min or max).

Definition 5.2.7 (Vector Mapping) Let B.. f be of type d vector(?K, ?S), with ?K 6= d var, then a
vector mapping must be done, and it is defined as follows, B.. f = ?MP, where

• ?MP is a vector construction (see §2.3), such that ?MP has |?S| dimensions, and ?MP is built
using exclusively scalar mappings corresponding to type ?K; or

• ?MP is a extraction operation of type d vector(?K, ?S1), such that |?S| = |?S1|.

Variable partitioning

Sometimes, mainly when reformulating into a block, we need to partition the variables of a certain
substructure. For instance, assume the B structure of an ARR

∑

is d B MILP C,

1 d B MILP C : : d Block C
2 [
3 i d s −> [lp , i c] ,
4 subsC −> [d LP C , d l o c (d IC C)] ,
5 l i n k −> [([X,Y] , d a l l) , ([X] , d a l l)]
6] .

Note that in this case the variables of d LP C must be partitioned in order to unify with the template
pattern [X,Y]. However d LP C has a single way to access its variables, that is through the property
x. Hence, we have no way of partitioning x to unify with [X,Y] with the tools so far exposed. For
this reason we define the variable partitioning.

Definition 5.2.8 (Variable Partitioning) Let B.. f be of type d vector(d var , ?S), then a variable
partitioning is defined by, B.. f = ?L, where ?L is a list composed by elements of the form, n = ?D,
with

• n being a atom, unique inside of the reformulation where resides the partitioning; and

• ?D= [D1,...,D|?S|], such that Di ∈ A.dmv join, i ∈ [1..|S|] or is a free index difference; or

• ?D= rpl(D’,L), where D’ ∈ A.dmv join or is a free index difference, and L = [D1,...,D|?S|], such that
Di ∈ A.dmv join, i ∈ [1..|S|] or is a free index difference.

The definition of variable partitioning allow us to access a subset of the variables in a structure.
For instance, if we have that B..x = [x1 = [...], x2 = [...]] , we use the terms B..x(x1) or B..x(x2) to
access the partitions in x.

The usage of rpl (D’,L) creates |D’| partitions of size ‖L‖, so the accessing term will be a little
more complex. Assume, we have B..x = [xp = rpl(D,[D1,D2])] and that we have indices declared over
D1 and D2, being i , j respectively; then we can use the terms B..x(xp(i , j)) to access the partitions
in x.

Shared indices

There is a particular case of reformulation in which we will transform a block, with shared variables,
into another structure. For instance, assume we have a block C with substructures s1, s2 and link
[[X,Y], [X,Z]]. Note that C..s1 shares the variables unified to X with C..s2. Now, if we try to
reformulate C into a structure S, we may need to access the indices involved with X, Y or Z, and
even more in the case of X (that is shared) we may want to access the indices of X contextualized
in C..s1 and contextualized in C..s2, independently.

Let us define a way to retrieve all shared and non-shared template items in a block’s link.

Definition 5.2.9 (Shared Template Items) Given a block C of class cC such that cC. link = [TP1,...,TPk]

and C.subs = [s1 ,..., sk], then the shared template items of C is denoted by the following set:

C.sharedTI = {[X, [si1 , ..., sim]] | X ∈ TPi1 ∧ . . . ∧ X ∈ TPim ∧ ij ∈ [1..k] ∧ j ∈ [1..m] ∧m is as big as possible} .

78 CHAPTER 5. I-DARE(T) - THE REFORMULATION SYSTEM

Note that the fact of assuming m as big as possible ensures that if there is a shared template
item it will include all the structures where the template item appears. For instance, if we have
the link [[X,Y], [X, Z], [Y, W]] and the substructures s1, s2, s3 in a block C then

C.sharedTI = {[X, [s1, s2]], [Y, [s1, s3]], [Z, [s2]], [W, [s3]]} .

To identify the set of instanced indices associated to a particular linking variable (unified with
a template item) we will use the operator template item dimension, defined as follows,

Definition 5.2.10 (Template Item Dimension) Given a block C such that C.subs = [s1 ,..., sk]

then the template item dimension operator can be defined as tiD(X, [si1 ..vi1 ,...,sim ..vim]), with
[X,[si1 ,...,sim]] ∈ C.sharedTI∪C.nsharedTI and vij is a variable identifier in C..sij , with ij ∈ [1..k] and
j ∈ [1..m]; and it will represent the set of indexing values associated with the template item and
structure(s) specified.

Note that tiD (...) represents a dimension that has a size and indices can be declared over it
(like any other dimension). Observe that if the index is declared in indexA then A will replace C in
the previous definition. Moreover, tiD (...) can be used inside the variable partition declaration
(as a dimension).

A dimension of form tiD(X,L) will define two possible sets depending on the way of usage. The
first one is defined by the instanced indices of the variable Li unified with X, this set will be called
shared instanced indices, and its defined as follows,

Definition 5.2.11 (Shared Instanced indices) Given a block C with a substructure s having a
variable v, with indices Iv, such that v is shared through template item X but only for the instanced
indices sI ⊆ Iξv , then sI defines the shared instanced indices of v in s through X, and it is denoted

by I
ξ(X,s)
v .

In the second case of tiD (...) usage, it will simply define the set [0..‖ tiD(...)‖− 1]. This cases of
tiD (...) usage are determined by how the indices declared over tiD (...) are utilized. The first case
arises only the index is used inside a structure that appears in tiD (...) . The second case is applied
otherwise. This indices defined over tiD (...) are called shared indices. Let us formally define the
shared indices and both cases of usage.

Definition 5.2.12 (Shared index) Given an index i declared over tiD(X,?L) it will be called
shared index, if i is used inside a term of the form C..s .. f (j1 ,..., j l−1,i,jl+1,...,jm), where

• C is either A or B;

• s can a term of the form s1..· · ·..sk, s1 ∈C.subs, s2 ∈s1.subs, and so on;

• f is a parameter of sk;

• D1 ,...,Dm are the dimensions of f;

• C..s .. v ∈ ?L and I
ξ(X,s)
v = ‖Dl‖,

then i will take values on the set I
ξ(X,s)
v , otherwise i will take values in the set [0..‖ tiD(X,?L)‖− 1].

The shared indices can be used to access the actual variable’ indices that were shared through
a template item, but depending on the structure the template item is used on.

5.2. ALGEBRAIC ARR 79

Bound Mapping

When reformulating A into B we may need to express the variable bounds of B (i.e. the lower and
upper bounds of the variables in B). To achieve this we will use a construct named bound mapping.

Definition 5.2.13 (Bound Mapping) Let B.. f be of type d var or d vector(d var ,?S), then a bound
mapping may be done, and it is defined as follows, B.. f = ?bm(?MP), where

• ?bm must be lower or upper, depending on which bounding we are declaring,

• ?MP must be a

– scalar mapping of type d constant if B.. f is of type d var

– vector mapping of type d vector(d constant, ?S).

Using the scalar, vector and bound mappings, we will define how the entire argument mapping
can be done. However, to define the argument mapping we will need a function like the one defined
for extracting dMVs, but in this case for extracting all parameters (also for block classes). The
parameters will be divided into variable and non-variable type parameter, therefore we will use to
functions, vparam join and param join.

Argument and Answer Mappings

To make simpler the definitions of the argument and answer mappings, we will build the sets of
non-variable and variable parameters of a structure.

Definition 5.2.14 (non-variable Parameter Join for Leaf Problems) Let ?P::d LeafProblem C,
then the non-variable Parameter Join of ?P, will be defined as

?P.param join = {?id | (?id, ?type) ∈ ?P.args ∧ ?type 6= d var ∧ ?type 6= d vector(d var, ?S)} .

Definition 5.2.15 (variable Parameter Join for Leaf Problems) Let ?P::d LeafProblem C, then
the variable Parameter Join of ?P, will be defined as

?P.vparam join = {?id | (?id, ?type) ∈ ?P.args ∧ (?type=d var ∨ ?type=d vector(d var, ?S))} .

Definition 5.2.16 (non variable Parameter Join for Blocks) Let ?B::d Block C, then the non-
variable Parameter Join of ?B, will be defined as

?B.param join = {?id..f|?id ∈ ?B.ids ∧ f ∈ ?B.subsC[?id].param join} .

Definition 5.2.17 (variable Parameter Join for Blocks) Let ?B::d Block C, then the variable
Parameter Join of ?B, will be defined as

?B.vparam join = {?id..f|?id ∈ ?B.ids ∧ f ∈ ?B.subsC[?id].vparam join} .

Definition 5.2.18 (Argument Mapping) Let ?arr be an ARR
∑

then the argument mapping
must have the following form, arg map −> ?L, with ?L being a list composed of the following terms,

• for all ?id ∈ ?arr .B.param join, one must add (B..? id = ?ME) to ?L, where ?ME is a scalar or vector
mapping depending on ?id’s type; and

• Optionally one may add (B..? id = ?lu) to ?L, where ?id ∈ ?arr .B.vparam join and ?lu is a bound
mapping.

• Optionally one may add (B..? id = ?vp) to ?L, where ?id ∈ ?arr .B.vparam join, ?id is a d vector(d var , [V1 ,...,Vm])

and ?vp = [n1=P1,...,nk=Pk] is a variable partitioning, such that,

‖Vi‖ =
∑

j∈[1..k]

(

{

D
j
i if Pj = [D

j
1, ...,D

j
m]

D*D
j
i if Pj = rpl(D, [D

j
1, ...,D

j
m])

)

∀i ∈ [1..m].

80 CHAPTER 5. I-DARE(T) - THE REFORMULATION SYSTEM

Note the arg map must define a mapping for all the B’s parameters that are not of variable type. On
the other hand for those parameter of variable type, arg map may optionally define a bound mapping.

The answer mapping is very similar to the argument mapping. The answer mapping transforms
the variable values of B into the variable values of A. So, there are no constants, relations or
directions, just variables. Since the answer mapping is applied once the structure B is solved, the
variables of B will have numeric values assigned.

Definition 5.2.19 (Answer Mapping) Let ?arr be an ARR
∑

then the answer mapping must
have the following form, ans map −> ?L, with ?L being a list composed of the following terms,

• for all ?id ∈ ?arr .A.vparam join, one must add (A..? id = ?ME) to ?L, where ?ME is a scalar or
vector mapping of constant type,

?id may be optionally indexed if needed (using the indices defined in indexA).

Note that while building the answer mapping in an ARR
∑

, the variables of B will be considered
constants, because the solution of B was already obtained at this point, hence all variables has a
constant value assigned.

5.2.4 ARR
∑

– Fixed template items

When B::d Block C we need to define how the B. link will be constructed. For doing so, ARR
∑

uses
the method fixTI −> ?L, specifying which variable tuple will correspond to each template item in
B. link (see Definition 1.2.2 and 1.2.6).

Assume we have a method get ti that extracts the list of all template items from a block’s link .
For example, if we have the block,

1 d B va rdept C : : d Block C
2 [
3 i d s −> [master , s l a v e] ,
4 subsC −> [d Component C , d Component C] ,
5 l i n k −> [[X,V] , [X ,W]]
6] .

then d B vardept C. get ti will return the list [X,V,W].

Definition 5.2.20 (Fixed template items) Let ?arr be an ARR
∑

, such that ?arr .B :: d Block C,
then the fixed template items ’ list must be specified in ?arr , and it is defined as fixTI −> ?L, such
that ∀(?ti ∈ ?arr.B.get ti) ?ti = B..?sub..?v must belong to ?L, having that ?sub..?v ∈ ?arr.B.vparam join and
?ti ∈ ?arr.B.link[?sub].

The fixed template items list specification is mandatory only when the B structure class is a
block. An example will be see in §5.2.6.

5.2.5 ARR
∑

– Conditional expression

The conditional expression, to be used in an ARR
∑

, is a normal condition (as defined in 2.2.4).
The only thing that changes is the set of operands. In this case the set of operands adds the
following terms,

1. Extraction operations (e.g. A.. f), and

2. Parent operations.

A parent operation (parent/1) is very useful to contextualize the structures inside the structure
tree of a formulation. In order to define parent/1 formally, we first need to define the substructure
join of a certain structure.

5.2. ALGEBRAIC ARR 81

Definition 5.2.21 (substructure Join for Leaf Problems) Let ?P::d LeafProblem C, then the
substructure join of ?P, will be defined as ?P.subs join = [].

Definition 5.2.22 (substructure Join for Blocks) Let ?B::d Block C, then the substructure join
of ?B, will be defined as

?B.subs join = ?B.subs ∪
(

∪(sb∈?B.subs)sb.subs join
)

.

subs join gathers all members of the substructure tree of a certain structure. Notice that
root . subs join will return all structures in a formulation.

Definition 5.2.23 (Parent Operator) Let F be a formulation and B be a structure inside of F,
then parent (B) will return any structure class cP, such that, B ∈ P.subs join and P:cP. If B = F.root

then parent (B) will return no structure.

5.2.6 ARR
∑

– examples

AMinimum Cost Flow (MCF) problem has a LP representation. Assume we have a graphG(N,E),
a cost function costij , with (i, j) ∈ E, a vector SD such that SDi > 0, if i ∈ N is a supply node,
SDi < 0, if i is a destination node, and SDi = 0 otherwise, and a capacity function uij for each
arc; then we could build the following LP to model the MCF problem,

min
∑

(i,j)∈E

costij ∗ flowij

s.t.
∑

j∈N+(i)

flowij −
∑

j∈N−(i)

flowji = SDi i ∈ N

0 ≤ flowij ≤ uij (i, j) ∈ E

Using the d MCF C and d LP C classes described in §1.2.1, we can define the following ARR
∑

,

Listing 5.3: ARR
∑

to reformulate MCF to LP

1 d MCF to LP ARR : d ARR Algebra i c
2 [
3 A −> d MCF C ,
4 B −> d LP C ,
5 i ndexA −> [E=e ,N=n] ,
6 i ndexB −> [] ,
7 dimRel −> [c o l s=E , cons=N]
8 arg map −> [
9 B . . d i r = min ,

10 B . . c = A . . cost ,
11 B . . A = $(c s ([1−>(A . . SN(e)=n) , −1−>(A . . EN(e)=n) , 0]) , [n , e]) ,
12 B . . r e l s = $(’= ’ , [n]) ,
13 B . . b = $(A . . SD(n) , [n]) ,
14 B . . x = lower (0) ,
15 B . . x = upper (A . . u)
16] ,
17 ans map −> [
18 A . . f l ow = B . . x
19]
20] .

The ARR
∑

d MCF to LP ARR, maps each argument of the d MCF C class into the arguments of d LP C,
and the answers of d LP C into the answers of d MCF C. Note for argument B..c, that even if it is a
vector, we are using a scalar-like notation. This can be done because B..c has the same cardinality
as A..cost (see Definition 5.2.7).

82 CHAPTER 5. I-DARE(T) - THE REFORMULATION SYSTEM

This previous example comprises a reformulation between two leaf problems. The next example
will describe a ARR

∑

between a leaf problem an a block.
Let’s consider the Multicommodity Minimum Cost Flow with Fixed-Charge (MMCF(FC))

structure class (already mentioned in §1.3),

Listing 5.4: MMCF FC class

1 d MMCF FC C : : d LeafProblem C
2 [
3 d im va r −> [N, E ,K] ,
4 a r g s −> [
5 SN = d ve c t o r (d constant , [E]) , // s t a r t node
6 EN = d ve c t o r (d constant , [E]) , // end node
7 c = d ve c t o r (d constant , [K, E]) , // co s t pe r u n i t pe r a r c
8 f = d ve c t o r (d constant , [E]) , // f i x e d co s t pe r d e s i gn a rc
9 SD = d ve c t o r (d constant , [K,N]) , // supLfPy/demand

10 b = d ve c t o r (d constant , [K, E]) , // s i n g l e k c a p a c i t y pe r a r c
11 u = d ve c t o r (d constant , [E]) , // mutual a r c c a p a c i t y
12 f l ow = d ve c t o r (d var , [K, E]) , // f l ow v a r i a b l e s
13 desg = d ve c t o r (d var , [E]) // de s i gn v a r i a b l e s
14] ,
15 dim bound −> [(SN ,N) , (EN,N)]
16] .

Having the following MILP representation

min
∑

k∈K

∑

(i,j)∈E

c
k
ij ∗ flow

k
ij +

∑

(i,j)∈E

fijdesgij (5.2.1)

s.t.
∑

j∈N+(i)

flow
k
ij −

∑

j∈N−(i)

flow
k
ji = SDk

i i ∈ N, k ∈ K (5.2.2)

0 ≤ flow
k
ij ≤ b

k
ij (i, j) ∈ E, k ∈ K (5.2.3)

∑

k∈K

flow
k
ij ≤ uij (i, j) ∈ E (γij) (5.2.4)

∑

k∈K

flow
k
ij ≤ uijdesgij (i, j) ∈ E (αij) (5.2.5)

flow
k
ij ≤ b

k
ijdesgij (i, j) ∈ E, k ∈ K (βk

ij) (5.2.6)

0 ≤ desgij ≤ 1 (i, j) ∈ E (5.2.7)

desgij integer (i, j) ∈ E (5.2.8)

From this MILP representation we can construct a Lagrangian Relaxation by dualizing constraints
(5.2.4) to (5.2.6). The resulting Lagrangian dual is:

LD = max
γ,α,β≥0

−
∑

(i,j)∈E

γijuij + L(B1) + L(B2)

where L(B1) is defined as,

L(B1) = min
∑

k∈K

∑

(i,j)∈E

(

c
k
ij + γij + αij + βk

ij

)

flow
k
ij

subject to constraints (5.2.2) and (5.2.3), and L(B2) is defined as

L(B2) = min
desg∈{0,1}|E|

∑

(i,j)∈E

(

fij − αijuij −
∑

k∈K

βk
ijb

k
ij

)

desgij

5.2. ALGEBRAIC ARR 83

The Lagrangian subproblem, therefore, decomposes into |K| MCFs problems and one problem
solvable by inspection. Notice that the L(B1) subproblems can be represented by the structure

class d MCF C and the L(B2) by d Simple Selection C . Hence, we could build an ARR
∑

to reformulate
the d MMCF FC C class into a Lagrangian decomposition d B Lagrangian Relax C.

Listing 5.5: ARR
∑

to reformulate MMCF FC to Lagrangian Flow Relaxation

1 d MMCF FC to Lagrangian Flow Relax ARR : d ARR Algebra i c
2 [
3 A −> d MMCF FC C ,
4 B −> d B Lag rang i an Re l a x C ((d MCF C , d S imp l e S e l e c t i o n C) , ?) ,
5 i ndexA −> [E=(e , e1) ,K=(k , k1) ,N=n] ,
6 i ndexB −> [] ,
7 dimRel −> [sub (d MCF C) . . N=N, sub (d MCF C) . . E=E ,
8 sub (d S imp l e S e l e c t i o n C) . . d1=E , l i n k i n g . . d1=K∗E+E ,
9 l i n k i n g . . d2=2∗E+E∗K] ,

10 arg map −> [
11 //−−−−− MCF pa r t
12 // Note tha t k i s l e f t untouched . Th e r e f o r e k w i l l be
13 // the f r e e−i ndex on which the MCF s t r u c t u r e w i l l be r e p l i c a t e d .
14 B . . sub (d MCF C) . . SN = A . . SN ,
15 B . . sub (d MCF C) . . EN = A . . EN,
16 B . . sub (d MCF C) . . SD = $(A . . SD(k , n) , [n]) ,
17 B . . sub (d MCF C) . . c o s t = $(A . . c (k , e) , [e]) ,
18 B . . sub (d MCF C) . . u = $(A . . b (k , e) , [e]) ,
19 //−−−−− Simple S e l e c t i o n p a r t
20 B . . sub (d S imp l e S e l e c t i o n C) . . f = A . . f ,
21 //−−−−− L i n ea r C o n s t r a i n t s p a r t (l i n k i n g c o n s t r a i n t s)
22 B . . l i n k i n g . . A = $ ([// l e f t hand mat r i x
23 [// mutual a r c c a p a c i t y c o n s t r a i n t s γij

24 $(c s ([1−>(e=e1) , 0]) , [e1 , (e , k)]) ,
25 $ (0 , [e1 , e])
26] ,
27 [// mutual a r c c a p a c i t y redundant c o n s t r a i n t s αij

28 $(c s ([1−>(e=e1) , 0]) , [e1 , (e , k)]) ,
29 $(c s ([A . . u (d1)−>(e=e1) , 0]) , [e1 , e])
30] ,

31 [// s i n g l e c a p a c i t y c o n s t r a i n t s βk
ij

32 $(c s ([1−>(e=e1 , k=k1) , 0]) , [(e1 , k1) , (e , k)]) ,
33 $(c s ([A . . b (k , e)−>(e=e1)]) , [(e1 , k) , e])
34]
35]) ,
36 B . . l i n k i n g . . r e l s = $ ([// r e l a t i o n s ’ v e c t o r
37 $(’=< ’ , [e]) ,
38 $(’=< ’ , [e]) ,
39 $(’=< ’ , [(e , k)])
40]) ,
41 B . . l i n k i n g . . b = $ ([// r i g h t hand s i d e v e c t o r
42 $(A . . u (a) , [e]) ,
43 $ (0 , [e]) ,
44 $ (0 , [(e , k)])
45])
46] ,
47 ans map −> [
48 A. f l ow = B . . sub (d MCF C) . . f l ow ,
49 A. desg = B . . sub (d S imp l e S e l e c t i o n C) . . f
50] ,
51 f i x T I −> [
52 X = (B . . sub (d MCF C) . . f l ow , B . . sub (d S imp l e S e l e c t i o n C) . . f)
53]
54] .

Note that in this example we needed to specify a narrowing for B and since B is a block we
declared a fixed template items’ list. Observe also that the structure sub of the d Lagrangian Relax C

block is actually a tuple of structure classes. So the block will have as substructures the |d MCF C|
and the d Simple Selection C (assuming they have blueprints equivalent to d LR C’s blueprint).

More complex examples will be seen in the following chapters.

5.2.7 Semantics

The previous sections dealt with the syntax of the ARR
∑

s, defining how we can declare one atomic
reformulation rule, to transform one structure class into another. This section will explain how

84 CHAPTER 5. I-DARE(T) - THE REFORMULATION SYSTEM

i-dare(t) deals with the ARR
∑

s from a semantic point of view (i.e. what happens when we want

to apply an ARR
∑

?).
Now assume we have an ?arr :d ARR Algebraic, such that ?arr [A −> ?ac] and ?arr [B −> ?bc] and that

we want to apply that ARR
∑

to reformulate a structure ?s:?ac into a structure of class ?bc.
First of all we need to transform the arguments from ?ac’s format into ?bc format, this way the

i-dare(ei) while generates the structured instance, it will contain the data of ?bc. The solvers will
tackle ?bc, and the answer (variable values) must be transform back to ?ac. This process describes,
broadly speaking, how i-dare(t) will deal with the reformulation.

This process mentioned three key concepts in ARR
∑

semantics, the first one is the ability to
read ?ac and then write ?bc; the second one is the usage of ?bc solver to obtain a solution; and the
third one is to transform the output back to ?ac.

From the first and second concepts we derive the definition of applicable ARR
∑

,

Definition 5.2.24 (Applicable ARR
∑

) Let be ?arr :d ARR Algebraic, such that ?arr [A −> ?ac] and
?arr [B −> ?bc], ?F:d Formulation, ?s:?ac ∈ ?F, and ?IW:d InstanceWrapper, such that ?IW[formulation −> ?F],
then ?arr is applicable to reformulate ?s iff

• if ?ac :: d LeafProblem C and ?ac[not local] then ?IW[global −> ?gdh].

• if ?ac :: d LeafProblem C and ?ac[local] then ?IW[local(?s) −> ?ldhs].

• if ?ac :: d Block C then ?IW[global −> ?gdh] and ∀?sub[local] ∈ the substructure tree of ?s ?IW[local(?sub) −> ?ldhs].

• if ?bc ::d LeafProblem C and ?ac[local] then ?DH::d DataHandler, such that d DHsubscription(?subC, ?DH, ? , ?)

and ?DH:d Writer.

• if ?bc ::d Block C then ∀?subC[local] ∈ the substructure tree of ?bc, ?DH::d DataHandler, such that
d DHsubscription(?subC, ?DH, ? , ?) and ?DH:d Writer.

• if bp1 if the blueprint for ?ac and bp2 if the blueprint for ?bc then bp2 ; bp1.

As can be noticed, an applicable ARR
∑

depends on the definition of the proper data han-
dlers and in some cases depends also on blueprint equivalence. After applying the ARR

∑

, the
formulation remains well-formed, because the track structure is innocuous (cf. Definition 5.1.5).

Once the reformulated structure has been substituted by the corresponding track structure, the
system needs to handle this kind of structure (e.g. when creating the structured instance). There
are two main extensions that must be done in i-dare(ei) to handle track structures: the first one
is related with the IW access methods being able to handle track structures and the second one
is related with capacity of the handler of writing a structure (see in Definition 5.2.24 the usage of
?DH::d DataHandler such that ?DH:d Writer).

Extending the IW access methods

In presence of a track structure accessing the data becomes a little bit tricky. We can treat the
track structure accessing as a non-global accessing (see §3.1.4) hence using a term like, ?S(?X) where
?S is the structure class containing ?X, and ?X is a dMV or a parameter identifier.

But first of all, what do we need to know about a track structure? Since a track structure ?ts is
the product of several transitive ARR

∑

applications, it seems logical that we would like to access
the data corresponding to tail (?ts) (the last structure in the sequence of reformulations).

For instance, if we have a structure s1 which is reformulating into S2, thus obtaining tr (s1,S2),
and assuming S2 has a constant property c that is computed by an expression f (d1, d2), where d1

and d2 are properties of s1; then we would like to ask for the value of tr (s1,S2)(c). The thing
that happens is that, since c depends on d1 and d2, the system will retrieve their value first, and
afterwards it will compute f to obtain the value of c.

The process showed in the previous example can be generalized as follows. Let ?ts be a track
structure obtained by a transitive sequence of ARR

∑

applications, ? fi ∈ freeinds(?ts)ξ and ?x be a
property (or a dMV) belonging to tail (?ts), and let access be one of the following access methods:

5.2. ALGEBRAIC ARR 85

dimSize, constVal; then to compute ?x(? fi) value, the ?ts(?x(? fi)) will be used as a parameter of access.
The system will then compute the term ?ts(?x(? fi)) in the following way,

access(?ts(?x(?fi))) =

{

access(?ts(?x(?fi))) , if tail(?ts) = ?C and ?ts:?C

f(access(rest(?ts)(?d1 (?fi))),..., access(rest(?ts)(?dm (?fi)))) , otherwise

where f and d1,..., dm are extracted from the ARR
∑

between tail (rest (?ts)) and tail (?ts).
Observe that the first case is a non-global access, because ?ts is a leaf problem. Therefore it can

be normally handled by the access methods defined in §3.1.4. Also note that we did not mentioned
the upperBnd and lowerBnd method, this was because those method at the end will directly depend
on constant values that will be accessed by the constVal method.

The writers

Another important extension to be done to i-dare(ei) is the inclusion of the data handlers with
writing capacity, also called writers.

A writer is a ?DH::d DataHandler that it is also an instance of the following class,

Listing 5.6: Writer class

1 d Wr i t e r
2 [
3 WdataTag (?IW , ? ts , ? ID) => l i s t
4] .

where WdataTag(?IW, ?ts) must generate a list of XML nodes to be inserted in the Meta Data file,
but it will also generate the actual data, the XML Nodes refer to. The data will be generated
depending on the track structure (note that the writer must be subscribed to tail (?ts)).

The writer obtains all the data it needs by accessing the properties of tail (?ts), instancing the
free indices using the ?ID dictionary. The implementation of a writer subscribed to a local structure
class depends on the format we are trying to use. However, in case of global structure, the writer
will always exist, and will depend on an extension of the Meta Data generation algorithm (MDGA)
and the d XMLDataHandler.

When the MDGA encounters a track structure ?ts, it will call for each ? fiv ∈ ?ts.freeindsξ, the
corresponding WdataTag(?IW, ?ts, ?ID), where ?IW is the instance wrapper used by the MDGA and
?ID is the index-value dictionary made from ?ts . freeinds and ? fiv . The MDGA will automatically
generate the list of variables corresponding to head(?ts).

The WdataTag(?IW, ?ts, ?ID) of d XMLDataHandler, will create XML nodes exactly equal to those
generated by MDGA, only that in this case they will be generated only based on the information
provided by ?ts. Tags <LEAF> are created if tail (?ts):: d LeafProblem C, and the generation is almost
the same to the one exposed in §3.2.1. Tags <BLOCK> are created if tail (?ts):: d Block C. In this
case the generation is more complicated, we may use the narrowed block tail (?ts) and create the
corresponding block tree, with only the information provided by ?ts. The resulting <BLOCK> is
exactly the equal to the one MDGA would have been generated if tail (?ts) had been a block directly
created in the i-dare(im) model.

Transforming the answers and solvers for track structures

After applying several ARR
∑

s to a formulation ?F we obtain a reformulation ?F’ that has track
structures inside. A track structure (?ts) allowS ?F’ to stay well-formed, thanks to the fact that what
we are really doing is obtaining a solution of head(?ts) by solving tail (?ts). The input transformation
is done a priori by using the adequate writers. Thus, the structured instance will contain the data
of tail (?ts). On the other hand, the answer transformation must be done a fortiori by automatically
generating C++ methods that maps the operations done in the ans map (see Figure 5.1).

In general, when the system encounters a track structure ?ts created by the application of a
sequence of ARRs, it will generate a set of solvers to deal with ?ts. A solver which structure is a
track structure, will be called delegation solver, and it must be an instance of the following class,

86 CHAPTER 5. I-DARE(T) - THE REFORMULATION SYSTEM

Figure 5.1: ARR
∑

reformulation and solving process

Listing 5.7: Delegation solver FLORA-2 class

1 d d e l e g a t i o n s o l v e r : : d s o l v e r
2 [
3 [i n n e r d s => d d e l e g a t i o n s o l v e r] // op t i o n a l
4] .

where inner ds is an optional field, that when present means that there is a dependence on another
delegation solver, stored in inner ds . On the other hand when inner ds is not present it means that
the dependence will be of a normal solver, that will be assigned during the Solvers’ Tree generation.

The delegation solver’s generation changes depending on how the track structure is formed.
Since, until this point, the only way we know to create a track structure is by using a sequence of
ARR

∑

, then we will focus now on how the delegation solver is generated for a sequence of ARR
∑

.
Like all other solvers, a delegation solver will have a FLORA-2 side and a C++ side. If we

are in presence of a track structure ?ts created by a sequence of ARR
∑

s, then we will generate a
delegation solver ds: d delegation solver , such that ds[structure −> ?ts] and inner ds is not present.

Note that ds will directly depend on the solver assigned to tail (?ts). We can “ignore” the struc-
tures between head(?ts) and tail (?ts) because all reformulation rules used were ARR

∑

, therefore,
due to the composition of the algebraic operators, we can compose the mappings, and generate
the instance for tail (?ts) directly.

This delegation solver ds will have a C++ representation. In C++ ds will inherit from the
solver registered as blueprint of head(?ts), to ensure compatibility with any potential upper solver
that was expecting that blueprint. Now, since the blueprint for tail (?ts) (bp tail) is equivalent to

the blueprint for head(?ts) (due to the Definition of ARR
∑

applicability 5.2.24), then ds will define
all its methods by calling the corresponding methods in bp tail .

Assume that the system assigned the solver S to tail (?ts) and that all solvers in C++ have a
“ sol solve (si)” method, with si being a piece of structure instance, and sol (return type) is equal to
the blueprint’s retType. Then the ds. solve (si) will call S. solve (si) (si is left intact, since it was already
transformed). The only problem is that S. solve (si) will return an answer for tail (?ts) and we need
an answer for head(?ts), the answer mappings must then be applied. The answer transformation
will be done by automatically creating an auxiliary method in ds,

1 s o l c l a s s a n swe r t r a n s f o rma t i o n (s o l c l a s s) { . . . }

Let bp be the blueprint of head(?ts), then ? sol class = bp.retType. The returned object, will be the same

5.3. ALGORITHMIC ARR 87

passed as a parameter, just changing the variables’ information, by applying the defined ans map.
Note that even if ? sol class contains information beyond the variable values, this information will
remain untouched by the transformation process.

So, ds. solve (si) will call answer transformation (S. solve (si)), and this way the returned solution will
have the correct format. Finally the solver ds is automatically compiled and left ready to be used
by the solution process.

The generation of the Solvers’ Tree will also be affected by the track structures. Each time the
Solvers’ Tree generator finds a track structure ?ts, entirely created by the application of ARR

∑

s,
it will use the term ?ds(?rs), where ?ds is the delegation solver automatically generated to deal with
?ts and ?rs is the solver that will be used to deal with tail (?ts). Note that ?rs may be a complex
term if tail (?ts): d Block C.

5.3 Algorithmic ARR

When we apply a sequence of ARR
∑

to a formulation, we have two main advantages, the first one
is that all the input data is reformulated a priori, so the solution process only has the overload
of transforming back the answers. The second advantage is that the application of a transitive
sequence of ARR

∑

is at the end reduced to a reformulation between the head and tail of that
sequence, due to algebraic expression composition.

However, using just ARR
∑

s leaves out a set of reformulations with non-algebraic mappings.
For instance, let us consider the following structure class,

1 d shor tPa thTree C : : d LeafProblem C
2 [
3 d im va r −> [V] ,
4 a r g s −> [d constant , // r oo t node
5 d ve c t o r (d constant , [V ,V]) , // a rc mat r i x
6 d ve c t o r (d var , [V])]
7] .

This class represents the shortest path tree problem on complete graphs of V nodes. In this case the
vector of variables will contain the shortest path tree, in the commonly used format: p[root] = root,
assuming node root is the origin, and p[i] = k, where k is the predecessor node to i in the shortest
path tree.

There is a natural LP formulation for the shortest path tree problem, given below. Given
a directed graph with V vertexes, we can define the cost (the constant) to be cij , where i, j ∈
[0..V − 1]; and the arc-usage variable with xij , then an LP formulation for the shortest path tree
problem is,

min
∑

ij cijxij

∑

j xij −
∑

j xji =

{

V − 1 if i = root
−1 otherwise

i ∈ V

xij ≥ 0 i ∈ V , j ∈ V

This LP has the special property that it is integral [18] (i.e., it has an optimal integer solution),
returning in each variable xij the number of paths of the shortest path tree that pass through arc

(i, j). So this allow us to easily create the arg map of an ARR
∑

between d shortPathTree C and d LP C.
Nevertheless, the variables returned by the LP reformulation are not algebraically transformable

in the variables that specify the shortest path tree class. Indeed, while the LP has an optimal integer
solution, the solvers may not return it. In fact, a solver may return a fractional solution, or even
one with oriented cycles, if the graph contains zero-cost cycles.

In fact, the ans map needed in this example has to be designed as an algorithm that converts the
x in the vector representing the path tree. This algorithm will visit, just once, each arc with flow

88 CHAPTER 5. I-DARE(T) - THE REFORMULATION SYSTEM

greater than 0, to reconstruct the vector p that will be the solution of shortest path tree problem.
For instance, if all p[i]=−1 initially, then an elementary implementation would be

Listing 5.8: Generate the path tree

1 gene ra tePathTree (node , p)
2 { // p w i l l be the path t r e e
3 i f (node == roo t) then // j u s t when node i s r oo t
4 p [node] = roo t
5 f o r each a rc (node , k)
6 i f (x (node , k) > 0 and p [k] == −1) then // f l ow g r e a t e r than 0 (the a rc i s i n use)
7 // and k i s not v i s i t e d ye t
8 p [k] = node
9 gene ra tePathTree (k , p) // s t a r t i n g from k r epea t the p r o c e s s

10 }

This example shows that not always mappings can be done algebraically. In fact, in this case
an algorithm was necessary to reformulate the answers.

For this kind of reformulations, i-dare(t) defines the Algorithmic ARRs (ARRA). An ARRA

must be an instance of the following class,

Listing 5.9: ARRA class definition

1 d ARR Algor i thmic : : d ARR
2 [
3 i ndexA => l i s t ,
4 dimRel => l i s t ,
5 arg map => l i s t ,
6 f i x T I => l i s t // on l y i f B : : d Block C
7 [c o n d i t i o n => term]
8] .

As can be seen an ARRA shares some methods with the ARR
∑

class definition. The main
difference is that all those methods are optional. This optional methods allow us to describe a
partially algebraic ARRA, by describing the argument mapping. It is mandatory to also define
dimRel and fixTI (in case of blocks) if we are defining arg map, otherwise the algebraic argument
mapping will be completely ignored. For simplicity in the notation we will denote the partially
algebraic ARRA, with the symbol, ARRA∑

.

5.3.1 Semantics

For ARRAs there is also the concept of applicability,

Definition 5.3.1 (Applicable ARRA) Let be ?arr :d ARR Algorithmic, such that ?arr [A −> ?ac] and
?arr [B −> ?bc], ?F:d Formulation, ?s:?ac ∈ ?F, and ?IW:d InstanceWrapper, such that ?IW[formulation −> ?F],
then ?arr is applicable to reformulate ?s iff

• if arg map is present in ?arr then

– if ?ac :: d LeafProblem C and ?ac[not local] then ?IW[global −> ?gdh],

– if ?ac :: d LeafProblem C and ?ac[local] then ?IW[local(?s) −> ?ldhs].

– if ?ac :: d Block C then ?IW[global −> ?gdh] and ∀?sub[local] ∈ the substructure tree of ?s

?IW[local(?sub) −> ?ldhs].

– if ?bc ::d LeafProblem C and ?ac[local] then ?DH::d DataHandler, such that d DHsubscription(?subC, ?DH, ? , ?)

and ?DH:d Writer.

– if ?bc ::d Block C then ∀?subC[local] ∈ the substructure tree of ?bc, ?DH::d DataHandler, such
that d DHsubscription(?subC, ?DH, ? , ?) and ?DH:d Writer.

• if bp1 is the blueprint of ?ac and bp2 is the blueprint of ?bc then bp2 ; bp1.

5.3. ALGORITHMIC ARR 89

• There must be a delegation solver ds, such that ds. structure = tr(?ac, ?bc), explicitly defined
(not automatically).

Note that if ?arr is an ARRA∑

then the delegation solver ds must only implement the answer
mapping, like it was done for ARR

∑

, however, ds have to be explicitly defined. On the other
hand, a ds used for a ARRA, will transform (a fortiori) the structure instance to be passed as
argument to the solver for ?bc and transform back the solution. See that all these transformations
are hard-coded in the C++ source of the ds.

The main difference between ARRA and ARR
∑

is that ARRA depends on the existence of
delegation solvers and ARR

∑

does not. However when the system encounter a track structure (?ts)
entirely created by the application of ARRAs, it will automatically generate a dummy delegation
solver (dummy ds), such that dummy ds[structure −> ?ts]. This dummy ds will use the inner ds field to
define which delegation solver it will depend on. The dummy delegation solver is just used in the
FLORA-2 side (mainly by the Solvers’ Tree generator). Let us describe, how a delegation solver
will be assigned to dummy ds.inner ds.

Assume, ?ts is formed by the application of K ARRAs (and/or ARRA∑

), and that dsj is the
already existing delegation solver, such that dsj .structure = tr(?ts [j − 1], ?ts[j]), with j ∈ [1..K], then
dummy ds.inner ds = ds1, dsj .inner ds = dsj+1, for all j ∈ [1..K− 1]. Observe that the dummy ds defines a
sequence of delegation solver concatenated calls, that will eventually produce the call of the solver
assigned to tail (?ts). Also note that all the delegation solvers used to deal with ?ts have a blueprint
equivalent to the blueprint of head(?ts).

This previous dummy solver generation only works if the sequence is purely of ARRA (and/or

ARRA∑

). But, what happens if the sequence also contains ARR
∑

s? The treatment when we have
a mixed sequence will depend on how it is formed. For instance, it may have an initial sequence of
ARR

∑

, followed by a mixed sequence. The following list will describe the two possible structure
lists that may form a track structure,

LS1 = b0 ,..., bmLS1 such that from 0 to mLS1 was created by ARR
∑

s;

LS2 = b0,b1,...,bmLS2 , such that from 0 to 1 was created by an ARRA (or an ARRA∑

), and from

1 to mLS2 was created by a mix of ARR
∑

s, ARRA∑

s and/or ARRAs.

Using LS1 and LS2, we will describe how the dummy solver will be created for the different possible
track structures. For doing so we will use a function called assembler, defined as follows.

Definition 5.3.2 (Assembler function) Given the structure lists LS1 and LS2, then the assem-
bler function of a track structure ?ts is defined as follows, assembler(?ts) =D, such thatD : d delegation solver

and

• if ?ts = tr(LS1) then D is automatically generated, D . structure = ?ts and no inner ds is defined
in D.

• if ?ts = tr(LS2) thenD . structure = tr(LS2[0],LS2[1]) andD . inner ds = assember(tr(LS2[1], ...,LS2[mLS2])).

• if ?ts = tr(LS1, LS2) then D . structure = tr(LS1) and D . inner ds = assember(tr(LS2)).

Finally the dummy solver of a mixed track structure ?ts will be dummy ds:d delegation solver, such
that dummy ds.structure = ?ts and dummy ds.inner solver = assembler(?ts).

Even if the system recognizes the presence of sequences of ARR
∑

applications embedded in a
mixed track structure, and it automatically generates the corresponding delegation solver, we can
not always do a priori structure instance mapping. In fact if the sequences of ARR

∑

is preceded
by at least one ARRA then no a priori structure instance mapping ca be done. The automatically
generated solver must implement a method to map the structure instance like the one to map back
the solution. Such a method must be called before calling the inner solver. Notice that when we
are in presence of a sequence (or initial subsequence) of only ARR

∑

s and ARRA∑

s, the system,
although not using just one solver (due to the ARRA∑

s), it can make a priori structure instance
mapping (due to the arg map present in the ARRA∑

s).
The Solvers’ Tree of a mixed track structure will be computed using the same methodology

exposed in the ARR
∑

’s case, but using the dummy delegation solver instead.

90 CHAPTER 5. I-DARE(T) - THE REFORMULATION SYSTEM

5.4 Selection domain and Reformulation Domain

i-dare(t) will apply the defined ARRs to different parts of a formulation. It may decide to
reformulate a leaf problem, a whole block, or even a subcomponent inside of a narrowing. All the
potentially transformable components in a formulation will belong to a set called selection domain.

Definition 5.4.1 (Selection domain) Let F be a formulation, then the selection domain of F,
denoted by Ω(F), is defined as follows,

• F.root ∈ Ω(F),

• if b:d Block C ∈ Ω(F), then ∀(sub ∈ b.subs)[sub ∈ Ω(F)],

• if ts = tr (...) ∈ Ω(F) and tail (ts) is the narrowing b(s1 ,..., sk), then the term <si, b.ids[i], ts> ∈
Ω(F), ∀i ∈ [1..k],

• if <s, id , path> ∈ Ω(F) and s is the narrowing b(s1 ,..., sk), then the term <si, b.ids[i], <s, id , path>> ∈
Ω(F), ∀i ∈ [1..k].

Note that since all structures in F have a different name (see Definition 2.6.1), the terms created
to access each narrowing will also be unique.

For instance assume we have a formulation F represented in Figure 5.2 then selection domain

Figure 5.2: Formulation example

of F will be,

Ω(F) = {a, b, c, d, tr(e, G(H1, H2)), < H1, id1, tr(e, G(H1, H2)) >,< H2, id2, tr(e, G(H1, H2)) >}

Using the track structures we can transitively apply ARRs. For instance, if we have a structure
?s:?cs and an ARR ?arr , such that ?arr .A = ?cs, then applying ?arr we will obtain the track structure
tr (?s , ?arr .B). But, if we start with tr (?s , ?arr .B), and have an ARR ?arr1, such that ?arr1.A = ?arr.B,
then we will obtain the track structure tr (?s , ?arr .B, ?arr1.B), and so on.

This transitive ARR application, will conduct to the generation of a set formulation that will
be deduced from the original one. The process of applying an ARR to a structure in a formulation
F to obtain a new formulation, will be called ARR usage function.

Definition 5.4.2 (ARR usage function) Given a formulation F:d Formulation, a structure s ∈ Ω(F)

and an arr :d ARR such that arr is applicable to s, then the ARR usage function of arr to reformu-
late s in F, denoted by κ(F, s, arr), produces a new formulation by substituting s in F with a track
structure created from applying arr .

If we start from an initial formulation F, we can apply κ(F, s, arr) to obtain new formulations,
by changing s and arr , and even F. This sequenced application of the ARR usage function will
produce a set containing all possible reformulation starting from F, this set will be called Ξ(F).

Proposition 5.4.3 Given a formulation F:d Formulation, then Ξ(F) is finite.

5.5. DISCUSSION 91

Proof. Since the amount of ARRs is finite, the amount of structures inside F is finite and the
track structures can not contain cycles (see Definition 5.1.4), so we will arrive to a point where no
new ARR can be applied, because it would generate a cycle in the track structure, hence no new
formulation will be derived. Therefore Ξ(F) is finite.

5.5 Discussion

The i-dare(t) is an inference machine that, based on a set of ARRs, transforms one well-formed
formulation into another (also well-formed). Since it requires querying the model and data, it is
also implemented using declarative programming (FLORA-2). In fact the implementation, if done
in FLORA-2 , will be almost equal to the definition of the system, except for the mappings that
sometimes may be non-declarative by nature. In those cases we use the interoperability between
FLORA-2 and other languages like C++, to implement certain procedural processes.

In contrast with our definition of reformulation, the concept used in [143] does not offer al-
gorithmic notions; therefore, its implementation may be rather difficult. Furthermore, it leaves a
huge amount of possible reformulations out because of the restricting conditions it imposes. On
the other hand, [24] manages the idea of mapping functions; from that point of view, it has the
same power that our reformulation system has. However, we propose a reformulation system de-
fined over a precise modeling language, that allows us to algorithmically and algebraically deduce
reformulations. i-dare(t) offers a way of determining which structures can be reformulated and
how they will be reformulated, obtaining at the end of the process valid formulations and data
ready to be given to the solvers.

The study in [113, 114] define a more complete framework for making automatic reformulations,
via symbolic transformations applied to the sets of variables, objectives and constraints. They
formally define a set of reformulation techniques that covers a good number of real-life problems.
However, they are based on algebraic transformations of formulations that do not make explicit use
of the structures, and therefore may not be able to exploit the semantic value of certain structures.
This fact provokes the exclusion of reformulations that treated in a structured way may be possible
to achieve algorithmically.

i-dare(t) offers a methodology based on deduction that allows us to deal with complex and
non-direct reformulations. This methodology is fully based on the fact that our model is structured
and that we know how to deal with these structures (in a solution process or at least when defining
the ARRs). We may construct a structured formulation for which we do not have a solution
process, but we may obtain a reformulation, applying i-dare(t), for which all its structures have
a solver “attached”.

One of the main gains by using i-dare(t) is the extensibility. For instance, we can widen
the amount of reformulation rules, using the techniques in [113], doing so we can cover several
algebraic reformulations. Furthermore, i-dare(t) offers the possibility of selecting intelligently
between possible reformulations, by changing the parameters of the κ function.

Moreover, there is a very useful application that derives naturally from the creation of ARR
∑

,
and it is a format transformation mechanism. This format transformation is based on the handlers
definitions and the creation of pretty simple ARR

∑

s. For instance, we could easily create an ARR
∑

to reformulate d LP C into d LP MPS C, once the the data handlers for d LP MPS C are adequately
specified. Therefore i-dare(t) may become a huge format transformation engine, as it grows in
structure classes, ARRs and data handlers.

92 CHAPTER 5. I-DARE(T) - THE REFORMULATION SYSTEM

Chapter 6

i-dare(control) - best
(Formulation, Solver,
Configuration)

Abstract

The main aim of i-dare is to produce models that can be automatically and algorithmically

reformulated to search for the “best” formulation, intended as the one for which the most
efficient solution approach is available. This requires exploration of a high-dimensional space
comprising all (structured) reformulations of a given instance, all available solvers for (each
part of) the formulation, and all possible configurations of the relevant algorithmic parameters
for each solver. A fundamental pre-requisite for this exploration is the ability to predict
the efficiency of a given (set of) algorithm(s), considering their configuration(s), for a given
instance; this is, however, a vastly nontrivial task. This chapter describes how the information
is organized to make the search in the (formulation, solver, configuration) space possible
with several different exploration techniques. In particular, we propose a way to combine
general machine learning (ML) mechanisms and ad-hoc methods, where available, in order to
effectively compute the “objective function” of the search. We also discuss how this mechanism
can take upon itself part of the exploration, the one in the sub-space of configurations, thus
simplifying the task to the rest of the system by reducing the dimensionality of the search
space it has to traverse. Finally we present some practical results using MCF structure and
SVR ML technique.

6.1 Search Spaces

i-dare (via the queries provided by FLORA-2 [159]) retrieves structured data about the current
instance, in a very effective way. This data can be used to characterize and explore the search
space, that is composed by three main sub-spaces:

• Formulation + Instance = Extended Model;

• Solvers;

• Configurations.

For each sub-space, an extensible set of predefined queries and methods are available to consult
the data. These queries provide any control mechanisms (cf. §6.2) with the information it needs
for effectively guiding the search throughout the whole space.

94 CHAPTER 6. I-DARE(CONTROL) - BEST (FORMULATION, SOLVER, CONFIGURATION)

6.1.1 Extended Model

A large number of queries are available in i-dare to retrieve information about variables, constants,
dimensions, and components of an Extended Model (EM); how these components are related
between each other within a formulation. These queries allow to obtain a complete description of
any “static” EM. To obtain this description one may use the methods present in i-dare(im) that
allow to access the formulation information, for instance,

• names of dimensions, indices, constants and variables;

• class of a structure;

• information about the structure tree;

• how variables are shared throughout the formulation.

Moreover, once created the instance wrapper over that formulation, one can access the information
related with the actual data, for example,

• cardinality of dimensions and indices;

• values of constants;

• bound values of variables.

Since the queries set is extensible, new queries can be implemented to support all kind of moves
in the formulations space, such as breeding in population-based heuristics, basin-hopping in local
search, and many others.

However, the main goal of i-dare is to allow reformulating the models. This is obtained by
applying atomic reformulation rules (ARR) (see §5.1) to specific components inside the formulation.
As can be seen in §5.4, the ARRs are applied using the function κ(F, s, arr), where F is a formulation,
s is a structure in F, and arr is an atomic reformulation rule applicable to s. Note that κ defines
the search space of all reformulations of F. Furthermore, it defines the search space of all EMs that
derive from F by applying Algebraic ARRs, because we can map the instance data a priori.

6.1.2 Solvers and Configurations

i-dare defines a general interface for solver plug-ins. Each solver must register itself to one
structure and define its configuration template. i-dare automatically generates a FLORA-2 file
containing solver and configuration data. Each structure class in i-dare(lib) may have more than
one solver registered. This database defines the solver’s search sub-space, which can be consulted
using the defined instances of d solver to retrieve registration and/or configuration information.

As previously mentioned, each solver must define how it must be configured. For this purpose
i-dare defines Configuration Templates (CT). A CT is a hierarchical structure defining the relevant
algorithmic parameters and the possible range of their values. Hence, CTs can be easily used to
describe single configurations by simply forcing each parameter to have a single-valued domain.

Two descriptions of CTs are available: the “external” and the “internal” one. The external
one is in terms of an XML file that specifies parameters and their domains. CTs currently support
four base parameter types: integer, double, choice and vector. When a solver is exported to
the FLORA-2 file, it exports also its CT. Therefore, the “internal” representation of the CT in
FLORA-2 is automatically constructed (cf. §4.4.2).

6.2 Controlling the Search in the (Formulation, Solver, Con-
figuration) Space

All the i-dare components described so far are conceived for providing the basic blocks for the
most delicate and innovative feature of the system (i-dare(control)): given a structured instance,

6.2. CONTROLLING THE SEARCH IN THE (FORMULATION, SOLVER, CONFIGURATION) SPACE 95

to automatically select the “best” combination in the space of the possible (re)formulations, solvers
and configurations. That is, one must select one particular (re)formulation among all the possi-
ble ones obtainable by the atomic reformulation rules, select an appropriate solver—among the
possibly several available ones—for each node in the formulation tree, and select an appropriate
configuration—among the possibly very many choices—for each of the solvers.

This is clearly a very complex process, for which several different techniques may be used.
In principle, of course, it requires the solution of an appropriate “meta” optimization problem
in a suitably defined space. However, the problem is made particularly difficult by the fact that
even predicting the performances of a given (set of) algorithm(s) and configuration(s) on a given
formulation and instance is far from being a trivial task.

We have chosen to provide a rather general and abstract setting for performing the search,
so as to allow different search mechanisms to be compared and contrasted. The whole search is
controlled by the i-dare(control) module, which may be any control mechanism conforming to
the simple interface

1 d c o n t r o l [
2 p r o c e s s (d I ns tanceWrapper) −> [d I n s tanceWrapper , term]
3] .

This interface declares a method that, given an extended model, returns the selected “best”
reformulation of the model along with the solver tree and the correspondent configuration. Of
course the initial and final model may be the same, in which case i-dare(control) “only” selects
the best solver and configuration for the given instance. This is already a rather difficult problem
in itself, for which little is known in practice; indeed, it is important to remark that even predicting
the running time of a given algorithmic approach on a given data input is problematic. While there
is a huge literature about the theoretical complexity and practical performances of the countless
many different algorithms for each of the many possible structures the i-dare aims at eventually
capture, very little is available in terms of methods capable of taking this kind of decision in a
general setting.

This seems to essentially require the use of Machine Learning (ML) techniques (e.g. [38]),
which may be the only approach capable of automatically devising suitable approximations of the
function which estimates the efficiency (and, possibly, the effectiveness) of an algorithmic approach
when applied to the solution of a given instance. As we shall see, the use of ML tools, besides
being necessary to evaluate the “objective function” of the search, provides a natural way for
actually performing a part of the search, in particular that in the subspace of algorithms and
configurations. Remarkably, the use of ML tools for the selection of algorithm parameters have
been recently advocated in [49], although in a much more limited context, with promising initial
results.

Thus, while the i-dare system does not specify the exact strategy used by the i-dare(control)
module to search the (Formulation, Solver, Configuration) space, it must provide any actual imple-
mentation with enough information to effectively drive the process. While i-dare(control) has
full access to all the characteristics of the instance (cf. §6.1.1), the previous discussion highlights
the need for further mechanisms that allow an efficient comparison between different points of the
space. These are described in the next sections.

6.2.1 Objective function computation

The fundamental mechanism needed for driving the search is an effective and efficient way for
evaluating the quality of a (Formulation, Solvers, Configuration) choice; we will consider this the
“objective function” of the search, and denote it by ψ. At first reading, one may imagine that ψ
measures the running time required by the solver, with the specified configuration, to solve the
corresponding instance; however, different cases are also possible.

For instance, since many problems are “hard”, it may well be impossible to solve them to
proven optimality in a reasonable amount of time. In this case, the user would typically set a
desired target accuracy, and a maximum time limit. Hence, ψ should now account for the running

96 CHAPTER 6. I-DARE(CONTROL) - BEST (FORMULATION, SOLVER, CONFIGURATION)

time it takes to the solver obtain a solution with the prescribed optimality, if that can be done
within the time limit, and a weighted sum of time limit and final objective function gap otherwise.
In this way, the fastest solver capable of attaining the desired accuracy within the limit is selected,
if there is any, and the solver providing the most accurate solution at the end of the allotted time
is selected otherwise. Alternatively, accuracy of the solution may be treated as a parameter (cf.
“Fixed Features” below).

In general, one should not expect that an arithmetic or algorithmic description of ψ be available
for all possible formulations, solvers and configurations, although this may indeed happen in some
cases. Therefore, we propose the application of ML techniques to approximate such function based
on known observations.

Features

As usual in ML, one critical point is the definition of the set of features that represent each data
point in the learning set of the method. It is well-known that the complexity (and practical
performances) of several optimization algorithms can be shown to depend in somewhat predictable
ways from some well-understood characteristics of the instances: for Linear Programs, for instance,
some of the main features are the number of variables and constraints together with the density of
the constraint matrix. However, the relevant set of features should be expected to be very different
for different problem classes, and even for different algorithms for the same problem class; again
in the LP case, degeneracy of the vertices of the polyhedron (that can usually be estimated by
some properties of the RHS of the constraints) strongly affects simplex approaches but is next
to irrelevant for interior-point ones. Therefore, defining a unique set of features for a problem
does not seem reasonable: each solver should be able to specify a different set of features. On the
other hand, the responsibility of defining the right set of features cannot be demanded to a general
mechanism, so each solver will be required to define them.

Thus, we define a layer over the existing i-dare solver interface, which is called Solver Wrap-
per (SW), that will provide the list of relevant features to parametrize ψ, i.e., a dictionary
[name=val,] , where name is the nominal representing the feature and val is the value this feature
takes. Of course, a SW must ensure that its feature list always contains the same set of names.
All SWs must inherit from the following interface

Listing 6.1: Solver Wrapper Interface

1 d so l v e rWrappe r [
2 s o l v e r => d s o l v e r ,
3 r e t r i e v e (?EM, ?CT) => [l i s t , CT] ,
4 [i n t e r n a l]
5] .

Given the current EM, the retrieve () method returns the feature list and a list of possible configu-
rations, represented by a CT. The meaning of the method is somewhat different according to the
value of the optional property internal .

• When internal is not present, the evaluation of ψ is demanded to the general mechanism
described later on. In this case, the SW “only” has the responsibility to extract from EM,
that is of course of known type, the features set. The second return value in retrieve () is a
CT that is intended to describe all possible configurations (compatible with the fixed choices,
see below) of the solver for this particular instance type.

• When internal is present instead, the evaluation of ψ for the given solver is done inside the
wrapper. In this case, there will be only one (or few) features, consisting in the (estimated)
value(s) of ψ (or, maybe, in the description of the function relating running time with accu-
racy) for the instance EM. Actually, the very concept of ψ requires that of a configuration
attached to the solver, since this choice impacts on the performances. In fact, in this case
second return value in retrieve () is meant to contain the single configuration that produces

6.2. CONTROLLING THE SEARCH IN THE (FORMULATION, SOLVER, CONFIGURATION) SPACE 97

the estimated value of ψ. It is intended in this case that the SW will choose the (estimated)
best configuration, if more than one is available.

Actually, since the SW can implement retrieve () in any (sensible) way, there may be intermediate
scenarios between these two extreme ones. For instance, the SW may internally compute some
sophisticated performance figures, out of which predicting the actual running time may be much
easier, and/or return a configuration template containing only a subset of the possible configura-
tions, discarding those that are estimated to be unlikely to prove efficient. This general mechanism
allows on one side to use a general ML mechanism (described below) for the case where nothing
relevant is known about predicting the performances of a solver, and on the other side to exploit
specialized techniques when they are available. Note that the SW may well use, internally, a
specialized ML approach to select the best configuration, should one be available (cf. e.g. [49]).
Moreover these performance figures may be designed to reflect, for instance, the trade-off between
time and solution accuracy (cf. Fixed Features).

The Generic Machine Learning Sub-system

When a SW does not compute its ψ value internally, the Generic Machine Learning Sub-system
(GMLS) can be invoked to try to estimate it.

In general, a SW will produce a features list and a CT. The feature list is dependent only on
the specific instance EM, and not on the configuration, whereas the CT is independent from EM.
Therefore, this information actually corresponds to several values of ψ, one for each configuration
in the template (although there may be only one, e.g. when internal is present). In ML parlance,
the SW (implicitly) produces several data points, each one formed by the unique feature set of EM

and one among the different configurations from the template; in other words, the actual features
set of the ML is a pair (features of the instance, configuration of the algorithm).

This information can be used with any of the several possible ML approaches to try to estimate
ψ; clearly, different approaches may turn out to be more effective for different algorithms. In order
not to tie-in the i-dare system to any specific ML technology, i-dare(control) defines a general
interface to ML algorithms, described by the following class

Listing 6.2: Machine Learning Interface

1 d mach ineLea rn i ng [
2 e v a l u a t e (l i s t) => l i s t ,
3 => t r a i n (l i s t , l i s t)
4] .

where

• train () trains the ML using a set of data points—that is, (features, configuration) pairs—and
a list of known ψ-values (one for each point);

• evaluate () computes ψ for the specified data point.

Each concrete class inheriting from d machineLearning will define an actual ML technique (Neural
Networks, Support Vector Machine, Decision Tree, . . .); the GMLS sub-system will associate each
SW with one (possibly the “most appropriate”, cf. §6.2.2) concrete ML in charge of computing ψ
for the corresponding solver.

Note that for nested structures (formulations that contain other structured problems as sub-
blocks, cf. §2.5), the SW has the possibility to access the SWs of the sub-blocks and therefore it can
(but it does not necessarily need to) exploit their computation of the ψ values for the sub-blocks
as inputs for its own computation (either with ML techniques, or with any other mean) of the ψ
values for the entire block. This allows to nicely decompose the (difficult) task of prediction ψ for
a complex algorithm into the (hopefully, easier) tasks of predicting ψ for each component and then
predicting how the individual performances affect the global one.

98 CHAPTER 6. I-DARE(CONTROL) - BEST (FORMULATION, SOLVER, CONFIGURATION)

Machine Learning as a Search Mechanism

Clearly, the above ML approach provides one way to automatize the search in the configuration
space. Provided that the configurations are “few”, one may simply list them all and compute ψ
for each; then, the configuration with the best value is retained as the selected one. Provided
that the possible solvers for a given structure are not too many either (which looks a reasonable
assumption), an effective ML approach to computing ψ would provide all the tools for performing
the search in the (Solver, Configuration) sub-space, leaving “only” the (re-)formulations space to
be explored.

In general, however, the set of configurations may be rather large. One might thus devise
ML approaches capable of working with “meta” data points, i.e., pairs (features of the instance,
configurations template). These approaches might for instance still rely on standard ML techniques
at their core, but coupled with smart sampling techniques that avoid to compute all possible data
points, somewhat in the spirit of active learning techniques [141]. More in general, one may devise
ML approaches aimed not just at predicting ψ for a given configuration, but rather at predicting
the configuration which produces the best value of ψ within a given CT. Some very preliminary
steps along this line have already been done e.g. in [49].

Fixed Features

The retrieve () method of the SW has a second parameter ?CT (that may conceivably be empty),
whose use has not been discussed so far. That is intended to be a partial CT, whose use is to
constraining the possible configurations to be generated by SW. This allows the caller of a SW to
instruct it (in particular, in the case where ψ is computed internally) to avoid considering some
configurations that are not feasible, or not “interesting”.

There are at least three important cases that may require such a mechanism:

• handling of accuracy in the solution, in terms of either constraint satisfaction or of quality
of the obtained solution;

• handling of maximum resource usage (typically, CPU time) in the solver;

• handling of the architecture, i.e., the fact that the same solver may be executed on differ-
ent parallel hardware (say with a different number of cores, and/or with the presence of
specialized hardware such as GPU accelerators).

These aspects may reasonably be considered included in the configuration of a solver. However,
depending on the actual form of ψ, they may not be freely chosen by the SW in quest for the
smallest ψ value. In fact, accuracy of the overall solution and/or the maximum total allotted
running time will typically be set by the final user depending on her needs. In turn, a block of
the formulation that has some sub-blocks may want to explore their accuracy/time frontier to seek
for the most appropriate setting, e.g. settling to (slightly) less accurate solutions in change for
a (consistently) reduced running time; this is, for instance, the setting that is most often chosen
for separation algorithms in Mixed-Integer Programs when—as it often happens—they require the
solution of a hard subproblem.

However, in other cases a “master” problem may require solutions of its subproblems with a
higher degree of accuracy from the one of the solutions it is expected to provide. For maximum
resource usage, it is clear that, in most cases, subproblems of a more complex formulation will have
to be solved in much less time than the maximum one allotted for the whole problem. Finally,
a SW may want to explore the possibility to allocate its subproblems to different computational
nodes to exploit their complementary strengths (see e.g. [45] for one example); on the other hand,
some solvers may not be available (or be known to scale very badly) on some architectures, or the
target architecture may be severely limited by the user due to price or availability concerns.

All this cases can be handled with the general mechanism of externally constraining the set
of available configurations. Note that if the SW is not able to generate at least one configuration

6.2. CONTROLLING THE SEARCH IN THE (FORMULATION, SOLVER, CONFIGURATION) SPACE 99

that satisfies the constraints imposed by ?CT, it will fail by returning an empty CT, thus signaling
that it cannot be used under that set of conditions; basically, this amounts at producing an infinite
value of ψ. This way, inner solvers may “constrain” their outer solvers to avoid some specific
configuration parameters.

Note that i-dare does not, in general, enforces that the parameters set by the partial CT in
retrieve () be meaningful for the SW. For instance, some solvers may only be capable of providing
exact solutions to their problem, and therefore the accuracy setting may not be meaningful for
them. Also, parameters are always dealt with at the syntactic level, and therefore some discipline
will be needed in the construction of the i-dare library to ensure that at least some main param-
eters (e.g. accuracy, running time and architecture) be uniformly recognized by all solver. Note
that, however, checks can be easily put in place so as to ensure syntactic compatibility between
CTs, so that at least warnings can be ensued.

6.2.2 Training and Meta-Learning

Training

The fundamental assumption under any ML approach is that the machine be fed with an appro-
priate set of samples, i.e., data points with the associated value(s) of the function(s) to be learn.
This is known as training. The GMLS sub-system will therefore have to execute a learning process
before that the ML be ready for actual use in the search. The learning process consists in solving
the instances in the training database with all available algorithms and all available configurations,
thereby producing the data to be fed to the train method of d machineLearning. This process can
clearly be very time-consuming, and it will have to be (partially) repeated each time either new
instances are added to the training database, or solvers are updated/added. Luckily, the learning
process can be easily deployed in a parallel environment to take advantage of its high level of
inherent parallelism.

Meta Learning

It is obvious that the effectiveness of the prediction of ψ, upon which all the search process ul-
timately rely, can be very significantly affected by the choice of the concrete ML in charge of
computing ψ for any specific SW, together with its possible several learning parameters (topology
of the Neural Network, parameters of the Support Vector Machine, . . .) [38]. Choosing the “most
appropriate” ML is therefore, itself, a difficult (yet fundamental) task. Thus, GMLS will also have
to implement a meta learning process, whereby the results of the same learning phase for a given
solver are fed into different ML, and the “best” machine is selected as the one which minimizes
some appropriate discrepancy measure between the actual values and the predictions. This can
be done with the usual procedures, akin to k-fold validation, whereby the set of available data is
(randomly, in several different ways) subdivided into a training set, that is actually fed to the ML,
and a testing set upon which predictions of the ML are computed and contrasted with the (known)
true results.

Since all ML share the same interface, this process can be automatized and regularly repeated
e.g. whenever the testing database significantly changes; again, while very time-consuming the
process is also inherently very parallel. Furthermore, the computationally heavy part—actually
executing the solvers on the given instances for the selected configurations—need to be done only
once; provided that the results are properly stored, they can re-used by all MLs, and over and over
again during subsequent meta-learning phases.

6.2.3 The overall search process

The GMLS sub-system thus defined provides a sound basis for implementing any general search
procedure in the (formulation, solver, configuration) space; actually, it may also directly take care
of the selection of the latter two components (solver and configuration), leaving to i-dare(control)
“only” the task of appropriately traversing the (re)formulations space using the available ARRs to

100 CHAPTER 6. I-DARE(CONTROL) - BEST (FORMULATION, SOLVER, CONFIGURATION)

reformulate parts of the whole structured model. Ultimately, i-dare(control) has the responsi-
bility of providing the end user with the ((re)formulation, solver, configuration) that is going to be
used to actually solve her problem within the allotted time, accuracy and/or monetary budget con-
straints. This of course requires implementing a search over the formulation space, for which several
different approaches are possible, from complete enumeration to (more likely) heuristic searches
such as any variant of local search (with taboo or simulated annealing) or population-based searches
such as genetic algorithms. It is also possible to apply ML as a search tool, analogously to what it
is done for configurations. Figure 6.1 shows a diagram that outlines the overall search process in
i-dare(control), highlighting the fundamental role of GMLS.

It worth mentioning, that each time a final EM is selected and actually solved, all solution data
is sent back to i-dare so as to be added to the testing database. This way, the testing database is
automatically enriched from real problems, strengthening the observation set and therefore allowing
the GMLS to perform a better approximation of ψ in the future. This may be the source of a
positive feedback loop, whereby good performances of the system attract more users, who provide
more data which in turn ultimately leads to even increased performances.

Figure 6.1: GMLS diagram

6.3 Experiments

In order to test the soundness of the design decisions of the i-dare system, we performed some
preliminary experiments with a relatively simple (yet quite powerful) model: the Min-Cost Flow
(MCF) problem. For this we selected two solvers: the primal/dual RelaxIV [36] and MCFSimplex,
a recent implementation of the classical network simplex algorithm [19], both distributed by the
MCFClass project [124]. Besides being rather different in nature, the solvers have several algorith-
mic parameters which impact their performances. For MCFSimplex these are the choice of primal
or dual simplex, the number of candidate list and the size of hot list in the all-important pricing
rule. For RelaxIV one can decide if the auction/shortest paths initialization procedure is used,
the number of single-node iterations attempted before the first multinode iteration is allowed, the
threshold parameters to stop the scanning process after a multinode price changes, the bound to de-
cide when another multinode iteration must be performed, and the number of passes. Thus, a large

6.3. EXPERIMENTS 101

number of possible different configurations can be used besides the default one (Dconf), which is
typically hard-coded in the solver and however not touched by all but the most adventurous users.

These solver were applied over 144 different graphs using different configurations. The graphs
were created using the following generators: complete networks (10-3000 nodes/106-11252189 arcs),
gridgen (255-65535/2048-1048576) and netgen (256-16384/2048-1048600). After having executed
each configuration of each solver on each instance we tested the effectiveness of the ML approach
as the basis for the search in the (Solver, Configuration) sub-space. For this, a k-fold validation
mechanism was applied. We partitioned randomly the set of graphs into 4 equally sized chunks.
The ML was trained using 3 chunks and tested for accuracy using one, this process was repeated
four times ensuring all chunks were part of the testing process (the average results were reported
on all trials). Given that MCF is a polynomially solvable problem, the ψ function only measured
the obtained running time.

In order to show that a ML approach makes sense, we first report some data showing that
choosing the best solver and configuration indeed makes a difference. In the following table we
report for each solver the number of different configurations that were found to be the best one
(denoted by Aconf) for at least one instance (“nbest”), the average ratio between the running time
of Aconf and that of Dconf (“b/d ratio”, in parenthesis the variance), and the percentage of total
instances in which the best configuration for that solver was better than the best configuration for
the other solver (“% best”).

Solver nbest b/d ratio % best
RelaxIV 80 0.77 (0.22) 70.8

MCFSimplex 34 0.86 (0.17) 29.2

We also mention that the best solver requires on average around 60% of the running time of the
worst solver.

We then experimented about the effectiveness of the ML approach for the selection of the
best (Solver, Configuration) pair using the support vector regression (SVR) tools provided by
the SHOGUN library [145]. For our tests we analyzed different feature combinations, taken from
a set of 24 ones: nodes (0), arcs (1), min/max/average/variance of node degree (2,3,4,5), arc
capacities (6,7,8,9), arc costs (10,11,12,13), node deficits (14,15,16,17), and length of min-hop path
(19,20,21,22), the ratio of average node deficit and arc capacity (18), and an approximation of the
graph diameter (23).

The results are shown in the following table; in particular, “e. err” is the average displacement
of the estimated time for the best configuration according to ML (MLconf) with respect to the
actual time for that configuration, “b/ml ratio” is the ratio between the running time of Aconf and
that of MLconf, “ml/d ratio” is the ratio between the running time of MLconf and that of Dconf,
and “opt. features” is the subset of features that have been found to provide the most accurate
results.

Solver e. err b/ml ratio ml/d ratio opt. features
RelaxIV 0.542 (0.871) 0.770 (0.205) 0.966 (0.305) [0, 1, 4, 8, 12, 16, 24]

MCFSimplex 0.500 (0.723) 0.855 (0.182) 0.919 (0.158) [0, 1, 18, 21, 23]

We emphasize that different feature subsets led to fairly worse results; a few representative ones
(only, due space limitations) are

Solver e. err b/ml ratio ml/d ratio opt. features
0.548 0.775 0.969 [0, 1]

RelaxIV 0.479 0.755 0.975 [0, 1, 18, 21, 23]
1.224 0.768 0.996 [0, 1, 3, 7, 11, 15, 20, 23]
0.513 0.862 0.923 [0, 1]

MCFSimplex 0.720 0.867 0.928 [0, 1, 4, 8, 12, 16, 24]
1.472 0.852 0.953 [0, 1, 3, 7, 11, 15, 20, 23]

Using the selected features for each solver, we applied the ML to determine the solver to be used.
In the following table we report the percentage of solver mis-selection (“s. err”), the ratio between

102 CHAPTER 6. I-DARE(CONTROL) - BEST (FORMULATION, SOLVER, CONFIGURATION)

the running time of the actual best solver (with its best configuration) and that of the (Solver,
Configuration) chosen by the ML (“b/ml ratio”), and the ratio between the latter and the default
configuration for both solvers (“ml/dR ratio” and “ml/dS ratio”, respectively).

s. err b/ml ratio ml/dR ratio ml/dS ratio
0.145 0.787 (0.208) 0.933 (0.342) 0.791 (0.450)

6.3.1 Further experimentation

Following the same methodology used in the previous section, we conducted further experiments
to measure the potentiality of a more complex set of instances and a bigger set of solvers for the
case of the MCF problem. Moreover we conducted other experiments with NLP problems and
MIP problems.

For the MCF case, we used a slightly smaller set of instances, but fairly more complex than
the previous one. We created 132 instances using the generators: complete networks (500-3000
nodes/310991-20247330 arcs), gridgen (256-65536/8192-1048576), netgen (1024-16384/32768-1048600)
and goto (512-65536 nodes/32768-4194304 arcs).

The solvers used were,

1. cplexbarrier – CPLEX Barrier Optimizer to solve large, sparse linear programming problems
[7],

2. cplexnet – CPLEX Network Optimizer on linear programming problems based on a network
model [7],

3. MCFSimplex – a recent implementation of the classical network simplex algorithm [19],

4. LEMON capacityscaling – Capacity Scaling: dual method, which can be viewed as a gener-
alization of the Ford-Fulkerson algorithm [62],

5. LEMON netsimplex – Network Simplex: a specialized version of the linear programming
simplex method [57],

6. LEMON costscaling – Cost Scaling: a primal-dual approach, which can be viewed as the
generalization of the push-relabel algorithm [79],

7. LEMON cyclecanceling – Cycle Canceling: a general primal method [103],

Solvers 1 - 3 were distributed by the MCFClass project [124], and 4 - 5 were distributed by the
COIN-OR::LEMON project [14].

Since the instances were more complex, some of the solvers did not provide a solution for Dconf
(and sometimes for any configuration). Therefore we will report three new statistics: “ns” the
amount of instances not solved with any configuration, “ns-D” the amount of instances not solved
with Dconf.

Solver ns ns-D nbest b/d ratio % best
cplexbarrier 30 0 13 0.886 (0.188) 0.0
cplexnet 4 3 25 0.908 (0.134) 2.2

MCFSimplex 4 0 28 0.841 (0.207) 26.5
LEMON capacityscaling 8 0 7 0.849 (0.236) 3.78
LEMON costscaling 4 0 7 0.922 (0.151) 2.2

LEMON cyclecanceling 8 0 1 1.0 (0.0) 0.0
LEMON netsimplex 4 3 8 0.583 (0.329) 65.1

We also mention that the best solver requires on average around 3.77% of the running time of the
worst solver.

Considering a wider set of solution methods (plus more complex instances) we emphasize even
more the need of taking into account different configurations and different solvers. Assume that
we just use the solver LEMON netsimplex (the solver with best performance) we will be solving

6.4. DISCUSSION 103

the 34.9% of the instance with a solver that is not the best (and might be the worst). Moreover,
observe how LEMON netsimplex, even if it is the most used solver, owes its performance to the
fact the we considered the Aconf. If we considered the Dconf, its performance would have decayed
by more than a 40%.

We also did some experiments for MIP and NLP problems. For the MIP problems we considered
93 instances from MIPLIB 2003 [17] and the CPLEX solver distributed by GAMS [15]. For the
NLP problems we considered 415 instances from Global Library [6] and the snopt and conopt
solvers [5] also distributed by GAMS.

Since the solvers for MIP and NLP may not always converge to a global optima, we will consider
new statistics related with the best objective function (OF) value, like: “(b/d)of ratio” the average
ratio between the Aconf OF value - Dconf OF value and |Dconf OF value|; “bof/dof ratio” the
average ratio between AOFconf OF value - Dconf OF value and |Dconf OF value| (where AOFconf
if the configuration that provided the best OF value); and “(bof/dof)t ratio” the average ratio
between AOFconf time and Dconf time.

Type Solver ns ns-D nbest b/d ratio (b/d)of ratio bof/dof ratio (bof/dof)t ratio % best % best OF
MIP CPLEX 22 2 27 0.730 (0.311) 0.0 (0.0) 0.0 (0.0) 0.730 (0.311) – –

NLP
snopt 58 12 54 0.520 (0.322) 2.897 (28.092) -0.025 (0.173) 0.740 (0.939) 27.6 9.2
conopt 18 27 72 0.712 (0.314) 0.274 (2.921) -0.017 (0.125) 1.148 (3.039) 72.3 90.7

Note, mainly for the NLP case, that the OF values difference ratios are sometimes a negative
number, this means that there was a gain (ie. the AOFconf OF value was better than the Dconf
OF value). Also for NLP the best solver requires on average around 48.5% of the running time of
the worst solver, and the best OF value improves in 18.3% the worst one.

6.4 Discussion

In this chapter we described the set of architectural choices in the i-dare system that have been
designed to make an effective search, while avoiding to tie-in the system to specific search strategies
that may not ultimately prove effective enough. In particular, we discussed the fundamental role
of the GMLS, which allows to integrate general-purpose ML approaches with specialized methods
for the nontrivial task of computing ψ. This task is “naturally” extended to that of selecting
the best algorithmic configuration of the available solvers, thereby providing the i-dare(control)
sub-system with a powerful tool to streamline the search. This requires a sophisticated ML (meta)
process that is continuously running and keeps modifying the assessment of each reformulation with
respect to given algorithms. Although use of ML techniques to select algorithmic parameters have
very recently been advocated elsewhere, the scale of our proposal is, to the best of our knowledge,
unheard of.

i-dare(control) defines a central component d control that manages all the search process.
This component can potentially implements any known search technique, from Heuristics and
Meta-heuristics (GRASP, Simulated Annealing, Taboo Search, Genetic Algorithms, Ant Colony,
etc) to enumeration algorithms (like Branch and Bound). It is quite clear for us that the selection
of a proper search technique (or combination of search techniques) is a big issue. This is why we
designed the system avoiding the limitation of choosing a specific search technique.

A feature of the system is that the reformulations made to the model immediately impact
which solver(s) will be used, and therefore the specific options that may be chosen in a solver. For
instance, if a model is reformulated to a MILP with a specific structure, for which specific cuts
can be generated, then a solver attached to that structure may (and likely will) have the option to
generate (or not) these cuts. Moreover, for MINLP problems some algorithms may use different
combinations of solvers to solve the LP and NLP problems [56]. The I-DARE environment not only
allows the choice of different combinations, but also automatizes the selection of the “best” choice
for any given instance, which has the possibility to significantly increase the performances of the
approach. i-dare prefixes the possibility of dealing with a vast set of mathematical models, from

104 CHAPTER 6. I-DARE(CONTROL) - BEST (FORMULATION, SOLVER, CONFIGURATION)

large-scaled structured LP/MILP, to NLP/MINLP and more exotic classes like PDE constraints
[89].

The results attained with the experiments prove that even if the training and testing sets
were rather small, the usage of the ML technique, applied to select the solver and configuration,
improved indeed the average time with respect to Dconf. Meaning that the default configuration
we may find in solvers we use, it is not always the best choice, due to the heterogeneity of the
instances. Moreover the features to be used by each solver in the ML process may no be the
same (for solvers attached to the same structure). The training and Meta-Learning processing
time depends on: the size and complexity of the problems being solved for generating the training
points; the amount of instance features and configuration fields of each point; and even the amount
of parameters the MLs may have.

The outcome of this sophisticated process may well be a very significant improvement of the
efficiency experienced by the “average” (non expert) user in the solution of her models, thereby
significantly contributing to the overall scientific and technological progress.

Chapter 7

Combining structures and
reformulations

Abstract

In this chapter we will declare a set of “simple” structure classes that will allow (by
composition) the creation of complex models. Even though, most of these structure class may
not have a solver attached, they will become useful in the reformulation process. We will
define some ARR

∑

s in order to transform these structures classes into d MILP C (or d LP C),
and finally, we will focus on a particular non linear model (that uses these structure classes)
and we will see how by applying the defined ARR

∑

s we can transform this model from a
MINLP formulation into an equivalent MILP reformulation.

7.1 Structures

One of the main i-dare potentialities is the capacity of declaring and relating structures that
contain a specific semantic value. In this section we will focus on creating a set of global structures
that will allow us to build models by combining them.

For instance we may declare some simple structures just to define a binary variable (BV),
continuous variable (CV), relation and a constant.

1 d Sing leBV C : : d LeafProblem C
2 [
3 a r g s −> [v = d va r]
4] .
5
6 d Sing leCV C : : d LeafProblem C
7 [
8 a r g s −> [v = d va r]
9] .

10
11 d Re l a t i on C : : d LeafProblem C
12 [
13 a r g s −> [r e l = d r e l]
14] .
15
16 d Cons tant C : : d LeafProblem C
17 [
18 a r g s −> [c = d cons tant]
19] .

We may also define, for example a vector of continuous variables,

106 CHAPTER 7. COMBINING STRUCTURES AND REFORMULATIONS

1 d VectorCV C : : d LeafProblem C
2 [
3 d im va r −> [D] ,
4 a r g s −> [v = d ve c t o r (d var , [D])]
5] .

Considering more complex structures, we can create for instance a product between a CV and a
BV,

1 d ProdBC C : : d Block C
2 [
3 i d s −> [b i n , cont] ,
4 subsC −> [d S ing leBV C , d Sing leCV C] ,
5 l i n k −> [([X] , d a l l) , ([Y] , d a l l)]
6 rp lR −> [b i n = 1 , cont = 1]
7] .

Moreover we can declare a structure to represent a semi-continuous expression, like f ∗ x, where f
is a continuous structure (i.e. using only CVs) and x is a BV.

1 d SemiCont inuous C : : d Block C
2 [
3 i d s −> [c t , bv] ,
4 subsC −> [d Component C , d Sing leBV C] ,
5 l i n k −> [([X] , d a l l) , ([Y] , d a l l)] ,
6 rp lR −> [c t = 1 , bv = 1]
7] .

Observe we do not explicitly verify that ct is a continuous expression. However, since any reformu-
lation declared from or to d SemiContinuous C will use a narrowing, then at that point we will specify
only continuous structures. We will see that since we will not assign a solver to most of the struc-
tures within this chapter, their only meaningful functionally will be the definition of reformulation.
Considering other operators like, | · | (absolute value), we can create further structures.

For instance the following one, represents |
∑

i vici|, where vi is a CV and ci is a constant,

1 d VAbs C : : d LeafProblem C
2 [
3 d im va r −> [D] ,
4 a r g s −> [
5 v = d ve c t o r (d var , [D]) ,
6 c = d ve c t o r (d constant , [D])
7]
8] .

Or we could make the non-vectorial version of the previous class,

1 d SAbs C : : d LeafProblem C
2 [
3 a r g s −> [
4 v = d var ,
5 c = d cons tant
6]
7] .

Structures representing specific collections of constraints and/or optimization problems can also
be defined, like d LP C (cf. Listing 1.5); d MILP C (cf. Listing 2.23); the semi-assignment constraints
(cf. §4.1.2),

1 d SemiAss ign C : : d LeafProblem C
2 [
3 d im va r −> [D] ,
4 a r g s −> [

7.1. STRUCTURES 107

5 v = d ve c t o r (d var , [D])
6]
7] .

and the complementary constraints defined by xy = 0 where x, y ≥ 0 are CVs.

1 d ProdCC C : : d LeafProblem C
2 [
3 a r g s −> [
4 x = d var ,
5 y = d va r
6]
7] .

Beside those specific structures we can define a structure to represent a general constraint
f =</=/>= c, where c is a constant, and f can be any component,

1 d Cons t r a i n t C : : d Block C
2 [
3 i d s −> [exp r , r e l , c] ,
4 subsC −> [d Component C , d Re l a t i on C , d Cons tant C] ,
5 l i n k −> [([X] , d a l l) , ([] , d a l l) , ([] , d a l l)] ,
6 rp lR −> [exp r =1, r e l = 1 , c = 1]
7] .

Note that d Relation C and d Constant C are helper structures to put a single relation or a constant
inside a block. Also, observe that if expr (as well as rel and c) has free indices, they must be equal
to the free indices in the constraint. Therefore no internal replication is allowed.

Likewise, we can create a structure to represent a general minimization objective function,

1 d OFMin C : : d Block C
2 [
3 i d s −> [exp r] ,
4 subsC −> [d Component C] ,
5 l i n k −> [([X] , d a l l)] ,
6 rp lR −> [exp r = 1]
7] .

Like for d Constraint C, no internal replication is allowed in d OFMin C.

7.1.1 Compositions

Once we have the single structures we may want to compose them to obtain more complex struc-
tures. The following structure combines to general structures that share a set of variables,

1 d Compos i t i on C : : d Block C
2 [
3 i d s −> [p1 , p2] ,
4 subsC −> [d Component C , d Component C] ,
5 l i n k −> [([X,Y] , d a l l) , ([X, Z] , d a l l)] ,
6 rp lR −> [p1 = 1 , p2 = 1]
7] .

Observe that both substructures share a set of variables (X) and have independent sub-set of vari-
ables (Y and Z).

Another composition case can be based on the internal replication of a sub-structure.

1 d IndCompos i t i on C : : d Block C
2 [
3 i d s −> [s] ,
4 subsC −> [d Component C] ,
5 l i n k −> [([X] , d a l l)]
6] .

108 CHAPTER 7. COMBINING STRUCTURES AND REFORMULATIONS

Notice that the internal structure s can be replicated inside of d IndComposition C, implying that each
replication will have an independent set of variables. Therefore, the substructures are completely
separable. This fact will prove useful during reformulations, while integrating particular narrowings
of d IndComposition C. We can specify a general behavior by saying that d IndComposition C will sum
all isolated terms and concatenate all constraints.

7.2 Creating a model

In this section we propose the representation of a Hyperplane Clustering Problem (HCP). In a
HCP we have a set of points p = {pi | i ∈M} ∈ RD and we want to find the set of N hyperplanes
w = {wj1x1 + . . . + wjdxd = w0

j | j ∈ N} ∈ RD and an assignment of points to hyperplanes
such that the distances from the hyperplanes to their assigned points are minimized. HCP can be
algebraically defined by the following MINLP,

min
∑

i∈M

∑

j∈N

|wjpi − w0
j |xij (7.2.1)

s.t.
∑

j∈N

xij = 1 ∀i ∈M (7.2.2)

∑

k∈D

|wjk| = 1 ∀j ∈ N (7.2.3)

w ∈ RN×D, w0 ∈ RN , x ∈ {0, 1}M×N

Note HCP has a parameter p ∈ RM×D, and dimensions N,M,D ⊂ N. Differently to previously
seen examples, HCP introduces nonlinearity in both the objective function and constraints.

To model HCP we will use a combination of the previously specified structures. Note that
(7.2.1) is an objective function containing products between absolute values and BVs; (7.2.2) is a
semi-assignment; and (7.2.3) is a constraint containing absolute value operations. Hence, we can
build the following model.

Dimensions, indices and Properties

1 d dimens ion (D) . d dimens ion (N) . d dimens ion (M) .
2 d index (i , M) . d index (j , N) . d index (k , D) .
3
4 p : d cons tant .
5 p : d p r ope r t y
6 [
7 dims −> [M, D]
8] .
9

10 w : d va r .
11 w : d p r ope r t y
12 [
13 dims −> [N, D]
14] .

1 w0 : d va r .
2 w0 : d p r ope r t y
3 [
4 dims −> [D]
5] .
6
7 x : d va r .
8 x : d p r ope r t y
9 [

10 dims −> [M, N] ,
11 l ower −> 0 ,
12 upper −> 1
13] .

Structures

7.3. REFORMULATIONS 109

1 v ab s o f : d VAbs C
2 [
3 a r g s −> [// f r e e i n d s = (i , j)
4 v = $ ([$(w(j , k) , [k]) , w0(j)]) ,
5 c = $ ([$(p (i , k) , [k]) , 1])
6]
7] .
8
9 bvo f : d S ing leBV C

10 [
11 a r g s −> [// f r e e i n d s = (i , j)
12 v = x (i , j)
13]
14] .
15
16 s em i co f : d SemiCont inuous C
17 [
18 subs −> [a b s o f , bvo f] ,
19 subVP −> [[(w, w0)] , [x]] ,
20 f r e e I −> [i , j]
21] .
22
23 i n d o f : d I ndCompos i t i on C
24 [
25 subs −> [s em i co f] ,
26 subVP −> [[(w, w0 , x)]]
27] .
28
29 o f : d OFMin C
30 [
31 subs −> [i n d o f] ,
32 subVP −> [[(w, w0 , x)]]
33] .
34
35 semiac : d SemiAss ign C
36 [
37 a r g s −> [// f r e e i n d s = i
38 v = $(x (i , j) , [j])
39]
40] .
41
42 sabsc : d SAbs C
43 [
44 a r g s −> [// f r e e i n d s = (j , k)
45 v = w(j , k) ,
46 c = 1 ,
47]
48] .
49
50 r e l : d R e l a t i on C
51 [
52 a r g s −> [r e l = ’= ’]
53] .

54 c : d Cons tant C
55 [
56 a r g s −> [c = 1]
57] .
58
59 i ndc1 : d I ndCompos i t i on C
60 [
61 subs −> [s absc] ,
62 subVP −> [[(w)]] ,
63 f r e e I −> [j]
64] .
65
66 c o n s t r a i n t : d Con s t r a i n t C
67 [
68 subs −> [indc1 , r e l , c] ,
69 subVP −> [[w] , [[]] , [[]]]
70 f r e e I −> [j]
71] .
72
73 i ndc2 : d I ndCompos i t i on C
74 [
75 subs −> [semiac] ,
76 subVP −> [[(x)]]
77] .
78
79 i ndc3 : d I ndCompos i t i on C
80 [
81 subs −> [c o n s t r a i n t] ,
82 subVP −> [[(w)]]
83] .
84
85 cmpdc : d Compos i t i on C
86 [
87 subs −> [i ndc2 , i ndc3] ,
88 subVP −> [[[] , x] , [[] , w]]
89] .
90
91 fcmp : d Compos i t i on C
92 [
93 subs −> [o f

, cmpdc] ,
94 subVP −> [[(x ,w) , w0] , [(x ,w) , []]]
95] .
96
97 HCP : d Formu la t i on
98 [
99 r oo t −> fcmp ,

100 d imens i ons −> [D,M,N] ,
101 i n d i c e s −> [i , j , k] ,
102 p r o p e r t i e s −> [w, w0 , p , x]
103] .

The diagram in Figure 7.1 shows the HCP formulation by representing only the name and class
of the structures used, plus the relations between them

7.3 Reformulations

In this section we will introduce some of the reformulations that can be created based on the
previously defined structures. Our main goal in this case will be trying to remove the non linearity
elements in a reformulation, by adding the proper additional variables and constraints. We will use
the classes d MILP C and d LP C (cf. Listings 2.23 and 1.5) as the main goals in the reformulation
rules to be presented herein. Most of the reformulation rules exposed in this section were extracted

110 CHAPTER 7. COMBINING STRUCTURES AND REFORMULATIONS

Figure 7.1: HCP Formulation

from [112].

In some the cases, the generated MILP and LP will have no objective function (i.e. all the cost
constant will be 0), so we will not specify the direction parameter, because it is irrelevant. In other
cases, when integrating two MILPs, for instance, we will use the fact that the d direction type is
evaluated as 1 if equal to min and −1 if equal to max. So depending on the unified direction we
want to arrive, we will transform the cost constants of the objective function.

7.3.1 ProdBC to MILP

A product between a BV b and a CV x ∈ [0..U], can be substituted by a continuous variable
w ∈ [0..U] and the constraints: w − Ub ≤ 0, w − x ≤ 0 and x+ Ub− w ≤ U . So we can build the

following ARR
∑

.

1 d ProdBC to MILP ARR : d ARR Algebra i c
2 [
3 A −> d ProdBC C (? , ?) ,
4 B −> d MILP C ,
5 i ndexA −> [1=(i , i 1) , 2= j] ,
6 i ndexB −> [] ,
7 dimRel −> [c o l s I =1, co l sR =2, cons =3] ,
8 arg map −> [
9 B . . c i = 0 ,

10 B . . cR = $ ([0 , 1]) ,
11 B . . Ai = $ ([
12 [$(−1∗ up (A . . cont . . v) , [i1 , i])] ,
13 [$(0 , [i1 , i])] ,
14 [$(up (A . . cont . . v) , [i1 , i])]
15]) ,
16 B . . Ar = $ ([
17 [$(c s ([1−> j =1, 0]) , [i 1 , j])] ,
18 [$(c s ([1−> j =1, −1]) , [i1 , j])] ,

7.3. REFORMULATIONS 111

19 [$(c s ([1−> j =0, −1]) , [i1 , j])]
20]) ,
21 B . . r e l s = ’=< ’ ,
22 B . . b = $ ([0 , 0 , up (A . . cont . . v)]) ,
23 B . . x i = lower (0) ,
24 B . . x i = upper (1) ,
25 B . . x r = lower (0) ,
26 B . . x r = upper (up (A . . cont . . v)) ,
27 B . . x r = [v=1, aux=1]
28] ,
29 ans map −> [
30 A . . b i n . . v = B . . x i ,
31 A . . cont . . v = B . . x r (v)
32]
33] .

Note that the objective function of the generated MILP has a non-zero constant for the variable
that must substitute bx, and the rest of the constants are 0. The utility of this objective function
constants, will be seen later, when reformulating d OFMin C and d Constraint C.

7.3.2 SAbs to Composition

If we consider a structure involving a term |pv| (d SAbs C, p is a constant and v is a CV), this term
can be reformulated so that it is differentiable, by adding two CVs t+, t− ∈ [0..+∞]; replacing |pv|
by t++ t−; and adding the constraints pv− t+− t− = 0 and t+t− = 0. This reformulation involves
a linear substructure, plus a complementary constraint (xy = 0). So we can define an ARR

∑

that
transforms d SAbs into a composition between a d LP C and a d ProdCC C.

1 d SAbs to Composit ion LP ProdCC ARR : d ARR Algebra i c
2 [
3 A −> d SAbs C ,
4 B −> d Compos i t i on C (d LP C , d ProdCC C) ,
5 i ndexA −> [1= i , 3= j] ,
6 i ndexB −> [] ,
7 dimRel −> [p1 . . c o l s =3, p1 . . cons =1] ,
8 arg map −> [
9 B . . p1 . . c = $ ([0 , 1 , 1]) ,

10 B . . p1 . . A = $(c s ([A . . p−>(j =0) , −1]) , [i , j]) ,
11 B . . p1 . . r e l s = ’= ’ ,
12 B . . p1 . . b = 0 ,
13 B . . p1 . . x = [w=1, tp=1,tm=1] ,
14 B . . p1 . . x (tp) = lower (0) ,
15 B . . p1 . . x (tm) = lower (0) ,
16 B . . p1 . . x i = lower (0) ,
17 B . . p1 . . x i = upper (1)
18] ,
19 ans map −> [
20 A . . w = B . . x (w) ,
21]
22 f i x T I −> [
23 X = (B . . p1 . . x (tp) , B . . p1 . . x (tm)) ,
24 Y = B . . p1 . . x (w) ,
25 Z = []
26]
27] .

Notice that the substitution of |pv| is expressed by defining the c constants in d LP C with 0 for v
and 1 for t+ and t−.

7.3.3 VAbs to LP

Considering now a term |
∑

i pivi| we can apply a similar reformulation to the one defined in the
previous section. However in this case we will consider that the term is inside a minimization

112 CHAPTER 7. COMBINING STRUCTURES AND REFORMULATIONS

function (the same way can be done for d SAbs C). In this case, the complementary constraint can
be eliminated because we are minimizing t+ + t−, so due to the function’s direction, at a global
optimum, one of t+ or t− will have value zero. Therefore implying the complementary constraint.

Hence, in this case, we will reformulate d VAbs C into an d LP C,

1 d VAbs to LP oncond OFMin ARR : d ARR Algebra i c
2 [
3 A −> d SAbs C ,
4 B −> d LP C ,
5 i ndexA −> [2= i , 1=j , D=d] ,
6 i ndexB −> [] ,
7 dimRel −> [c o l s=D+2, cons =1] ,
8 arg map −> [
9 B . . c = $ ([$ (0 , [d]) , $ (1 , [i])]) ,

10 B . . A = $ ([
11 [
12 $(A . . c (d) , [j , d]) ,
13 $(−1 , [j , i])
14]
15]) ,
16 B . . r e l s = ’= ’ ,
17 B . . b = 0 ,
18 B . . x = [v=[D] , t = [2]] ,
19 B . . x (v) = lower (lw (A . . v)) ,
20 B . . x (v) = upper (up (A . . v)) ,
21 B . . x (t) = lower (0) ,
22] ,
23 ans map −> [
24 A . . v = B . . x (v)
25] ,
26 c o nd i t i o n −> pa r en t (A) = d OFMin C
27] .

Notice the condition inside the ARR
∑

indicating that A must have a parent d OFMin C inside the
block’s tree, thus implying it is inside a minimization function.

7.3.4 SemiContinuous to MILP

If we manage to narrow a d SemiContinuous C until the point of knowing that it has an d LP C inside,
then we can easily transform d SemiContinuous C into a d MILP C. Assume the LP has the form

mincTx

s.t. Ax = b

xi ∈ [0..Bi]

then the fact of multiplying this LP by a BV y (only in the objective function) creates the following
MINLP

min
∑

i

cixiy

s.t. Ax = b

xi ∈ [0..Bi], y ∈ {0, 1}

This MINLP can be reformulated into a MILP by applying the same mechanism used for d ProdBC to MILP ARR

(cf. §7.3.1). We may add a CV wi ∈ [0..Bi] to substitute each product xiy, and then add the
constraints wi −Biy ≤ 0, wi − xi ≤ 0 and xi +Biy − wi ≤ Bi. Resulting in the following MILP,

min
∑

i

wi

s.t. Ax = b

7.3. REFORMULATIONS 113

wi − Biy ≤ 0 ∀(i)

wi − xi ≤ 0 ∀(i)

xi +Biy − wi ≤ Bi ∀(i)

wi, xi ∈ [0..Bi], y ∈ {0, 1}

Hence, we can create the following ARR
∑

to represent this reformulation,

1 d SemiCont inuous LP Sing leBV to MILP ARR : d ARR Algebra i c
2 [
3 A −> d SemiCont inuous C (d LP C , ?) ,
4 B −> d MILP C ,
5 i ndexA −> [c o l s =(dr , dr1) , 1= i i , cons=v j] ,
6 i ndexB −> [] ,
7 dimRel −> [c o l s I =1, co l sR=2∗ co l s , cons=cons+3∗ c o l s] ,
8 arg map −> [
9 B . . c I = 0 ,

10 B . . cR = $ ([$ (0 , [dr]) , $ (1 , [dr])]) ,
11 B . . Ai = $ ([// i n t mat r i x (cons+3∗ c o l s x 1)
12 [$(−1∗ up (A . . c t . . x (dr)) , [dr , i i])] ,
13 [$(0 , [dr , i i])] ,
14 [$(up (A . . c t . . x (dr)) , [dr , i i])] ,
15 [$(0 , [v j , i i])]
16]) ,
17 B . . Ar = $ ([// r e a l mat r i x (cons+3∗ c o l s x 2∗ c o l s)
18 [
19 $(c s ([A . . c t . . c (dr1)−>(dr1=dr) , 0]) , [dr , dr1]) ,
20 $(0 , [dr , dr1])
21] ,
22 [
23 $(c s ([A . . c t . . c (dr1)−>(dr1=dr) , 0]) , [dr , dr1]) ,
24 $(c s ([−1−>(dr=dr1) , 0]) , [dr , dr1])
25] ,
26 [
27 $(c s ([−1∗A . . c t . . c (dr1)−>(dr1=dr) , 0]) , [dr , dr1]) ,
28 $(c s ([1−>(dr=dr1) , 0]) , [dr , dr1])
29] ,
30 [
31 $(A . . c t . . A(v j , dr1) , [v j , dr1]) ,
32 $(0 , [v j , dr1])
33]
34]) ,
35 B . . r e l s = $ ([
36 $(’=< ’ , [dr]) ,
37 $(’=< ’ , [dr]) ,
38 $(up (A . . c t . . x (dr)) , [dr]) ,
39 $(A . . c t . . b (v j) , [v j])
40]) ,
41 B . . b = $ ([
42 $ (0 , [dr]) ,
43 $ (0 , [dr]) ,
44 $(’=< ’ , [dr]) ,
45 $(A . . c t . . r e l s (v j) , [v j])
46]) ,
47 B . . x r = [o=[c o l s] , n=[c o l s]] ,
48 B . . x i = lower (0) ,
49 B . . x i = upper (1) ,
50 B . . x r (o)= lower (lw (A . . c t . . x)) ,
51 B . . x r (o)= upper (up (A . . c t . . x)) ,
52 B . . x r (n)= lower (0) ,
53 B . . x r (n)= upper (up (A . . c t . . x)) ,
54] ,
55 ans map −> [
56 A . . bv . . v = B . . x i ,
57 A . . c t . . x = B . . x r (o)
58]
59] .

114 CHAPTER 7. COMBINING STRUCTURES AND REFORMULATIONS

7.3.5 ProdCC to MILP

When in presence of a complementary constraint xy = 0, we can substitute it by the following
MILP constraints, x −Mz ≤ 0 and y +Mz ≤ M , where z ∈ {0, 1} and M is a sufficiently large
number.

1 d ProdCC to MILP ARR : d ARR Algebra i c
2 [
3 A −> d ProdCC C ,
4 B −> d MILP C ,
5 i ndexA −> [1=(i , i 1) , 2= j] ,
6 i ndexB −> [] ,
7 dimRel −> [c o l s I =1, co l sR =2, cons =2] ,
8 arg map −> [
9 B . . c i = 0 ,

10 B . . cR = 0 ,
11 B . . Ai = $ ([
12 [$(−1∗ b ig , [i1 , i])] ,
13 [$(b i g , [i1 , i])]
14]) ,
15 B . . Ar = $ ([
16 [$(c s ([1−> j =0, 0]) , [i 1 , j])] ,
17 [$(c s ([1−> j =1, 0]) , [i 1 , j])]
18]) ,
19 B . . r e l s = ’=< ’ ,
20 B . . b = $ ([0 , b i g]) ,
21 B . . x i = lower (0) ,
22 B . . x i = upper (1) ,
23 B . . x r = [x=1, y=1] ,
24 B . . x r (x) = lower (lw (A . . x)) ,
25 B . . x r (x) = upper (up (A . . x)) ,
26 B . . x r (y) = lower (lw (A . . y)) ,
27 B . . x r (y) = upper (up (A . . y))
28] ,
29 ans map −> [
30 A . . x = B . . x r (x) ,
31 A . . y = B . . x r (y)
32]
33] .

Observe that since d ProdCC C represents a constraint, the generated MILP has no objective func-
tion.

7.3.6 SemiAssign to MILP

The semi-assignment constraint
∑

i yi = 1, has trivial transformation into a MILP with no CVs,

1 d SemiAssign to MILP ARR : d ARR Algebra i c
2 [
3 A −> d SemiAss ign C ,
4 B −> d MILP C ,
5 i ndexA −> [1= j , D=d] ,
6 i ndexB −> [] ,
7 dimRel −> [c o l s I=D, co l sR =0,
8 cons =1] ,
9 arg map −> [

10 B . . c i = 0
11 B . . c r = 0
12 B . . Ai = $ (1 , [j , d]) ,
13 B . . r e l s = ’= ’ ,
14 B . . b = 1 ,
15 B . . x i = lower (0) ,
16 B . . x i = upper (1)
17] ,
18 ans map −> [
19 A . . v = B . . x i

7.3. REFORMULATIONS 115

20]
21] .

7.3.7 Constraint to MILP

Having a d Constraint C with its substructure narrowed to a MILP, allows us to transform the
whole constraint structure into a MILP. We will assume that the objective function (

∑

i cixi)
of the inner MILP will represent, regardless of its direction, a last row of the LHS matrix of
the new generated MILP. This last row is obtained by combining

∑

i cixi with the d Relation C and
d Constant C substructures of d Constraint C. Therefore the resulting MILP will include all constraints
of the inner MILP plus

∑

i cixi d rel d constant.

The following ARR
∑

reformulates d Constraint C(d MILP C ? , ?) into a d MILP C,

1 d Constra int MILP to MILP ARR : d ARR Algebra i c
2 [
3 A −> d Cons t r a i n t C (d MILP C , ? , ?) ,
4 B −> d MILP C ,
5 i ndexA −> [1= j1 , expr . . c o l s I=i i , exp r . . co l sR=i r , exp r . . cons=j] ,
6 i ndexB −> [] ,
7 dimRel −> [c o l s I=expr . . c o l s I , co l sR=expr . . co l sR ,
8 cons=expr . . cons + 1] ,
9 arg map −> [

10 B . . c i = 0
11 B . . c r = 0
12 B . . Ai = $ ([// LHS i n t mat r i x (cons + 1 x c o l s I)
13 [$(A . . exp r . . Ai (j , i i) , [j , i i])] ,
14 [$(A . . exp r . . c i (i i) , [j 1 , i i])]
15]) ,
16 B . . Ar = $ ([// LHS r e a l mat r i x (cons ∗(FI+1) x co l sR ∗FI)
17 [$(A . . exp r . . Ar (j , i r) , [j , i r])] ,
18 [$(A . . exp r . . c r (i r) , [j1 , i r])]
19]) ,
20 B . . r e l s = $ ([
21 $(A . . exp r . . r e l s (j) , [j]) ,
22 $(A . . r e l . . r e l , [j 1])
23]) ,
24 B . . b = $ ([
25 $(A . . exp r . . b (j) , [j]) ,
26 $(A . . c . . c , [j 1])
27]) ,
28 B . . x i = lower (lw (A . . exp r . . x i)) ,
29 B . . x i = upper (up (A . . exp r . . x i)) ,
30 B . . x r = lower (lw (A . . exp r . . x r)) ,
31 B . . x r = upper (up (A . . exp r . . x r))
32] ,
33 ans map −> [
34 A . . expr . . x i = B . . x i ,
35 A . . expr . . x r = B . . x r
36]
37] .

Notice that an ARR
∑

to reformulate d Constraint C(d LP C, ? , ?) into d LP C can be created in
an analogous way.

7.3.8 OFMin to MILP

The reformulation of a d OFMin C with the inner structure narrowed to a MILP is even more
direct that the d Constraint C case, because the objective function is left as it is, except for the sign
transformation depending on the inner MILP direction.

1 d OFMin MILP to MILP ARR : d ARR Algebra i c
2 [
3 A −> d OFMin C (d MILP C) ,

116 CHAPTER 7. COMBINING STRUCTURES AND REFORMULATIONS

4 B −> d MILP C ,
5 i ndexA −> [exp r . . c o l s I=i i , exp r . . co l sR=i r , exp r . . cons=j] ,
6 i ndexB −> [] ,
7 dimRel −> [c o l s I=expr . . c o l s I , co l sR=expr . . co l sR ,
8 cons=expr . . cons] ,
9 arg map −> [

10 B . . c i = $(A . . exp r . . d i r ∗A . . expr . . c i (i i) , [i i]) ,
11 B . . c r = $(A . . exp r . . d i r ∗A . . expr . . c r (i r) , [i r]) ,
12 B . . Ai = $(A . . exp r . . Ai (j , i i) , [j , i i]) ,
13 B . . Ar = $(A . . exp r . . Ar (j , i r) , [j , i r]) ,
14 B . . r e l s = $(A . . exp r . . r e l s (j) , [j]) ,
15 B . . b = $(A . . exp r . . b (j) , [j]) ,
16 B . . d i r = ’min ’ ,
17 B . . x i = lower (lw (A . . exp r . . x i)) ,
18 B . . x i = upper (up (A . . exp r . . x i)) ,
19 B . . x r = lower (lw (A . . exp r . . x r)) ,
20 B . . x r = upper (up (A . . exp r . . x r))
21] ,
22 ans map −> [
23 A . . expr . . x i = B . . x i ,
24 A . . expr . . x r = B . . x r
25]
26] .

Again in this case the reformulation from d OFMin(d LP C) to d LP C can be done in an analogous
way.

7.3.9 IndComposition to MILP

The d IndComposition C structure with the inner structure narrowed to MILP, can be reformulated
into a single MILP, by mixing the inner replicated structures. For instance if the inner MILP has a
free index j then each MILPj has an independent set of variables with respect to the other MILPj′ ,
with j 6= j′. Therefore the resulting MILP can be composed as shown in Figure 7.2.

Figure 7.2: Independent Composition of N MILP subproblems

The cj constants will be multiplied by the direction of MILPj in order to unify the objective
function to a minimization.

Applying this composition we can define the following ARR
∑

to reformulate a d IndComposition C(d MILP C)

into a single d MILP C.

1 d IndComposit ion MILP to MILP ARR : d ARR Algebra i c
2 [
3 A −> d IndCompos i t i on C (d MILP C) ,
4 B −> d MILP C ,
5 i ndexA −> [f i D (s)=(f i , f i 1) , 1=i ,
6 s . . c o l s I=i i , s . . co l sR=i r , s . . cons=j] ,
7 i ndexB −> [] ,
8 dimRel −> [c o l s I=s . . c o l s I ∗ f i D (s) , co l sR=s . . co l sR ∗ f i D (s) ,

7.3. REFORMULATIONS 117

9 cons=s . . cons ∗ f i D (s)] ,
10 arg map −> [
11 B . . c i = $(A . . exp r (f i) . . d i r ∗A . . expr (f i) . . c i (i i) , [(i i , f i)]) ,
12 B . . c r = $(A . . exp r (f i) . . d i r ∗A . . expr (f i) . . c r (i r) , [(i r , f i)]) ,
13 B . . Ai = $(c s ([A . . exp r (f i) . . Ai (j , i i)−>(f i=f i 1) , 0]) ,
14 [(j , f i) , (i i , f i 1)]) ,
15 B . . Ar = $(c s ([A . . exp r (f i) . . Ar (j , i r)−>(f i=f i 1) , 0]) ,
16 [(j , f i) , (i r , f i 1)]) ,
17 B . . r e l s = $(A . . exp r (f i) . . r e l s (j) , [(j , f i)]) ,
18 B . . b = $(A . . exp r (f i) . . b (j) , [(j , f i)]) ,
19 B . . d i r = ’min ’ ,
20 B . . x i = [f= r p l (f i D (expr) , [exp r . . c o l s I])] ,
21 B . . x r = [f= r p l (f i D (expr) , [exp r . . co l sR])] ,
22 B . . x i (f (f i)) = lower (lw (A . . s (f i) . . x i)) ,
23 B . . x i (f (f i)) = upper (up (A . . s (f i) . . x i)) ,
24 B . . x r (f (f i)) = lower (lw (A . . s (f i) . . x r)) ,
25 B . . x r (f (f i)) = upper (up (A . . s (f i) . . x r))
26] ,
27 ans map −> [
28 A . . s (f i) . . x i = B . . x i (f (f i)) ,
29 A . . s (f i) . . x r = B . . x r (f (f i))
30]
31] .

We could define a similar reformulation to integrate several d LP C into a single d LP C

7.3.10 Composition to MILP

When the composition of two structures, with shared variables (d Composition C), has both substruc-
tures narrowed to MILP, it can be reformulated into a single MILP. The main difficulty in this case
are the common variables, for instance assume we have an inner MILP1 with variables x, y and
another inner MILP2 with variables x, z (note that x are the shared variables), then to integrate
both of them into a single MILP we need to

• create the objective function min(d1c1x + d2c2x)x+ c1yy + c2zz, and

• create the constraints A1
xx+A1

yy ≤ / = / ≥ b1 and A2
xx+A2

zz ≤ / = / ≥ b2.

where

• d1 and d2 are the directions of MILP1 and MILP2, respectively;

• c1x and cx
2 are the costs related with the shared variables of MILP1 and MILP2, respectively;

• c1y and cz
2 are the costs related with the independent variables of MILP1 and MILP2, re-

spectively;

• A1
x and A2

x are the LHS matrices related with the shared variables of MILP1 and MILP2,
respectively;

• A1
y and A2

z are the LHS matrices related with the independent variables of MILP1 and MILP2,
respectively; and

• b1 and b2 are the RHS vectors of MILP1 and MILP2, respectively.

The diagram in Figure 7.3 is a representation of this composition.

By using this integration mechanism we can define the ARR
∑

to reformulate d Composition C(d MILP C, d MILP C)

into d MILP C.

1 d Composit ion MILP MILP to MILP ARR : d ARR Algebra i c
2 [
3 A −> d Compos i t ion C (d MILP C , d MILP C) ,
4 B −> d MILP C ,
5 i ndexA −> [t i D (X , [p1 . . x i , p2 . . x i])= x i i , t iD (Y , [p1 . . x i])= y i i , t iD (Z , [p2 . . x i]= z i i) ,

118 CHAPTER 7. COMBINING STRUCTURES AND REFORMULATIONS

Figure 7.3: Composition of two MILP subproblems with shared variables

6 t iD (X , [p1 . . xr , p2 . . x r])= x i r , t iD (Y, [p1 . . x r])= y i r , t iD (Z , [p2 . . x r]= z i r) ,
7 p1 . . cons = j1 , p2 . . cons = j2
8] ,
9 i ndexB −> [] ,

10 dimRel −> [c o l s I = t iD (X , [p1 . . x i , p2 . . x i]) + t iD (Y, [p1 . . x i]) + t iD (Z , [p2 . . x i]) ,
11 co l sR = t iD (X , [p1 . . xr , p2 . . x r]) + t iD (Y, [p1 . . x r]) + t iD (Z , [p2 . . x r]] ,
12 cons = p1 . . cons + p2 . . cons
13 arg map −> [
14 B . . c i = $ ([$(A . . p1 . . d i r ∗A . . p1 . . c i (x i i)+A . . p2 . . d i r ∗A . . p2 . . c i (x i i) , [x i i]) ,
15 $(A . . p1 . . d i r ∗A . . p1 . . c i (y i i) , [y i i]) ,
16 $(A . . p2 . . d i r ∗A . . p2 . . c i (z i i) , [z i i])]) ,
17 B . . c r = $ ([$(A . . p1 . . d i r ∗A . . p1 . . c i (x i r)+A . . p2 . . d i r ∗A . . p2 . . c i (x i r) , [x i r]) ,
18 $(A . . p1 . . d i r ∗A . . p1 . . c i (y i r) , [y i r]) ,
19 $(A . . p2 . . d i r ∗A . . p2 . . c i (z i r) , [z i r])]) ,
20 B . . Ai = $ ([// LHS i n t ma t r i x
21 [$(A . . p1 . . Ai (j1 , x i i) , [j1 , x i i]) , $(A . . p1 . . Ai (j1 , y i i) , [j1 , y i i]) ,
22 $(0 , [j1 , z i i])] ,
23 [$(A . . p2 . . Ai (j2 , x i i) , [j2 , x i i]) , $ (0 , [j2 , y i i]) ,
24 $(A . . p2 . . Ai (j2 , z i i) , [j2 , z i i])]
25]) ,
26 B . . Ar = $ ([// LHS r e a l ma t r i x
27 [$(A . . p1 . . Ar (j1 , x i r) , [j1 , x i r]) , $(A . . p1 . . Ar (j1 , y i r) , [j1 , y i r]) ,
28 $(0 , [j1 , z i r])] ,
29 [$(A . . p2 . . Ar (j2 , x i r) , [j2 , x i r]) , $ (0 , [j2 , y i r]) ,
30 $(A . . p2 . . Ar (j2 , z i r) , [j2 , z i r])]
31]) ,
32 B . . r e l s = $ ([$(A . . p1 . . r e l s (j 1) , [j 1]) , $(A . . p2 . . r e l s (j 2) , [j 2])]) ,
33 B . . b = $ ([$(A . . p1 . . r e l s (j 1) , [j 1]) , $(A . . p2 . . r e l s (j 2) , [j 2])]) ,
34 B . . d i r = ’min ’ ,
35 B . . x i = [x1=[t iD (X, [p1 . . x i , p2 . . x i])] , y1=[t iD (Y, [p1 . . x i])] , z1=[t iD (Z , [p2 . . x i])]] ,
36 B . . x r = [x2=[t iD (X, [p1 . . xr , p2 . . x r])] , y2=[t iD (Y, [p1 . . x r])] , z2=[t iD (Z , [p2 . . x r])]] ,
37 B . . x i (x1) = lower (max ([lw (A . . p1 . . x i (x i i)) , lw (A . . p2 . . x i (x i i))])) ,
38 B . . x i (x1) = upper (min ([lw (A . . p1 . . x i (x i i)) , lw (A . . p2 . . x i (x i i))])) ,
39 B . . x i (y1) = lower (lw (A . . p1 . . x i (y i i))) ,
40 B . . x i (y1) = upper (up (A . . p1 . . x i (y i i))) ,
41 B . . x i (z1) = lower (lw (A . . p2 . . x i (z i i))) ,
42 B . . x i (z1) = upper (up (s i (A . . p2 . . x i (z1)))) ,
43 B . . x r (x2) = lower (max ([lw (A . . p1 . . x r (x i r)) , lw (A . . p2 . . x r (x i r))])) ,
44 B . . x r (x2) = upper (min ([lw (A . . p1 . . x r (x i r)) , lw (A . . p2 . . x r (x i r))])) ,
45 B . . x r (y2) = lower (lw (A . . p1 . . x r (y i r))) ,
46 B . . x r (y2) = upper (up (A . . p1 . . x r (y i r))) ,
47 B . . x r (z2) = lower (lw (A . . p2 . . x r (z i r))) ,
48 B . . x r (z2) = upper (up (A . . p2 . . x r (z i r)))
49] ,
50 ans map −> [
51 A . . p1 . . x i (x i i) = B . . x i (x1) ,
52 A . . p1 . . x i (y i i) = B . . x i (y1) ,
53 A . . p1 . . x r (x i r) = B . . x r (x2) ,
54 A . . p1 . . x r (y i r) = B . . x r (y2) ,
55 A . . p2 . . x i (x i i) = B . . x i (x1) ,
56 A . . p2 . . x i (z i i) = B . . x i (z1) ,
57 A . . p2 . . x r (x i r) = B . . x r (x2) ,
58 A . . p2 . . x r (z i r) = B . . x r (z2)
59]
60] .

Other combinations of d MILP C and d LP C as substructures of d Composition C can conduct to
similar ARR

∑

to treat those cases. We only have to be careful with the resulting structure, that
it is always d MILP C except for the case when both substructures are d LP C (in that case the
generated structure must be d LP C.

7.4. APPLYING THE ARR
∑

S TO HCP 119

7.4 Applying the ARR
∑

s to HCP

Taking the HCP formulation we defined in §7.2, we could apply a combination of the previously
defined ARR

∑

s until finally obtain a MILP formulation. To show how the HCP formulation is
modified by the application of the ARR

∑

we will use the HCP algebraic formulation combined
with the graphical representation, pointing out the latest reformulation applied. To do so, we will
dim all the model except for the structure being transformed, and the new structure obtained will
have a gray background color (instead of white).

We start from the original HCP formulation.

min
∑

i∈M

∑

j∈N

|wjpi − w
0
j |xij

s.t.
∑

j∈N

xij = 1 ∀i ∈ M (7.4.1)

∑

k∈D

|wjk| = 1 ∀j ∈ N (7.4.2)

w ∈ R
N×D

, w
0 ∈ R

N
, x ∈ {0, 1}M×N

First we apply the ARR
∑

d VAbs to LP oncond OFMin ARR (§7.3.3) to the structure vabsof in the
formulation, obtaining the following.

min
∑

i∈M

∑

j∈N

(t+ijxij + t
−
ijxij)

s.t. t
+
ij − t

−
ij = wjpi − w

0
j ∀i ∈ M, j ∈ N

(7.4.3)

(7.4.1), (7.4.2)

w ∈ R
N×D

, w
0 ∈ R

N
,

x ∈ {0, 1}M×N
, t

+
ij , t

−
ij ∈ [0..B]

A new structure of class d LP C substitutes the structure vabsof, even if in the actual reformulated
model vabsof is exchanged with the track structure tr (vabsof , d LP C). To keep the example simple

120 CHAPTER 7. COMBINING STRUCTURES AND REFORMULATIONS

we will only show the tail of the track structures.

We can now reformulate semicof by applying the ARR
∑

d SemiContinuous LP SingleBV to MILP ARR

(cf. §7.3.4). Observe that semicof meets the criteria for this reformulation, since it has a substruc-
ture of class d LP C and another of class d SingleBV C.

min
∑

i∈M

∑

j∈N

(y
+
ij + y

−
ij)

s.t. y
+
ij − t

+
ij ≤ 0 ∀i ∈ M, j ∈ N (7.4.4)

y
+
ij − Bxij ≤ 0 ∀i ∈ M, j ∈ N (7.4.5)

t
+
ij + Bxij − B − y

+
ij ≤ 0 ∀i ∈ M, j ∈ N

(7.4.6)

y
−
ij − t

−
ij ≤ 0 ∀i ∈ M, j ∈ N (7.4.7)

y
−
ij − Bxij ≤ 0 ∀i ∈ M, j ∈ N (7.4.8)

t
−
ij + Bxij − B − y

−
ij ≤ 0 ∀i ∈ M, j ∈ N

(7.4.9)

(7.4.3), (7.4.1), (7.4.2)

w ∈ R
N×D

, w
0 ∈ R

N
, x ∈ {0, 1}M×N

,

t
+
ij , t

−
ij ∈ [0..B], y

+
ij , y

−
ij ∈ [0..B]

Since d IndComposition C has a substructure of type d MILP C, then we can apply the ARR
∑

d IndComposition MILP to MILP ARR (cf. §7.3.9). Notice that the MILP has the same free indices semicof

had in the original model (i ∈M, j ∈ N), so this reformulation will integrate the ‖M‖∗‖N‖ replica-

tions of the inner MILP. Moreover, after doing this we can apply the ARR
∑

d OFMin MILP to MILP ARR

(cf. §7.3.8), since of has d MILP C has its inner structure.

Let us move to the constraints part, staring by reformulating sabsc using ARR
∑

d SAbs to Composition LP ProdCC ARR (cf. §7.3.2).

7.4. APPLYING THE ARR
∑

S TO HCP 121

min
∑

i∈M

∑

j∈N

(y+
ij + y

−
ij)

s.t.
∑

k∈D

u
+
jk + u

−
jk = 1 ∀j ∈ N (7.4.10)

u
+
jk − u

−
jk = wjk ∀j ∈ N, k ∈ D

(7.4.11)

u
+
jku

−
jk = 0 ∀j ∈ N, k ∈ D (7.4.12)

(7.4.4) − (7.4.9), (7.4.3), (7.2.2)

w ∈ R
N×D

, w
0
∈ R

N
, x ∈ {0, 1}

M×N
,

t
+
ij , t

−
ij ∈ [0..B], y

+
ij , y

−
ij ∈ [0..B], u

+
jk, u

−
jk ∈ [0..B]

Although in this case the complexity of the model augmented a little bit, this will allow us to
simplify it further by applying ARR

∑

d ProdCC to MILP ARR (cf. §7.3.5) to the d ProdCC C structure
class.

min
∑

i∈M

∑

j∈N

(y+
ij + y

−
ij)

s.t. u
+
jk ≤ Bzjk ∀j ∈ N, k ∈ D (7.4.13)

u
−
jk ≤ B(1 − zjk) ∀j ∈ N,k ∈ D

(7.4.14)

(7.4.11), (7.4.10), (7.4.4)− (7.4.9),

(7.4.3), (7.2.2)

w ∈ R
N×D

, w
0
∈ R

N
, x ∈ {0, 1}

M×N
,

t
+
ij , t

−
ij ∈ [0..B], y

+
ij , y

−
ij ∈ [0..B],

u
+
jk , u

−
jk ∈ [0..B], z ∈ {0, 1}N×D

Observe that at this point the algebraic representation is in MILP form. However, the formula-
tion still have to undergo the following reformulations to be completely transformed into a d MILP C.

122 CHAPTER 7. COMBINING STRUCTURES AND REFORMULATIONS

Note how in this example the reformulations are applied only when the narrowing requisites
are met. Only at that point the corresponding ARR

∑

can be applied to transform the structure.
Thanks the the deductive power of FLORA-2 , the system easily detects which ARRs it can

apply to a certain (maybe intermediate) formulation, allowing the creation of all possible reformu-
lations.

Chapter 8

More focused structures and
reformulations

Abstract

In this chapter we will focus on a set of structures for which there are specialized solution
methods, and we will study how we can relate them by applying the appropriate reformula-
tion rule. We will start from “simple” classes (maybe already defined throughout the previous
chapters), and we will end with some non-linear structures like Quadratic Multicommod-
ity Minimum Cost Flow (Fixed Charge) (QMMCF(FC)) and Second Order Cone Program
(SOCP). Along this chapter we will build, step by step, a diagram representing the possible
reformulations between the defined structures.

8.1 Rounding Up previously defined structures

Throughout the previous chapters we defined some structures that will be useful at this moment.
The following list summarizes the name, description and reference in the text of those structures.

• d IC C – integrality constraint (cf. Listing 1.3),

• d Linear Constraints C – linear constraints without objective function (cf. Listing 1.4),

• d LP C – linear problem (cf. Listing 1.5),

• d MILP C – mixed integer linear problem (cf. Listing 2.23),

• d Simple Selection C – simple binary values selection based on a vector of costs (cf. Listing
1.12),

• d MCF C – minimum cost flow (cf. Listing 1.6),

• d MMCF FC C – multicommodity minimum cost flow (fixed charge) (cf. Listing 5.4),

• d B MILP C – block representation of a mixed integer linear problem (cf. Listing 1.9),

• d B Lagrangian Relax C – block representing a Lagrangian relaxation (cf. Listing 1.14).

In §4.1.2 we mentioned the knapsack structures and the advantages of explicitly recognizing it.
We can then define the following respective structure class to represent the continuous knapsack
problems,

124 CHAPTER 8. MORE FOCUSED STRUCTURES AND REFORMULATIONS

Listing 8.1: Continuous KnapSack Problem

1 d KnapSack C : : d LeafProblem C
2 [
3 d im va r −> [E] ,
4 a r g s −> [
5 x = d ve c t o r (d var , [E]) ,
6 c = d ve c t o r (d constant , [E]) , // co s t
7 w = d ve c t o r (d constant , [E]) , // we ight
8 m = d cons tant // c a p a c i t y
9]

10] .

having the following LP formulation,

min
∑

i∈E

cixi

s.t.
∑

i∈E

wixi ≤ m

0 ≤ xi ≤ bi i ∈ E

The upper bounds bi are not defined as a parameter of the structure, because they will belong to
the variable definition (cf. §2.2.1).

8.1.1 Reformulations

Starting with these structure classes there are some ARRs that could be defined.

MILP to block MILP and a more general case

The MILP LfP can be easily reformulated into a block MILP, using the following ARR
∑

,

Listing 8.2: MILP to block MILP

1 d MILP to B MILP ARR : d ARR Algebra i c
2 [
3 A −> d MILP C ,
4 B −> d B MILP C (? , ?) ,
5 i ndexA −> [c o l s I=i , co l sR=r , cons=j] ,
6 i ndexB −> [] ,
7 dimRel −> [l p . . cons=cons , l p . . c o l s=c o l s I+co l sR , i c . . d=c o l s I] ,
8 arg map −> [
9 B . . l p . . A = $ ([

10 [
11 $(A . . Ar (j , r) , [j , r]) ,
12 $(A . . Ai (j , i) , [j , i])
13]
14]) ,
15 B . . l p . . c = $ ([
16 $(A . . c r (r) , [r]) ,
17 $(A . . c i (i) , [i])
18]) ,
19 B . . l p . . b = A . . b ,
20 B . . l p . . r e l s = A . . r e l s ,
21 B . . l p . . d i r = A . . d i r
22 B . . l p . . x = [r e a l=A . . co l sR , i n t=A . . c o l s I] ,
23 B . . l p . . x (r e a l) = lower (lw (A . . x r)) ,
24 B . . l p . . x (r e a l) = upper (up (A . . x r)) ,
25 B . . l p . . x (i n t) = lower (lw (A . . x i)) ,
26 B . . l p . . x (i n t) = upper (up (A . . x i)) ,
27] ,
28 ans map −> [
29 A . . x r = B . . l p . . x (r e a l) ,
30 A . . x i = B . . l p . . x (i n t)
31] ,
32 f i x T I −> [
33 X = B . . l p . . x (r e a l) ,
34 Y = B . . l p . . x (i n t)

8.1. ROUNDING UP PREVIOUSLY DEFINED STRUCTURES 125

35]
36] .

Note that the application of d MILP to B MILP ARR allow us to use solvers (for d B MILP C)
that depends on sub-solvers assigned to the inner d LP C. Morevover, we could transitively re-
formulate d LP C into any of its formats (i.e. d LP MPS C). So starting from a m:d MILP C, we
could apply d MILP to B MILP ARR and obtain the track structure tr (m, d B MILP(d LP C, d IC C)).
Then, we could select d LP C and transform it into d LP MPS C, obtaining the track strcuture
tr (m, d B MILP(ts(d LP C, d LP MPS C), d IC C)).

Furthermore, d B MILP C structure can be seen as a particular case of a Branch and Bound
structure class, that can be defined as follows,

Listing 8.3: Branch and Bound block

1 d B Branch Bound C : : d Block C [
2 i d s −> [sub , i c] ,
3 subsC −> [d BB C , d l o c (d IC C)] ,
4 l i n k −> [([X,Y] , d a l l) , ([X] , d a l l)]
5] .
6
7 d BB C : : d Component C [ab s t r a c t] . // A u x i l i a r y s t r u c t u r e c l a s s

This structure allows the application of general Branch and Bound solvers, that will depend on
the result of the sub-solver assigned to sub.

We could then make the ARR between d MILP C and d B Branch Bound C where the inner structure
is d LP C,

Listing 8.4: MILP to Branch and bound with LP

1 d MILP to BB LP ARR : d ARR Algebra i c
2 [
3 A −> d MILP C ,
4 B −> d B Branch Bound C (d LP C , ?) ,
5 i ndexA −> [c o l s I=i , co l sR=r , cons=j] ,
6 i ndexB −> [] ,
7 dimRel −> [sub . . cons=cons , sub . . c o l s=c o l s I+co l sR , i c . . d = c o l s I] ,
8 arg map −> [
9 B . . sub . . A = $ ([

10 [
11 $(A . . Ar (j , r) , [j , r]) ,
12 $(A . . Ai (j , i) , [j , i])
13]
14]) ,
15 B . . sub . . c = $ ([
16 $(A . . c r (r) , [r]) ,
17 $(A . . c i (i) , [i])
18]) ,
19 B . . sub . . b = A . . b ,
20 B . . sub . . r e l s = A . . r e l s ,
21 B . . sub . . d i r = A . . d i r
22 B . . sub . . x = [r e a l=A . . co l sR , i n t=A . . c o l s I] ,
23 B . . sub . . x (r e a l) = lower (lw (A . . x r)) ,
24 B . . sub . . x (r e a l) = upper (up (A . . x r)) ,
25 B . . sub . . x (i n t) = lower (lw (A . . x i)) ,
26 B . . sub . . x (i n t) = upper (up (A . . x i)) ,
27] ,
28 ans map −> [
29 A . . x r = B . . sub . . x (r e a l) ,
30 A . . x i = B . . sub . . x (i n t)
31] ,
32 f i x T I −> [
33 X = B . . sub . . x (r e a l) ,
34 Y = B . . sub . . x (i n t)
35]
36] .

Note that the same principle of transitive ARR usage can be apply in this case, making reformu-
lation of the d B Branch Bound C inner structure.

126 CHAPTER 8. MORE FOCUSED STRUCTURES AND REFORMULATIONS

MMCF(FC) to MILP

As could be seen in §1.3 the MMCF(FC) has the following a MILP representation.

min
∑

k∈K

∑

(i,j)∈E

c
k
ij ∗ flow

k
ij +

∑

(i,j)∈E

fijdesgij

s.t.
∑

j∈N+(i)

flow
k
ij −

∑

j∈N−(i)

flow
k
ji = SDk

i i ∈ N, k ∈ K

0 ≤ flow
k
ij ≤ b

k
ij (i, j) ∈ E, k ∈ K

∑

k∈K

flow
k
ij ≤ uij (i, j) ∈ E

∑

k∈K

flow
k
ij ≤ uijdesgij (i, j) ∈ E (8.1.1)

0 ≤ desgij ≤ 1 (i, j) ∈ E

desgij integer (i, j) ∈ E

Note that from this representation we can see that the flow variables are constraint to be semi-
continuous (SC) by (8.1.1). The fact of recognizing the SC constraints in a MILP will help us in
the definition of of further reformulations. To do so, we will create an structure d MILP SC C that
explicitly recognizes the SC constraint information.

Listing 8.5: Semi-Continuous MILP

1 d MILP SC C : : d LeafProblem C
2 [
3 // Dimension d e s c r i p t i o n
4 // cons −−> l i n e a r c o n s t r a i n t s
5 // co l sR −−> columns f o r r e a l v a r i a b l e s
6 // c o l s I −−> columns f o r i n t v a r i a b l e s
7 // co l sR = c o l s I ∗ f a c t
8 // The s t r u c t u r e f o r c e s x i to be b i n a r y
9 // and x r to have l ower bound 0

10 d im va r −> [cons , co l sR , c o l s I] ,
11 a r g s −> [
12 // OF pa ramete r s (i n t pa r t)
13 c i −> d ve c t o r (d constant , [c o l s I]) ,
14 // OF pa ramete r s (r e a l pa r t)
15 c r −> d ve c t o r (d constant , [c o l s I]) ,
16 // Semicont i nuous c o n s t r a i n t s parameter
17 Asc −> d ve c t o r (d constant , [c o l s I , co l sR]) ,
18 bsc −> d ve c t o r (d constant , [c o l s I]) ,
19 // L i n ea r c o n s t r a i n t pa ramete r s
20 Ai −> d ve c t o r (d constant , [cons , c o l s I]) ,
21 Ar −> d ve c t o r (d constant , [cons , co l sR]) ,
22 r h s −> d ve c t o r (d constant , [cons]) ,
23 r e l s −> d ve c t o r (d constant , [cons]) ,
24 f a c t −> d cons tant
25 // Va r i a b l e s
26 x r −> d ve c t o r (d var , [co l sR]) ,
27 x i −> d ve c t o r (d var , [c o l s I]) ,
28]
29] .

We can easily define an ARR
∑

from d MILP SC C to d MILP C.

Listing 8.6: MILP-SC to MILP

1 d MILP SC to MILP ARR : d ARR Algebra i c
2 [
3 A −> d MILP SC C ,

8.1. ROUNDING UP PREVIOUSLY DEFINED STRUCTURES 127

4 B −> d MILP C ,
5 i ndexA −> [c o l s I =(i i , i i 1) , co l sR=i r , cons=j] ,
6 i ndexB −> [] ,
7 dimRel −> [cons=cons+c o l s I , c o l s I=c o l s I , co l sR=co l sR] ,
8 arg map −> [
9 B . . c r = A . . cr ,

10 B . . c i = A . . c i ,
11 B . . Ai = $ ([// l e f t hand mat r i x (f o r i n t v a r i a b l e s)
12 [
13 $(A . . Ai (j , i i) , [j , i i]) ,
14 $(c s ([A . . b i (i i , i i 1)−>(i i= i i 1) , 0]) , [i i , i i 1])
15]
16]) ,
17 B . . Ar = $ ([// l e f t hand mat r i x (f o r i n t e g e r v a r i a b l e s)
18 [// f l ow c o n s t r a i n t s
19 $(A . . Ar (j , i r) , [j , i r]) ,
20 $(A . . Asc (i i , i r) , [i i , i r])
21]
22]) ,
23 B . . b = $ ([// r i g h t hand ve c t o r
24 $(A . . r h s (j) , [j]) ,
25 $ (0 , [i i])
26]) ,
27 B . . r e l s = $ ([// r e l a t i o n v e c t o r
28 $(A . . r e l s (j) , [j]) ,
29 $(’=< ’ , [i i])
30]) ,
31 B . . d i r = A . . d i r ,
32 B . . x r = lower (0) ,
33 B . . x r = upper (up (A . . x r)) ,
34 B . . x i = l ower (0) ,
35 B . . x i = upper (1)
36] ,
37 ans map −> [
38 A . . x r = B . . xr ,
39 A . . x i = B . . x i
40]
41] .

Now we can build an ARR
∑

to reformulate d MMCF FC C into d MILP SC C.

Listing 8.7: MMCF(FC) to MILP-SC

1 d MMCF FC to MILP SC ARR : d ARR Algebra i c
2 [
3 A −> d MMCF FC C ,
4 B −> d MILP C ,
5 i ndexA −> [E=(e , e1) ,K=(k , k1) ,N=n] ,
6 i ndexB −> [] ,
7 dimRel −> [cons=N∗K+E , c o l s I=E , co l sR=E∗K] ,
8 arg map −> [
9 B . . c r = A . . c ,

10 B . . c i = A . . f ,
11 B . . Ar = $ ([// l e f t hand mat r i x (f o r r e a l v a r i a b l e s)
12 [// f l ow c o n s t r a i n t s
13 $([1−>(A . . SN(e)=n , k=k1) ,
14 −1−>(A . . EN(e)=n , k=k1) ,
15 0] ,
16 [(n , k1) , (e , k)])
17] ,
18 [// mutual a r c c a p a c i t y c o n s t r a i n t s
19 $([1−>(e=e1) , 0] , [e1 , (e , k)])
20]
21]) ,
22 B . . Ai = $ ([// l e f t hand mat r i x (f o r i n t e g e r v a r i a b l e s)
23 [// f l ow c o n s t r a i n t s
24 $ (0 , [(n , k1) , e])
25] ,
26 [// mutual a r c c a p a c i t y c o n s t r a i n t s
27 $ (0 , [e1 , e])
28]
29]) ,
30 B . . r h s = $ ([// r i g h t hand ve c t o r
31 $(A . . SD(k , n) , [(n , k)]) ,
32 $(A . . u (e) , [e])
33]) ,
34 B . . r e l s = $ ([// r e l a t i o n v e c t o r
35 $(’= ’ , [(n , k)]) ,
36 $(’=< ’ , [e])

128 CHAPTER 8. MORE FOCUSED STRUCTURES AND REFORMULATIONS

37]) ,
38 B . . Asc = $([1−>(e=e1) , 0] , [e1 , (e , k)]) ,
39 B . . bsc = $(A . . u (e) , [e]) ,
40 B . . f a c t = ca r d (A . . K) ,
41 B . . d i r = ’min ’ ,
42 B . . x r = upper (A . . b)
43] ,
44 ans map −> [
45 A . . f l ow = B . . xr ,
46 A . . desg = B . . x i
47]
48] .

Note that when we transform d MMCF FC C into d MILP SC C, by transitivity we are transforming
it also into d MILP C (applying d MMCF FC to MILP SC ARR) and then d MILP SC to MILP ARR).

MMCF(FC) to Lagrangian Relaxations

The d MMCF FC C structure can also be reformulated into a flow Lagrangian relaxation, as exposed
in §5.2.6. However this is not the only relaxation that can be done. Let us see again the MILP
representation of MMCF(FC).

min
∑

k∈K

∑

(i,j)∈E

c
k
ij ∗ flow

k
ij +

∑

(i,j)∈E

fijdesgij

s.t.
∑

j∈N+(i)

flow
k
ij −

∑

j∈N−(i)

flow
k
ji = SDk

i i ∈ N, k ∈ K (νki) (8.1.2)

0 ≤ flow
k
ij ≤ b

k
ij (i, j) ∈ E, k ∈ K (8.1.3)

∑

k∈K

flow
k
ij ≤ uij (i, j) ∈ E (8.1.4)

∑

k∈K

flow
k
ij ≤ uijdesgij (i, j) ∈ E (8.1.5)

flow
k
ij ≤ b

k
ijdesgij (i, j) ∈ E, k ∈ K (8.1.6)

0 ≤ desgij ≤ 1 (i, j) ∈ E (8.1.7)

desgij integer (i, j) ∈ E (8.1.8)

We could obtain a Knapsack relaxation by dualizing the flow conservation constraints (8.1.2). The
resulting Lagrangian dual is:

LR = max
ν

∑

k∈K

∑

i∈N

νki SD
k
i + min

(flow,desg)∈(F,D)

∑

k∈K

∑

(i,j)∈E

(ckij + νkj − νki)flow
k
ij +

∑

(i,j)∈E

fijdesgij

where the set (F,D) is defined by constraints (8.1.3) to (8.1.8). After solving |E| continuous
knapsack problems:

gij = min
∑

k ∈ K(ckij + νkj − νki)flow
k
ij

s.t.
∑

k∈K

flow
k
ij ≤ uij

0 ≤ flow
k
ij ≤ b

k
ij k ∈ K,

the Lagrangian subproblem can be solved by inspection as:

min
desg∈{0,1}|E|

∑

(i,j)∈E

(fij + gij)desgij (8.1.9)

8.1. ROUNDING UP PREVIOUSLY DEFINED STRUCTURES 129

To create the ARR to represent this process we will need a block that will represent the
mentioned sub-problem. This block will be called Independent Replication Selection, and it will
solve a set of substructures to compute the g and then perform a simple selection over a set of
binary variables.

Listing 8.8: Independent Replication Selection block

1 d B I n d R e p l i c a t i o n S e l e c t i o n C : : d Block C [
2 i d s −> [sub , s e l] ,
3 subsC −> [d IRS C , d l o c (d S imp l e S e l e c t i o n C)] ,
4 l i n k −> [([X] , d a l l) , ([Y] , d a l l)] ,
5 rp lR −> [sub = Y, s e l = 1]
6] .
7
8 d IRS C : : d Component C [ab s t r a c t] . // A u x i l i a r y s t r u c t u r e c l a s s

Note that the amount of binary variables must be equal to the amount of replications of the inner
sub-structure (e.i. ‖sub. freeinds ‖).

Using this structure class we can define the following ARR
∑

,

Listing 8.9: MMCF(FC) to Lagrangian Knapsack Relaxation

1 d MMCF FC to Lagrangian KS Relax ARR : d ARR Algebra i c
2 [
3 A −> d MMCF FC C ,
4 B −> d L a g r a n g i a n Re l a x C (d B I n d R e p l i c a t i o n S e l e c t i o n C (d KnapSack C , ?) , ?) ,
5 i ndexA −> [E=e ,K=(k , k1) ,N=n] ,
6 i ndexB −> [] ,
7 dimRel −> [b1 . . sub . . E=K, b1 . . s e l . . d1=E , l i n k i n g . . d1=K∗E , l i n k i n g . . d2=N∗K] ,
8 arg map −> [
9 //−−−−− Knapsack p a r t

10 // Note tha t e i s l e f t untouched . Th e r e f o r e e w i l l be
11 // the f r e e−i ndex on which the Knapsack s t r u c t u r e w i l l be r e p l i c a t e d .
12 B . . sub . . sub . . c = $(A . . c (k , e) , [k]) ,
13 B . . sub . . sub . . w = $ (1 , [k]) ,
14 B . . sub . . sub . .m = A . . u ,
15 //−−−−− Simple S e l e c t i o n p a r t
16 B . . sub . . s e l . . f = A . . f ,
17 //−−−−− L i n ea r C o n s t r a i n t s p a r t (l i n k i n g c o n s t r a i n t s)
18 B . . l i n k i n g . . A = $([1−>(A . . SN(e)=n , k=k1) ,
19 −1−>(A . . EN(e)=n , k=k1) ,
20 0] ,
21 [(n , k1) , (e , k)]) ,
22 B . . l i n k i n g . . r e l s = $(’= ’ , [(n , k)]) ,
23 B . . l i n k i n g . . b = $(A . . SD(k , n) , [(k , n)])
24] ,
25 ans map −> [
26 A . . f l ow = B . . sub . . sub . . x ,
27 A . . desg = B . . sub . . s e l . . y
28] ,
29 f i x T I −> [
30 X = (B . . sub . . sub . . x , B . . sub . . s e l . . y) ,
31 sub . . X = B . . sub . . sub . . x ,
32 sub . . Y = B . . sub . . s e l . . y
33]
34] .

8.1.2 Reformulation Diagram

Using the structures defined so far and the reformulations between them we can depict a diagram
(see Figure 8.1). In this diagram we include the d MCF to LP ARR defined in 5.2.6. On the other
hand, we did not include the possible reformulations involving the different formats. For instance,
considering

• MPS – for LP and MILP;

• DIMACS – for MCF [3];

• Canad – for MMCF(FC) [13],

130 CHAPTER 8. MORE FOCUSED STRUCTURES AND REFORMULATIONS

Figure 8.1: Initial set of ARRs and structures

we could easily define a set of ARR
∑

s (in both ways) to reformulate to (from) the specific formats.
These reformulation are generally a trivial mapping of the structure’s parameters. Therefore we
will assume for simplicity that ARR

∑

s, between the formats and the global structure class, always
exist.

8.2 Some Convex Structures

In this section we will study a particular case of nonlinear structure,

min
∑

i∈I

fi(pi) + ciui

Aipi ≤ biui i ∈ I

(p, u) ∈ O

u ∈ {0, 1}|I|

p ∈ Rmi , i ∈ I

where fi is a non-linear function over continuous variables and O ⊆ R|I|+
∑

i∈I
mi representing a

set of linear constraints over pi. If we consider fi to be a quadratic function (ap2i + dpi) then the
structure we will obtain is a Mixed Integer Quadratic Program with Semi-continuous variables
and Separable Objective function (MIQP-SC-SEP). Note that this structure can be seen as a
composition (7.1.1) of d MILP SC C and a Quadratic Function (qF) structure,

min
∑

i∈D

(

qix
2
i + cixi

)

.

We could create the following structure class to represent a qF,

Listing 8.10: Quadratic Function

1 d Quadra t i c F C : : d LeafProblem C
2 [
3 d im va r −> [D] ,

8.2. SOME CONVEX STRUCTURES 131

4 a r g s −> [
5 x = d ve c t o r (d var , [D]) ,
6 q = d ve c t o r (d constant , [D]) ,
7 c = d ve c t o r (d constant , [D])
8]
9] .

The narrowing d Composition C(d MILP SC C, d Quadratic F C) (that represents the MIQP-SC-SEP
structure) can be tackled with CPLEX as a general mixed integer quadratic program. However,
recognizing this structure will allow us to use certain relaxations that will use Mixed Integer Second
Order Cone Program and Semi-Infinite Perspective Cuts, defined afterwards.

In this section we will define two structure classes based on second-order cone program (SOCP)
[41]. A second-order cone program (SOCP) is a convex optimization problem of the form,

minfTx

s.t.

‖Aix+ bi‖2 ≤ cTi x+ di, i ∈ [1..m]

Fx = g

where f ∈ Rn, Ai ∈ Rni×n, bi ∈ Rni , ci ∈ Rn, di ∈ R, F ∈ Rp×n and g ∈ Rp. The optimization
variables are x ∈ Rn.

Based on this definition we can construct a structure class to represent the SOCPs.

Listing 8.11: Second Order Cone Program

1 d SOCP C : : d LeafProblem C
2 [
3 // Dimension d e s c r i p t i o n
4 // consL −−> l i n e a r c o n s t r a i n t s
5 // Cineq −−> con i c i n e q u a l i t i e s
6 // CIrows−−> rows i n each con i c i n e q u a l i t y
7 // c o l s −−> columns f o r r e a l v a r i a b l e s
8 d im va r −> [consL , consC , c o l s] ,
9 a r g s −> [

10 // Ob j e c t i v e f u n c t i o n i npu t
11 f = d ve c t o r (d constant , [c o l s]) ,
12 // l i n e a r c o n s t r a i n t s i npu t
13 AL = d ve c t o r (d constant , [consL , c o l s]) ,
14 rh sL = d ve c t o r (d constant , [consL]) ,
15 r e l s L= d ve c t o r (d r e l , [consL]) ,
16 // con i c i n e q u a l i t i e s
17 ACI = d ve c t o r (d constant , [Cineq , CIrows , c o l s]) ,
18 bCI = d ve c t o r (d constant , [Cineq , CI rows]) ,
19 dCI = d ve c t o r (d constant , [C ienq]) ,
20 cCI = d ve c t o r (d constant , [Cineq , c o l s]) ,
21 // V a r i a b l e s
22 x = d ve c t o r (d var , [c o l s]) ,
23]
24] .

There are several solvers (mostly based on the interior point method) that tackle the SOCP struc-
ture. For instance, MOSEK [9], CPLEX [7], LOQO [8], CSDP [2], SDPA [11], and others.

There is an extension that can be done to the SOCP class, by specifying a subset of the variables
as integer. This extension is called Mixed Integer SOCP and can be represented by the following
structure class,

Listing 8.12: Mixed-Integer Second Order Cone Program

1 d MISOCP C : : d LeafProblem C
2 [
3 // Dimension d e s c r i p t i o n
4 // consL −−> l i n e a r c o n s t r a i n t s
5 // Cineq −−> con i c i n e q u a l i t i e s

132 CHAPTER 8. MORE FOCUSED STRUCTURES AND REFORMULATIONS

6 // CIrows−−> rows i n each con i c i n e q u a l i t y
7 // c o l s I −−> columns f o r i n t e g e r v a r i a b l e s
8 // co l sR −−> columns f o r r e a l v a r i a b l e s
9 // co l sR = f a c t ∗ c o l s I

10 d im va r −> [consL , Cineq , CIRows , c o l s I , co l sR] ,
11 a r g s −> [
12 // Ob j e c t i v e f u n c t i o n i npu t
13 f i = d ve c t o r (d constant , [c o l s I]) ,
14 f r = d ve c t o r (d constant , [co l sR]) ,
15 // l i n e a r c o n s t r a i n t s i npu t
16 ALi = d ve c t o r (d constant , [consL , c o l s I]) ,
17 ALr = d ve c t o r (d constant , [consL , co l sR]) ,
18 rh sL = d ve c t o r (d constant , [consL]) ,
19 r e l s L= d ve c t o r (d r e l , [consL]) ,
20 // con i c i n e q u a l i t i e s
21 ACI i = d ve c t o r (d constant , [Cineq , CIrows , c o l s I]) ,
22 ACIr = d ve c t o r (d constant , [Cineq , CIrows , co l sR]) ,
23 bCI = d ve c t o r (d constant , [Cineq , CI rows]) ,
24 dCI = d ve c t o r (d constant , [C ineq]) ,
25 cC I i = d ve c t o r (d constant , [Cineq , c o l s I]) ,
26 cC I r = d ve c t o r (d constant , [Cineq , co l sR]) ,
27 // column r e l a t i o n f a c t o r
28 f a c t = d constant ,
29 // Va r i a b l e s
30 x = d ve c t o r (d var , [c o l s I]) ,
31 u = d ve c t o r (d var , [co l sR])
32]
33] .

In this case solution methods based on lift-and-project relaxation [146] or branch and bound outer
approximations [40, 135] are available for solving MISOCP problems.

8.2.1 Reformulations

MISOCP to Branch and Bound with SOCP

To increase the amount of solution possibilities to the MISOCP structure class, we propose a
reformulation into the general d B Branch Bound C structure class. This reformulation rule will split
the MISOCP into a SOCP plus the integrality constraints.

Listing 8.13: MISOCP to Branch and bound with SOCP

1 d MISOCP to BB SOCP ARR : d ARR Algebra i c
2 [
3 A −> d MISOCP LC C ,
4 B −> d B Branch Bound C (d SOCP LC C , ?) ,
5 i ndexA −> [c o l s I=i , co l sR=r , consL=j , Cineq=q , CIrows=w] ,
6 i ndexB −> [] ,
7 dimRel −> [sub . . consL=consL , sub . . c o l s=c o l s I+co l sR ,
8 sub . . Cineq=Cienq , sub . . CI rows=CIrows , i c . . d = c o l s I] ,
9 arg map −> [

10 B . . sub . . AL = $ ([
11 [
12 $(A . . ALr (j , r) , [j , r]) ,
13 $(A . . ALi (j , i) , [j , i])
14]
15]) ,
16 B . . sub . . f = $ ([
17 $(A . . f r (r) , [r]) ,
18 $(A . . f i (i) , [i])
19]) ,
20 B . . sub . . r h sL = A . . rhsL ,
21 B . . sub . . r e l s L = A . . r e l s L ,
22 B . . sub . . ACI = $ ([
23 [
24 [
25 $(A . . ACIr (q ,w, r) , [q ,w, r]) ,
26 $(A . . ACI i (q ,w, i) , [q ,w, i])
27]
28]
29]) ,

8.2. SOME CONVEX STRUCTURES 133

30 B . . sub . . bCI = A . . bCI ,
31 B . . sub . . dCI = A . . dCI ,
32 B . . sub . . cCI = $ ([
33 [
34 $(A . . cC I r (q , r) , [q , r]) ,
35 $(A . . c C I i (q , i) , [q , i])
36]
37]) ,
38 B . . sub . . x = [r e a l=A . . co l sR , i n t=A . . c o l s I] ,
39 B . . i c . . i v a r = lower (0) ,
40 B . . i c . . i v a r = upper (1)
41] ,
42 ans map −> [
43 A . . x r = B . . sub . . x (r e a l) ,
44 A . . x i = B . . sub . . x (i n t)
45] ,
46 f i x T I −> [
47 X = B . . sub . . x (r e a l) ,
48 Y = B . . sub . . x (i n t)
49]
50] .

Perspective Relaxations

Let us revisit the MIQP-SC-SEP algebraic representation,

min
∑

i∈I

fi(pi) + ciui (8.2.1)

Aipi ≤ biui i ∈ I (8.2.2)

(p, u) ∈ O (8.2.3)

u ∈ {0, 1}|I| (8.2.4)

p ∈ Rmi , i ∈ I (8.2.5)

where fi is a quadratic function and O ⊆ R|I|+
∑

i∈I
mi representing a set of linear constraints.

From this MINLP formulation we could define Perspective reformulation (PR) [52, 75], in the
following way,

min
∑

i∈I

uifi

(

pi
ui

)

+ ciui (8.2.6)

(8.2.2), (8.2.3), (8.2.4), (8.2.5). (8.2.7)

This reformulation provides stronger bounds than the continuous relaxation of the MINLP formu-
lation [75, 20, 71]. Nevertheless, PR has a high nonlinearity in the objective function, due to the
fractional term. Two reformulations have been proposed to overcome this problem: the first as a
Mixed Integer SOCP [20, 149] and the second as a Semi-Infinite Linear Program [75].

PR can be written as a Mixed Integer SOCP (in the quadratic case) very simply, since when
ui > 0 a constraint ti ≥ aip

2
i /ui can be algebraically transformed in (ti+ui)

2/4 ≥ aip
2
i+(ti−ui)

2/4,
conducting to the following Mixed Integer SOCP,

min
∑

i∈I

ti + dipi + ciui

√

aip2i + (ti − ui)2/4 ≤ (ti + ui)/2 i ∈ I

(8.2.2), (8.2.3), (8.2.4), (8.2.5)

t ∈ R
|I|
+

Now, from this last reformulation we could create an ARR
∑

to transform
d Composition C(d MILP SC C, d Quadratic OF C) into a d MISOCP C.

134 CHAPTER 8. MORE FOCUSED STRUCTURES AND REFORMULATIONS

Listing 8.14: MIQP-SC-SEP to MISOCP

1 d MIQP SC SEP to MISOCP ARR : d ARR Algebra i c
2 [
3 A −> d Compos i t ion C (d MILP SC C , d Quad ra t i c F C) ,
4 B −> d MISOCP C ,
5 i ndexA −> [p1 . . c o l s I =(i i , i 1) , p1 . . co l sR=i r ,1= i , p1 . . cons=j] ,
6 i ndexB −> [] ,
7 dimRel −> [consL=p1 . . cons+p1 . . c o l s I , c o l s I=p1 . . c o l s I ,
8 co l sR=p1 . . co l sR+p1 . . c o l s I , Cineq=p1 . . c o l s I , CI rows =2] ,
9 arg map −> [

10 B . . f i = A . . p1 . . c i ∗A . . p1 . . d i r ,
11 B . . f r = $ ([// co l sR ∗2
12 $ ((A . . p1 . . c r (i r)+A . . p2 . . c (i r))∗A . . p1 . . d i r , [i r]) ,
13 $ (1 , [i r])
14]) ,
15 B . . ALi = $ ([// cons+c o l s I x c o l s I
16 [$(A . . p1 . . Ai (j , i i) , [j , i i])] ,
17 [$(c s ([−1∗A . . p1 . . bsc (i i)−>(i i=i i 1) , 0]) , [i i 1 , i i])]
18]) ,
19 B . . ALr = $ ([// cons+c o l s I x co l sR+c o l s I
20 [// cons x co l sR+c o l s I
21 $(A . . p1 . . Ar (j , i r) , [j , i r]) , $ (0 , [j , i i])
22] ,
23 [// c o l s I x co l sR+c o l s I
24 $(A . . p1 . . Asc (i i , i r) , [i i , i r]) , $ (0 , [i i , i i 1])
25]
26]) ,
27 B . . rh sL = $ ([// consL+c o l s I
28 $(A . . p1 . . r h s (j) , [j]) ,
29 $ (0 , [i i])
30]) ,
31 B . . r e l s L = $ ([// consL+c o l s I
32 $(A . . p1 . . r e l s (j) , [j]) ,
33 $(’=< ’ , [i])
34]) ,
35 B . . ACI i = $ ([// c o l s I x 2 x c o l s I
36 [
37 [// c o l s I x 1 x c o l s I
38 $(c s ([−0.5−>(i i=i i 1) , 0]) , [i i , i , i i 1])
39] ,
40 [// c o l s I x 1 x c o l s I
41 $ (0 , [i i , i , i i 1])
42]
43]
44]) ,
45 B . . ACIr = $ ([// c o l s I x 2 x co l sR+c o l s I
46 [
47 [// c o l s I x 1 x co l sR+c o l s I
48 $ (0 , [i i , i , i r]) ,
49 $(c s ([0.5−>(i i=i i 1) , 0]) , [i i , i , i i 1])
50] ,
51 [// c o l s I x 1 x co l sR+c o l s I
52 $(c s ([A . . p2 . . q (i r)ˆ0.5−>(i r>=A . . p1 . . f a c t ∗ i i ,
53 i r <(Ap . . p1 . . f a c t +1)∗ i i) , 0]) ,
54 [i i , i , i r]) ,
55 $ (0 , [i i , i , i i 1])
56]
57]
58]) ,
59 B . . bCI = 0 ,
60 B . . dCI = 0 ,
61 B . . cC I i = $(c s ([0.5−>(i i= i i 1) , 0]) , [i i , i i 1]) ,
62 B . . cC I r = $ ([
63 [
64 $ (0 , [i i , i r]) ,
65 $(c s ([0.5−>(i i =i i 1) , 0]) , [i i , i i 1])
66]
67]) ,
68 B . . f a c t = A . . f a c t +1,
69 B . . u = lower (0) ,
70 B . . u = upper (1) ,
71 B . . x = [p=[p1 . . co l sR] , t=[p1 . . c o l s I]] ,
72 B . . x = lower (0) ,
73 B . . x (p) = upper (up (A . . p1 . . x r))
74] ,
75 ans map −> [
76 A . . p1 . . x i = B . . x (p) ,
77 A . . p1 . . x r = B . . u
78]

8.2. SOME CONVEX STRUCTURES 135

79] .

Note in this case we used the number 1 as a dMV for A, meaning that it represents a dimen-
sion with one element. The index declared for 1, using 1=i, can take the values in the set
{0}. Furthermore, observe that in the ans map we assigned B..x(p) to A..x, ignoring the t vari-
ables that are also part of B..x. This can be done due to the variable partitioning we previously
did (B..x = [p=[colsR], t=[colsI]]), in which we explicitly identify the variables p and t.

On the other hand, an alternative formulation of PR [75] can be done by representing uf(p/u)+
cu with the following infinite family of linear inequalities, called perspective cuts,

v ≥ sp+ (c+ f(p)− sp)u

indexed over p ∈ ∪i∈IPi, with Pi = {pi|Aipi ≤ bi} having that {pi|Aipi ≤ 0} = {0}, and s ∈ ∂f(p),
where ∂f(p) is the sub-differential of f at p. Since we assumed that f is quadratic, the we can
describe the following Semi-Infinite MINLP,

min
∑

i∈I

vi

vi ≥ (2aipi + di)pi + (ci − aip
2
i)ui p ∈ ∪i∈IPi, i ∈ I

(8.2.2), (8.2.3), (8.2.4), (8.2.5)

v ∈ R|I|

In this case we will create an ad-hoc structure to represent the semi-infinite perspective cuts
(for the quadratic case) plus linear constraints.

Listing 8.15: Mixed-Integer Semi-Infinite Perspective Cuts (for the quadratic case) plus Linear
Constraints

1 d MISIPC Q LC C : : d LeafProblem C
2 [
3 // u i s t r e a t e d as b i n a r y v a r i a b l e
4 // co l sR = f a c t ∗ c o l s I
5 d im va r −> [consL , co l sR , c o l s I] ,
6 a r g s −> [
7 // l i n e a r c o n s t r a i n t s i npu t
8 ALi = d ve c t o r (d constant , [consL , c o l s I]) ,
9 ALr = d ve c t o r (d constant , [consL , co l sR]) ,

10 rh sL = d ve c t o r (d constant , [consL]) ,
11 r e l s L= d ve c t o r (d r e l , [consL]) ,
12 // cu t s i npu t
13 a = d ve c t o r (d constant , [co l sR]) ,
14 d = d ve c t o r (d constant , [co l sR]) ,
15 c = d ve c t o r (d constant , [c o l s I]) ,
16 // convex compacts i npu t
17 Acc = d ve c t o r (d constant , [c o l s I , co l sR]) ,
18 bcc = d ve c t o r (d constant , [c o l s I]) ,
19 // column r e l a t i o n f a c t o r
20 f a c t = d constant ,
21 // v a r i a b l e s
22 x = d ve c t o r (d constant , [co l sR]) ,
23 u = d ve c t o r (d constant , [c o l s I])
24]
25] .

For this structure we could apply nice approximation techniques whereby we keep a finite per-
spective cut base, which is updated in an iterative fashion. This procedure is more efficient that
dealing with the MINLP directly [71, 75].

Then based on the previous structure we can describe the following ARR
∑

, to reformulate a
d MIQP SC SEP C into a d MISIPC Q LC C.

136 CHAPTER 8. MORE FOCUSED STRUCTURES AND REFORMULATIONS

Listing 8.16: MIQP-SC-SEP to MISIPC Q LC

1 d MIQP SC SEP to MISIPC Q LC ARR : d ARR Algebra i c
2 [
3 A −> d Compos i t ion C (d MILP SC C , d Quad ra t i c F C) ,
4 B −> d MISIPC Q LC C ,
5 i ndexA −> [c o l s I=i i , co l sR=i r] ,
6 i ndexB −> [] ,
7 dimRel −> [consL = consL , co l sR = co l sR , c o l s I=c o l s I] ,
8 arg map −> [
9 B . . ALi = A . . p1 . . Ai

10 B . . ALr = A . . p1 . . Ar ,
11 B . . rh sL = A . . p1 . . rhs ,
12 B . . r e l s L = A . . p1 . . r e l s ,
13 B . . a = A . . p2 . . q ,
14 B . . d = $ ((A . . p1 . . c r (i r)+A . . p2 . c (i r))∗A . . p1 . . d i r , [i r]) ,
15 B . . c = $(A . . p1 . . c i (i i)∗A . . p1 . . d i r , [i i]) ,
16 B . . Acc = A . . p1 . . Asc ,
17 B . . bcc = A . . p1 . . bsc ,
18 B . . f a c t = A . . f a c t
19] ,
20 ans map −> [
21 A . . x = B . . x ,
22 A . . y = B . . u
23]
24] .

The perspective cuts and the MISOCP reformulations have proven to give better computational
results than dealing with the MINLP directly [72].

Reformulation Diagram

The previous structures and reformulations can be summed up by the diagram in Figure 8.2.

Figure 8.2: Convex Structures and Reformulations

8.3 Quadratic Variants

In this section we will focus on variations of previously presented structure classes. These vari-
ations will consist on considering the objective functions to be quadratic. For instance we can
make quadratic versions of d KnapSack C, d MCF C and d MMCF FC C, which will mainly introduce
the quadratic coefficient q.

Listing 8.17: KnapSack Problem

1 d QKnapSack C : : d LeafProblem C
2 [
3 d im va r −> [E] ,
4 a r g s −> [
5 x = d ve c t o r (d var , [E]) ,
6 q = d ve c t o r (d constant , [E]) , // qu a d r a t i c co s t
7 c = d ve c t o r (d constant , [E]) , // co s t
8 w = d ve c t o r (d constant , [E]) , // we ight
9 m = d cons tant // c a p a c i t y

10]
11] .

8.3. QUADRATIC VARIANTS 137

For the quadratic case of the continuous Knapsack problem (even if more complex than the
non-quadratic one) there are several efficient methods for solving it [42, 138].

Listing 8.18: Quadratic Minimum Cost Flow

1 d QMCF C : : d LeafProblem C
2 [
3 d im va r −> [N, E] ,
4 a r g s −> [
5 SN = d ve c t o r (d constant , [E]) , // s t a r t nodes
6 EN = d ve c t o r (d constant , [E]) , // end nodes
7 SD = d ve c t o r (d constant , [N]) , // supp l y /demand
8 co s t = d ve c t o r (d constant , [E]) , // co s t pe r a r c
9 q = d ve c t o r (d constant , [E]) , // qu a d r a t i c co s t pe r a r c

10 u = d ve c t o r (d constant , [E]) , // a rc c a p a c i t y
11 f l ow = d ve c t o r (d var , [E]) // f l ow v a r i a b l e s
12] ,
13 dim bound −> [(SN ,N) , (EN,N)]
14] .

To solve a QMCF we can apply a CPLEX variant to solve quadratic network flow problems. We
could also use a ǫ-Relaxation algorithm [58] (or a parallel version [35]) that exploits the convexity
and separability of QMCF. Moreover, we could apply PPRN [50], that was originally created to
deal with non-linear Multicommodity MCFs.

We may also create a structure to represent a Quadratic MMCF(FC). However, the majority of
the solution methods that could be applied to solve such a structure class are based on relaxations
or other reformulations. Therefore, we will not create a structure class to explicitly represent a
QMMCF(FC), on the other hand, we will use the composition structure d Composition C (cf. §7.1.1),
with substructures d MMCF FC C and d Quadratic F C.

Note that this narrowing, d Composition C(d MMCF FC C, d Quadratic F C), since it has a specific se-
mantical value (it represents a QMMCF(FC)), it allows us to register specific solvers that can deal
with this particular decomposition. But more important, is the possibility of using this represen-
tation to create reformulation rules that conduct us to other, less intuitive, possible relaxations.

8.3.1 Reformulations

Some of the previous structures may be only solvable by applying convenient relaxations or de-
compositions, which will be introduced in this section.

QMCF to MCF

The difference between the QMCF and MCF structure classes is the inclusion of the quadratic
terms in the objective function (OF). There is a way of obtaining an equivalent approximation of
QMCF by linearizing the OF using a piece-wise linear function, and thus generating a MCF.

Note that QMCF’s OF is separable in |E| (arcs) terms of the form:

fij(xij) = qijx
2
ij + cijxij (i, j) ∈ E

where xij is bounded in the following way:

0 ≤ xij ≤ uij (i, j) ∈ E.

Assume we selectHij points for each arc, such thatHij ⊂ [0..uij] then we can define a piece-wise
linear function gij for each arc, such that,

gij =

g1ij = fij(d
1
ij) + f ′

ij(d
1
ij)(xij − d1ij) xij ∈ [0..I(g1ij , g

2
ij)]

g2ij = fij(d
2
ij) + f ′

ij(d
2
ij)(xij − d2ij) xij ∈ [I(g1ij , g

2
ij)..I(g

2
ij , g

3
ij)]

. . .

g
|Hij |
ij = fij(d

|Hij |
ij) + f ′

ij(d
|Hij |
ij)(xij − d

|Hij |
ij) xij ∈ [I(g

|Hij |−1
ij , g

|Hij |
ij)..uij]

138 CHAPTER 8. MORE FOCUSED STRUCTURES AND REFORMULATIONS

where dhij ∈ Hij , h ∈ [1..|Hij |], and I(ġ, g̈) is the x-axis of the intersection point between the
linear functions ġ and g̈. Note that gij if convex, so we can generate an equivalent LP formulation
without using auxiliary binary variables.

Assuming each ghij = ĉhijxij + bhij , and that ahij = I(ghij , g
h+1
ij)−I(gh−1

ij , ghij), then the piece-wise
linear function gij can be reformulated into the following equivalent LP,

nfij =
∑

h∈[1..|Hij|]

ĉhijz
h
ij

0 ≤ zhij ≤ ahij

If we see the zhij as |Hij | copies of the arc (i,j), having costs ĉhij and capacities ahij , and

properly adding the flow conservation constraints for the variables zhij , then the minimization
of
∑

(i,j)∈|E| nfij subject to the constraints previously mentioned generates a MCF.

The solution of this MCF, stored in zhij , can be easily transformed back as an approximate
solution of QMCF, by doing the following,

xij =
∑

h∈[1..|Hij |

zhij

Therefore we can obtain an arbitrary approximation of QMCF in terms of MCF by creating
an arbitrary high number of parallel arcs (Hij).

This reformulation can not be expressed in terms of an ARR
∑

. Thus, we need to create an
ARRA that requires the implementation of the proper delegation solver that transforms the input
of a QMCF into the input of a MCF, and the results of the MCF into the results of QMCF. This
ARRA can be denoted by,

Listing 8.19: QMCF to MCF through linearization

1 d QMCF to MCF ARR : d ARR Algor i thmic
2 [
3 A −> d QMCF C ,
4 B −> d MCF C
5] .

QMMCF(FC) Lagrangian Relaxations

Using a mechanism analogous to the one applied for MMCF(FC) we can make a Flow and Knap-
sack relaxations of the QMMCF(FC) problem. Just that, instead of having MCF (or Knapsack)
subproblems, these relaxations will have QMCF (or QKnapsack) subproblems. The detailed repre-

sentation of these ARR
∑

are herewith exposed. Note that to represent the QMMCF(FC) problem
we are using the narrowing d Composition C(d MMCF FC C, d Quadratic OF C).

Listing 8.20: QMMCF FC to Lagrangian Flow Relaxation

1 d QMMCF FC to Flow Lagrangian Relax ARR : d ARR Algebra i c
2 [
3 A −> d Compos i t ion C (d MMCF FC C , d Quad ra t i c F C) ,
4 B −> d L a g r a n g i a n Re l a x C ((d QMCF C , d S imp l e S e l e c t i o n C) , ?) ,
5 i ndexA −> [p1 . . E=(e , e1) , p1 . . K=(k , k1) , p1 . . N=n] ,
6 i ndexB −> [] ,
7 dimRel −> [sub (d QMCF C) . . N=p1 . . N, sub (d QMCF C) . . E=p1 . . E ,
8 sub (d S imp l e S e l e c t i o n C) . . d1=p1 . . E , l i n k i n g . . d1=p1 . . K∗p1 . . E+p1 . . E ,
9 l i n k i n g . . d2=2∗p1 . . E+p1 . . E∗p1 . . K] ,

10 arg map −> [
11 //−−−−− MCF pa r t
12 // Note tha t k i s l e f t untouched . Th e r e f o r e k w i l l be
13 // the f r e e−i ndex on which the QMCF s t r u c t u r e w i l l be r e p l i c a t e d .
14 B . . sub (d QMCF C) . . SN = A . . p1 . . SN ,
15 B . . sub (d QMCF C) . . EN = A . . p1 . . EN,
16 B . . sub (d QMCF C) . . q = A . . p2 . . q
17 B . . sub (d QMCF C) . . SD = $(A . . p1 . . SD(k , n) , [n]) ,
18 B . . sub (d QMCF C) . . c o s t = $(A . . p1 . . c (k , e)+A . . p2 . . c ((k , e)) , [e]) ,

8.3. QUADRATIC VARIANTS 139

19 B . . sub (d QMCF C) . . u = $(A . . p1 . . b (k , e) , [e]) ,
20 //−−−−− Simple S e l e c t i o n p a r t
21 B . . sub (d S imp l e S e l e c t i o n C) . . f = A . . f ,
22 //−−−−− L i n ea r C o n s t r a i n t s p a r t (l i n k i n g c o n s t r a i n t s)
23 B . . l i n k i n g . . A = $ ([// l e f t hand mat r i x
24 [// mutual a r c c a p a c i t y c o n s t r a i n t s γij

25 $(c s ([1−>(e=e1) , 0]) , [e1 , (e , k)]) ,
26 $ (0 , [e1 , e])
27] ,
28 [// mutual a r c c a p a c i t y redundant c o n s t r a i n t s αij

29 $(c s ([1−>(e=e1) , 0]) , [e1 , (e , k)]) ,
30 $(c s ([A . . p1 . . u (d1)−>(e=e1) , 0]) , [e1 , e])
31] ,

32 [// s i n g l e c a p a c i t y c o n s t r a i n t s βk
ij

33 $(c s ([1−>(e=e1 , k=k1) , 0]) , [(e1 , k1) , (e , k)]) ,
34 $(c s ([A . . p1 . . b (k , d)−>(e=e1)]) , [(e1 , k) , e])
35]
36]) ,
37 B . . l i n k i n g . . r e l s = $ ([// r e l a t i o n s ’ v e c t o r
38 $(’=< ’ , [e]) ,
39 $(’=< ’ , [e]) ,
40 $(’=< ’ , [(e , k)])
41]) ,
42 B . . l i n k i n g . . b = $ ([// r i g h t hand s i d e v e c t o r
43 $(A . . p1 . . u (a) , [e]) ,
44 $ (0 , [e]) ,
45 $ (0 , [(e , k)])
46])
47] ,
48 ans map −> [
49 A . . p1 . . f l ow = B . . sub (d QMCF C) . . f l ow ,
50 A . . p1 . . desg = B . . sub (d S imp l e S e l e c t i o n C) . . f
51] ,
52 f i x T I −> [
53 X = (B . . sub (d QMCF C) . . f l ow , B . . sub (d S imp l e S e l e c t i o n C) . . f)
54]
55] .

Listing 8.21: QMMCF FC to Lagrangian Knapsack Relaxation

1 d QMMCF FC to Knapsack Lagrangian Relax ARR : d ARR Algebra i c
2 [
3 A −> d Compos i t ion C (d MMCF FC C , d Quad ra t i c F C) , ,
4 B −> d L a g r a n g i a n Re l a x C (d B I n d R e p l i c a t i o n S e l e c t i o n C (d QKnapSack C , ?) , ?) ,
5 i ndexA −> [p1 . . E=e , p1 . . K=(k , k1) , p1 . . N=n] ,
6 i ndexB −> [] ,
7 dimRel −> [b1 . . sub . . E=p1 . . K, b1 . . s e l . . d1=p1 . . E ,
8 l i n k i n g . . d1=p1 . . K∗p1 . . E , l i n k i n g . . d2=p1 . . N∗p1 . . K] ,
9 arg map −> [

10 //−−−−− Knapsack p a r t
11 // Note tha t e i s l e f t untouched . Th e r e f o r e e w i l l be
12 // the f r e e−i ndex on which the QKnapsack s t r u c t u r e w i l l be r e p l i c a t e d .
13 B . . sub . . sub . . c = $(A . . p1 . . c (k , e)+A . . p2 . . c ((k , e)) , [k]) ,
14 B . . sub . . sub . . w = $ (1 , [k]) ,
15 B . . sub . . sub . . q = $(A . . p2 . . q ((k , e)) , [k]) ,
16 B . . sub . . sub . .m = A . . p1 . . u ,
17 //−−−−− Simple S e l e c t i o n p a r t
18 B . . sub . . s e l . . f = A . . p1 . . f ,
19 //−−−−− L i n ea r C o n s t r a i n t s p a r t (l i n k i n g c o n s t r a i n t s)
20 B . . l i n k i n g . . A = $([1−>(A . . p1 . . SN(e)=n , k=k1) ,
21 −1−>(A . . p1 . . EN(e)=n , k=k1) ,
22 0] ,
23 [(n , k1) , (e , k)]) ,
24 B . . l i n k i n g . . r e l s = $(’= ’ , [(n , k)]) ,
25 B . . l i n k i n g . . b = $(A . . p1 . . SD(k , n) , [(k , n)]) ,
26] ,
27 ans map −> [
28 A . . p1 . . f l ow = B . . sub . . sub . . x ,
29 A . . p1 . . desg = B . . sub . . s e l . . y
30] ,
31 f i x T I −> [
32 X = (B . . sub . . sub . . x , B . . sub . . sub . . y) ,
33 sub . . X = B . . sub . . sub . . x ,
34 sub . . Y = B . . sub . . s e l . . y
35]
36] .

140 CHAPTER 8. MORE FOCUSED STRUCTURES AND REFORMULATIONS

Note that these relaxations rely on the solution of well-known structures like d QMCF C and
d QKnapSack C. These substructures can be transitively reformulated, by applying the proper ARRs.
Again, this decomposition technique allows us to explore the space of compositions of solution
methods in an automatic way (once the pieces are in place, of course).

QMMCF(FC) to MIQP-SC-SEP

Transforming a QMMCF(FC) structure into MIQP-SC-SEP comes completely free. Since QMMCF(FC)
is represented by the narrowing d Composition C(d MMCF FC C, d Quadratic F C) we could reformulate
d MMCF FC C into d MILP SC C (cf. Listing 8.7), obtaining the composition
d Composition C(d MILP SC C, d Quadratic F C), which represents a MIQP-SC-SEP (cf. §8.2). Note

that from MIQP-SC-SEP we can apply the ARR
∑

s d MIQP SC SEP to MISIPC Q LC ARR and/or
d MIQP SC SEP to MISOCP ARR.

8.3.2 Final diagram

By composing diagrams 8.1 and 8.2 and by adding these last reformulations we could build the
diagram showed in Figure 8.3.

8.3. QUADRATIC VARIANTS 141

Figure 8.3: Full structure and reformulation diagram

142 CHAPTER 8. MORE FOCUSED STRUCTURES AND REFORMULATIONS

Conclusions

This thesis defines the grounds of a system which enables us to harness the vast body of knowl-
edge that has been developed over the years about which combinations of (re)formulations and
algorithms are best for many classes of optimization problems, and make it available to non ex-
perts. This involved the conception of a software system for automatically performing this task on
behalf of, and transparently to, the user. This required defining an appropriate general concept
of structured formulation (cf. Chapter 2) that be algorithmically treatable with appropriate tools,
developing a large library of pre-defined structures which makes it easy for users to model their
problems, link each of them with the appropriate solvers, and then be able to effectively search the
huge space of possible formulations and solvers (with their many possible algorithmic parameters).

We described the set of architectural choices in the i-dare system that have been designed to
make an effective search possible, while avoiding to tie-in the system to specific search strategies
that may not ultimately prove effective enough (such as complete enumeration). In particular, we
discuss the fundamental role of the General Machine Learning Sub-system (GMLS), which allows to
integrate general-purpose ML approaches with specialized methods for the (vastly) nontrivial task
of computing the “objective function(s)” of the search. This task is “naturally” extended to that
of selecting the best algorithmic configuration of the available solvers, thereby providing (whatever
actual implementation of) the i-dare(control) sub-system with a powerful tool to streamline the
search. This requires a sophisticated ML (meta) process that is continuously running and keeps
modifying the assessment of each reformulation with respect to given algorithms, so that it is kept
synchronized with latest performance data given by practical problem solution runs. Although the
use of ML techniques to select algorithmic parameters have very recently been advocated elsewhere,
the scale of our proposal is, to the best of our knowledge, unheard of.

The outcome of this sophisticated process may well be a very significant improvement of the
efficiency experienced by the “average” (non expert) user in the solution of her models, thereby
significantly contributing to the overall scientific and technological progress. Furthermore, it has
the possibility to substantially broadening the audience of the very many specialized solvers (and
of their underlying theory) that have been developed over the last forty years for problems with
specific structure. Indeed, insofar as such a system would greatly facilitate the fair comparison of
solution algorithms and effective dissemination of the corresponding results, it might conceivably
contribute to organizing, rationalizing and ultimately stimulating the research in solution algo-
rithms for many classes of mathematical models. Actually, the possibility to taking into account
monetary concerns during the search could lead to a substantial change in how mathematical
software packages are evaluated, possibly forming the basis of a fair and extremely competitive
“marketplace” for people supplying problems to be solved and people supplying solution algo-
rithms to be used. Such a marketplace could dramatically improve the adoption of best-of-class
approaches, possibly rewarding their authors in different ways, and it would allow the developers
of very specialized approaches for very specific forms of structure to reach an audience that they
would never be able to serve in the current system. This may radically change, for the better,
the marketplace for mathematical software, while providing customers with much greater value.
Therefore, while very significant theoretical and practical challenges still need to be overcome be-
fore this vision can become reality, we believe that the research on automatic reformulation and
algorithm-selection techniques is worth to be undertaken.

144 CHAPTER H. CONCLUSIONS

C.1 Perspectives on Deployment

The i-dare system aims at fostering a veritable breakthrough in the development, deployment and
solution effectiveness of large-scale, difficult mathematical models. The catalyst of this paradigm
shift is a software system capable of harnessing the vast body of knowledge that has been developed
over the years about which combinations of (re)formulations, algorithms and algorithmic param-
eters (comprised the computing architectures) are best for each one in an almost endless list of
applications, and make it available to non experts. This fundamentally hinges upon the concerted
use of two main ingredients:

• machine learning approaches that continuously collects performance data from the solution
of each problem, allowing the system to gradually build a database of unprecedented scale,
granularity and informative content and making available to every interested party this very
valuable data, currently dispersed in the scientific literature and unavailable outside a small
community of experts;

• active involvement of academic researchers and of the industrial community dedicated to the
development of solution algorithms, who have to equip the system with the best available
numerical solvers and reformulation rules, together with all available expertise about the
expected efficiency and effectiveness of a given solver on specific classes of problems.

Some vestigial aspects of the system in its foreseen final state can already be found in the NEOS
server [128], which has been operating since 1999 and has served almost two millions of requests in
its 10 years of life (with a growing trend: from about 17000 in 1999 to more than 225000 in 2009).
Of course, a system capable of withstanding billions of requests and effectively learn from the huge
amount of collected data would require a hugely different distributed architecture to start with, not
to mention the many conceptual and technical advancements planned in this project. However,
in view of i-dare the NEOS server proves not so much as the technical feasibility of a system
using remote computation for solving optimization problems, but especially the attractiveness for
the users, especially the less optimization-savvy ones, of a system which does not require local
installation of complex solution systems (possibly with many cross-dependencies, licensing issues,
and more), in spite of the fact that it is still completely up to the user to write the model in
the appropriate format and select the appropriate solver among the feasible ones. This underlines
how the ultimate success of the system crucially depends on appropriate use of social intelligence
techniques to construct a positive feedback loop whereby all involved parties have an incentive to
use the system, which in turn makes the system better. In particular:

• End-users will have to find an easy-to-use system which provides them structured (e.g. object-
oriented) means for rapidly and correctly write down mathematical models. The system
should present them with a vast library of ready-to-use structures to choose from, thereby
sparing them with the need to re-invent the wheel. The structures should be presented in
quite abstract terms (i.e. by specifying their semantic meaning, rather than how this is actu-
ally obtained), thereby isolating them from a part of the complexity of a modeling exercise.
The system should also consistently provide them with better—or at least comparable—
solution results w.r.t. those obtainable by a completely hand-made solution, in a fraction
of the time required for the latter and without requiring specific modeling or algorithmic
expertise. The system will have to be open and accessible, with very low entry cost barriers
(it should be basically free for academic purposes) and capable of accommodating different
usage patterns for the needs of different applications domains. As a consequence, end-users
will have considerable incentives to use the system, thereby providing its machine learning
components with a growing set of data, that in turn will make the system more and more
efficient and therefore attractive.

• Academic researchers in the field of mathematical models and algorithms development will
have to find in the system the perfect benchmarking machine, capable of providing them with
unprecedented amounts of data about the performances of algorithms on classes of models.

C.1. PERSPECTIVES ON DEPLOYMENT 145

Currently, experimentally proving the efficiency and effectiveness of a new or improved algo-
rithm requires a considerable effort not only for devising and implementing them, but also
for collecting a set of significant testing instances, collecting all (or at least a reasonable set
of) possible competing algorithms, set up a level-playing field which allows to fairly compare
their performances (factoring out issues like the appropriate setting of the computational
parameters), and finally perform the comparison, which can be in itself a long and highly
computationally demanding task. At the cost of subjecting themselves to the required inter-
face of the system (which, therefore, will have to be flexible and easy to set up) the researchers
will be spared a very substantial amount of the necessary work to evaluate the efficiency and
effectiveness of their creations, in addition to having accurate data about the behavior of
the current solution methods, which may indicate their shortcomings and therefore suggests
the most promising avenues for improvements. The nature of the system will guarantee the
community that all comparisons be performed fairly, thereby substantially increasing the
level of confidence in them, and motivating the top researchers to continuously provide the
system with improved versions of their algorithms to earn the corresponding recognition.
This will provide end-users with a constantly improving set of numerical solvers, an improve-
ment they contributed to by sharing problem and solution data. Academia will also have to
be at the forefront of the meta-learning problem—that is, providing the most appropriate
machine learning approaches for choosing the best (formulation, algorithm, configuration)
triplet, which is in itself a very complex task that will likely require the combination of sev-
eral different techniques for classification and regression, data mining, artificial intelligence,
and search in very large structured spaces. Finally, the many researchers currently working
on finding the most appropriate formulations for different applications will be strongly moti-
vated to provide the reformulation rules that will be used to search the formulations space,
as the existence of a system that will bring to near-immediate fruition of their work to the
large number of potentially interested end-users will substantially increase the relevance of
their research subject.

• Commercial providers of numerical software for mathematical models could somewhat oppose
the process, insomuch as it pushes towards a fair and extremely competitive marketplace
where the cost/efficiency ratio of each software package, rather than other marketing factors,
is basically the only considered performance measure. For this to happen, the system will
have to provide the option to select the solution approach taking into account economic
factors such as total cost of solution, comprising both CPU time cost and software licensing
costs. However, providers of best-of-class approaches will have the opportunity to show off
top performances, and therefore retain high shares of usage. Furthermore, as the system
substantially improves the adoption of quantitative approaches far beyond the current set
of users, any loss in market share can be more than made up with the increase in the users
base; said otherwise, as the system gains traction not fully supporting it would imply losing
out a large and growing set of potential users. Therefore, it can be expected that commercial
providers will find it convenient, and ultimately necessary, to provide the system with the best
of their worth. Indeed, it should be expected that the system actually substantially increase
the set of available numerical solvers. This is because, currently, only a few general-purpose
solvers have a large enough audience to be commercially viable. This is especially true since,
apart from the theoretical and implementation issues inherent to devising a state-of-the-art
commercial solver, a perspective entrepreneur also has to consider market positioning and
the expenses necessary to educate users in order to breaking into a niche and fragmented
market. With a system in place which is capable of selecting specialized algorithms on behalf
of the users, a very small per-use licensing fee rewarded to algorithms creators may rapidly
make up very substantial sums, especially if the user base rapidly swells, thereby providing
ample incentives to developers to chase important structures. In particular, the fact that
the system will be able to combine different solution algorithms in unprecedented ways,
using such methods as decomposition approaches, will make it possible for very efficient,
specialized codes for models with very specific structures to be used within approaches for

146 CHAPTER H. CONCLUSIONS

the very many, much larger-scale problems containing these as substructures (in tasks such
as bounds computation, heuristics search, valid inequalities separation and many others).
Thus, a much more vibrant ecosystem for specialized optimization approaches will be born
and thrive, whereby commercial providers will use the system’s data to gauge the economic
opportunity to invest in the development of numerical solvers for specific structures, and
market forces will drive competition to provide ever-increasing efficiency to end-users, abating
market inefficiencies and costs due to marketing, user education, user retention and other
non-technical issues of this kind. Academic providers of open-source, free numerical solvers,
motivated by recognition rather than by economic incentives, will also constitute a powerful
force to ensure continuous improvements in the performances, as well as zero-cost less-effective
approaches for those many applications where top-performing solutions are not necessary.

C.2 i-dare challenges

As previously illustrated, the i-dare system ultimately aims at changing the way in which math-
ematical models of reality are developed and deployed. While at the beginning the system will
target a narrow set of structures, mostly coming from decision and optimization problems arising
in scientific and industrial applications, the system is conceptually open to integration of very dif-
ferent sets of mathematical components from almost all fields of human speculative and practical
activities.

One of the main challenges currently facing scientific and technological development is that
the explosive growth of information is rapidly overcoming humans’ capabilities to comprehend and
synthesize the available knowledge, which is the fundamental step for being able to produce new
ideas. The current forms of reaction are a growing specialization, with each research field contin-
uously producing initially narrow sub-fields which later on grow and possibly further subdivide,
and teaming of specialists of different disciplines to tackle the same problem. Both approaches,
although workable, have clear limitations: specialization leads to lack of wider cultural view, with
possibly related research being carried on independently in several different fields because of lack
of communication, and human interactions do not scale well after a handful of people, unless
supported by specific organizations (which however have their own cost).

ICT systems have clearly played a major role in allowing the pace of scientific and technological
process to continue unabated: collaboration tools like e-mail, digital libraries with the available
sophisticated search tools, and open distribution of software have all provided enormous bene-
fits to the efficiency of the research and development processes. However, these tools ultimately
rely on human knowledge and intervention to make connections and fill-in the gaps. Just as in-
formation search eventually had to move away from human scanning of unsorted data and/or
human-based categorization to fully embrace algorithmic approaches, the only ones capable of
coping with growth of available information, it can be foreseen that more sophisticated ICT-based
approaches will eventually be needed to cope with the explosive growth of available scientific the-
ories and corresponding mathematical tools in a way that may simply not be possible to humans.
Clearly, fundamental innovation will always—or at least for the foreseeable future—be a product
of human’s intuition and imagination. However, like a web search stitches together a relevant set of
human-produced pieces of information in a way that the original creators of that information may
have never imagined, selecting and gluing together the appropriate set of individual components
to tackle one specific problem in a previously unforeseen way, may well become predominantly a
work for appropriate algorithms.

The analogy with search should not be taken too far: the tasks of the i-dare system are on
one hand far more complex, requiring the exploration of a huge space of configurations and the
estimation of the expected performances of each, and on the other hand far less complex as the
underlying universe is far smaller and immensely more structured. However, just like search has
revolutionized the use of Internet and made it almost overnight an incredibly useful tool outside
the small niche of specialists which were previously able to deal with it, automatic search methods
like i-dare have the potential to revolutionize the use of mathematical models, making it possible

C.2. I-DARE CHALLENGES 147

and convenient for a much larger audience than nowadays conceivable. The potential impact of
this on the productivity of our society could really be huge.

Another absolutely nontrivial effect of a system like i-dare is the fundamental push towards
standardization and immediate re-usability of the results. In the academic world, purportedly the
epitome of openness and availability of information, there is often too little incentive to make one’s
creations available to the community in a way that allows for immediate re-use from other interested
parties. While development of solution codes, models or techniques does bring recognition, making
it easy for others to access and use them requires a further substantial work which is often not
valued enough, if at all, at the various levels where the impact of a research is judged. From the
commercial viewpoint, all ICT history can be read as the continuous struggle between standard-
based and proprietary solutions, which reveals how the huge technical superiority of a system where
components can be sourced from different vendors and easily swapped-in is not always sufficient
to battle the enormous incentive to tie-in customers to one’s organization. Disclosing just about
the minimum necessary amount of information and/or artificially segmenting the market along
purposely created incompatibility lines are always strong temptations, all the more in a world where
rampant competition makes it very difficult for anybody to carve his niche. It can be argued that
the current system may not contain enough forces to steer evolution of the research and industrial
behavior towards the most open possible collaboration; rather, a more successful researcher or
entrepreneur may be he who subtly plants enough barriers to keep others to fully appreciate and
make sense of his developments, artificially conserving one’s competitive advantage. While this
may be beneficial to the individual, it is generally detrimental for the society. Requiring the
results—be it models, reformulation methods or solution software—to be available for immediate
use as a prerequisite for them earning credits in the first place, a system like i-dare may help in
providing some of the missing incentives, harnessing the power of market forces in the conditions
where it gives its best, i.e., in a fair and fiercely competitive market.

Perhaps the most important possible outcome of the project may not even be the i-dare

system itself, but the proof that systems streamlining and automatizing exploitation of scientific
and technological advances through the use of sophisticated ICT tools is possible. While i-dare is
designed for being extremely open and capable to evolve, it may later be proven that some of its
fundamental design decisions and concepts can be subsumed by even more powerful and general
mechanisms. Unleashing a flurry of research about tools that make research and collaboration
more productive may actually be the most relevant long-lasting effect that historians of science
might credit the i-dare project for in a far future. It is even unclear at this stage whether it is
the technological aspect (finding the right algorithms and the appropriate system structure) that
provides the most relevant contribution, or rather it is the social intelligence aspects of the project
that ultimately proves to be the fundamental force which drives change; for science and technology
provide most useful to society when they find ways to better satisfy the fundamental human needs
to explore, share, and communicate. Thus, aspects like social acceptance among the interested
communities, dissemination, and even politics and regulatory matters at the highest level may one
day become fundamental “make or break” points for the possible future development of the idea.

148 CHAPTER H. CONCLUSIONS

Bibliography

[1] COIN-OR, Computational infrastructure for operations research. http://www.coin-or.org.

[2] CSDP A Library for Semidefinite Programming. http://infohost.nmt.edu/~borchers/

csdp.html.

[3] DIMACS minimum cost flow problems. http://lpsolve.sourceforge.net/5.5/DIMACS_

mcf.htm.

[4] FLOPC++ (Formulation of Linear Optimization Problems in C++). https://projects.coin-
or.org/FlopC++.

[5] GAMS Solver Descriptions. http://www.gams.com/solvers/solvers.htm.

[6] GLOBAL Library. http://www.gamsworld.org/global/globallib.htm.

[7] IBM ILOG CPLEX. http://www-01.ibm.com/software/integration/optimization/

cplex/.

[8] LOQO Users Manual. http://www.princeton.edu/~rvdb/tex/loqo/loqo405.pdf.

[9] The MOSEK Optimization Software. http://www.mosek.com/.

[10] Ontoprise. http://www.ontoprise.de/.

[11] SDPA. http://sdpa.indsys.chuo-u.ac.jp/sdpa/.

[12] Stochastic Modeling Interface. http://www.coin-or.org/projects/Smi.xml.

[13] The Canad problems. http://www.di.unipi.it/di/groups/optimize/Data/MMCF.html#

Canad.

[14] LEMON: Library for Efficient Modeling and Optimization in Networks.
http://lemon.cs.elte.hu/trac/lemon/, May 2010.

[15] D. Kendrick A. Brook and A. Meeraus. Gams, a user’s guide, 1988.

[16] Tobias Achterberg. Scip - a framework to integrate constraint and mixed integer program-
ming. Technical report, Konrad-Zuse-Zentrum fr Informationstechnik Berlin, 2004.

[17] Tobias Achterberg, Thorsten Koch, and Alexander Martin. MIPLIB 2003. Operations Re-
search Letters, 34(4):361–372, 2006.

[18] Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. Network Flows: Theory,
Algorithms and Applications. Prentice Hall, 1993.

[19] Ahuja, R.K., Magnanti, T.L., and Orlin, J.B. Network Flows: Theory, Algorithms, and
Applications. Prentice-Hall, Englewood Cliffs, 1993.

150 CHAPTER 0. BIBLIOGRAPHY

[20] S. Aktürk, A. Atamtürk, and S. Gürel. A strong conic quadratic reformulation for machine-
job assignment with controllable processing times. Operations Research Letters, 37(3):187 –
191, 2009.

[21] D. Applegate, R. Bixby, V. Chvátal, andW. Cook. The Traveling Salesman: a Computational
Study. Princeton University Press, Princeton, 2007.

[22] K. R. Apt. Principles of Constraint Programming. Cambridge University Press, 2003.

[23] C. Audet, J. Brimberg, P. Hansen, S. Le Digabel, and N. Mladenović. Pooling problem: Alter-
nate formulations and solution methods. Princeton University Press, Princeton, 50(6):761–
776, 2004.

[24] C. Audet, P. Hansen, B. Jaumard, and G. Savard. Links between linear bilevel and mixed 0-1
programming problems. Journal of Optimization Theory and Applications, 93(2):273–300,
1997.

[25] C. Audet, P. Hansen, F. Messine, and S. Perron. The minimum diameter octagon with
unit-length sides: Vincze’s wife’s octagon is suboptimal. Journal of Combinatorial Theory
A, 108(1):63–75, 2004.

[26] E. Balas and E. Zemel. Facets of the knapsack polytope from minimal covers. SIAM Journal
on Applied Mathematics, 34(1):119–148, January 1978.

[27] Egon Balas, Sebastián Ceria, and Gérard Cornuéjols. A lift-and-project cutting plane algo-
rithm for mixed 0-1 programs. Math. Program., 58(3):295–324, 1993.

[28] M. Ball, T. Magnanti, C. Monma, and G. Nemhauser. Network Routing, volume 8 of Hand-
books in Operations Research and Management Science. North-Holland, Amsterdam, 1995.

[29] C. Barnhart and G. Laporte. Transportation, volume 14 of Handbooks in Operations Re-
search and Management Science. North-Holland, Amsterdam, 2007.

[30] H. Ben Amor, J. Desrosiers, and A. Frangioni. On the Choice of Explicit Stabilizing Terms
in Column Generation. Discrete Applied Mathematics, 157(6):1167–1184, 2009.

[31] A. Ben-Tal and A. Nemirovski. Lectures on Modern Convex Optimization: Analysis, Algo-
rithms, Engineering Applications. MPS-SIAM Series on Optimization. SIAM, Philadelphia,
2001.

[32] A. Ben-Tal and A. Nemirovski. Selected topics in robust convex optimization. Mathematical
Programming, 112(1):125–158, 2008.

[33] J. F. Benders. Partitioning procedures for solving mixed-variables programing problems.
Numerische Mathematik, 4:238–252, 1962.

[34] Frèdèric Benhamou. Interval constraint logic programming. In Andreas Podelski, editor,
Constraint Programming: Basic Trends. Springer, 1994.

[35] P. Beraldi, F. Guerriero, and R. Musmanno. Parallel algorithms for solving the convex
minimum cost flow problem. Comput. Optim. Appl., 18(2):175–190, 2001.

[36] D.P. Bertsekas and P. Tseng. Relax-iv: a faster version of the relax code for solving minimum
cost flow problems. Technical report, Dept. of Electrical Engineering and Computer Science,
MIT, 1994.

[37] G. Bigi, A. Frangioni, and Q.H. Zhang. Outer Approximation Algorithms for Canonical DC
Problems. Journal of Global Optimization, to appear, 2009.

[38] C.M. Bishop. Pattern recognition and machine learning. Springer, New York, 2006.

0.0. BIBLIOGRAPHY 151

[39] J. Bjorkqvist and T. Westerlund. Automated reformulation of disjunctive constraints in
minlp optimization. Computers and Chemical Engineering, 23:S11–S14, 1999.

[40] Pierre Bonami, Lorenz T. Biegler, Andrew R. Conn, Grard Cornujols, Ignacio E. Gross-
mann, Carl D. Laird, Jon Lee, Andrea Lodi, Franois Margot, Nicolas Sawaya, and Andreas
Wchter. An algorithmic framework for convex mixed integer nonlinear programs. Discrete
Optimization, 5(2):186 – 204, 2008. In Memory of George B. Dantzig.

[41] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2004.

[42] Peter Brucker. An o(n) algorithm for quadratic knapsack problems. Operations Research
Letters, 3(3):163 – 166, 1984.

[43] G. Calafiore and M. Campi. Uncertain convex programs: randomized solutions and confi-
dence levels. Mathematical Programming, 102(1):25–46, 2005.

[44] Gilles Caporossi and Pierre Hansen. Variable neighborhood search for extremal graphs: 1.
the autographix system. Discrete Mathematics, 212(1-2):29–44, 2000.

[45] P. Cappanera and A. Frangioni. Symmetric and Asymmetric Parallelization of a Cost-
Decomposition Algorithm for Multi-Commodity Flow Problems. INFORMS Journal on
Computing, 15(4):369–384, 2003.

[46] J. Carlier and E. Pinson. An algorithm for solving the job-shop problem. Management
Science, (35):164–176, 1989.

[47] J. Carlier and E. Pinson. Adjustment of heads and tails for the job-shop problem. European
Journal of Operational Research, (78):146–161, 1994.

[48] Y. Caseau and F. Laburthe. Improved clp scheduling with task intervals. In Proceedings of
the Eleventh International Conference on Logic Programming (ICLP 1994), pages 369–383.
The MIT Press, 1994.

[49] A. Cassioli, D. Di Lorenzo, M. Locatelli, F. Schoen, and M. Sciandrone. Machine Learning
for Global Optimization. Technical Report 2360, Optimization Online, 2009.

[50] J. Castro and N. Nabona. An Implementation of Linear and Nonlinear Multicommodity
Network Flows. EJOR, 92:37–53, 1996.

[51] Jordi Castro. A specialized interior-point algorithm for multicommodity network flows. SIAM
Journal on Optimization, 10:852–877, 2000.

[52] Sebastián Ceria and Jo ao Soares. Convex programming for disjunctive convex optimization.
Mathematical Programming, 86:595 – 614, 1999.

[53] Marco Colombo, Andreas Grothey, Jonathan Hogg, Kristian Woodsend, and Jacek Gondzio.
A Structure-Conveying Modelling Language for Mathematical and Stochastic Programming.
Technical report, School of Mathematics and Maxwell Institute, University of Edinburgh,
Edinburgh, Scotland, March.

[54] ILOG Concert Technology. http://www.ilog.com/products/optimization/tech/

concert.cfm.

[55] Teodor Gabriel Crainic, Michel Gendreau, and Judith M. Farvolden. A simplex-based tabu
search method for capacitated network design. INFORMS J. on Computing, 12(3):223–236,
2000.

[56] Claudia D’Ambrosio, Antonio Frangioni, Leo Liberti, and Andrea Lodi. Experiments with a
feasibility pump approach for nonconvex minlps. In SEA10 Proceedings, LNCS, 2010.

152 CHAPTER 0. BIBLIOGRAPHY

[57] G. B Dantzig. Linear programming and extensions. Princeton, NJ: Princeton University
Press, 1963.

[58] Renato De Leone, Robert R. Meyer, and Armand Zakarian. A partitioned ǫ− relaxation
algorithm for separable convex. Comput. Optim. Appl., 12(1-3):107–126, 1999.

[59] Guy Desaulniers, Jacques Desrosiers, and Marius M. Solomon, editors. Column generation.
Springer, 2005.

[60] M. Dorigo and C. Blum. Ant colony optimization theory: A survey. Theoretical Computer
Science, 344(2-3):243–278, 2005.

[61] O. du Merle, P. Hansen, B. Jaumard, and N. Mladenović. An interior point algorithm for
minimum sum-of-squares clustering. SIAM Journal Scientific Computing, 21(4):1485–1505,
2000.

[62] Jack Edmonds and Richard M. Karp. Theoretical improvements in algorithmic efficiency for
network flow problems. J. ACM, 19(2):248–264, 1972.

[63] William B. Ewald. From Kant to Hilbert: A Source Book in the Foundations of Mathematics,
2 vols. Oxford Uni. Press, 1996.

[64] A. Lodi F. Focacci and M. Milano. Cost-based domain filtering. In J. Jaffar, editor, Pro-
ceedings of the 5th International Conference on Principles and Practice of Constraint Pro-
gramming, LNCS 1713, pages 189–203. Springer-Verlag, 1999.

[65] A. Lodi F. Focacci and M. Milano. Cutting planes in constraint programming an hybrid
approach. In R. Dechter, editor, Proceedings of the 6th International Conference on Principles
and Practice of Constraint Programming, LNCS 1894, pages 187–201. Springer-Verlag, 2000.

[66] R. Fourer and D. Gay. The AMPL Book. Duxbury Press, Pacific Grove, 2002.

[67] B. R. Fox. Chronological and non-chronological scheduling. In Proceedings of the First
Annual Conference on Artificial Intelligence: Simulation and Planning in High Autonomy
Systems. Tucson, Arizona, 1990.

[68] A. Frangioni. On a New Class of Bilevel Programming Problems and its Use For Refor-
mulating Mixed Integer Problems. European Journal of Operations Research, 82:615–646,
1995.

[69] A. Frangioni and B. Gendron. 0-1 Reformulations of the Multicommodity Capacitated Net-
work Design Problem. Discrete Applied Mathematics, 157(6):1229–1241, 2009.

[70] A. Frangioni and C. Gentile. New Preconditioners for KKT Systems of Network Flow Prob-
lems. SIAM Journal on Optimization, 14(3):894 – 913, 2004.

[71] A. Frangioni and C. Gentile. SDP Diagonalizations and Perspective Cuts for a Class of
Nonseparable MIQP. Operations Research Letters, 35(2):181 – 185, 2007.

[72] A. Frangioni and C. Gentile. A computational comparison of reformulations of the perspective
relaxation: Socp vs. cutting planes. Operations Research Letters, 37(3):206 – 210, 2009.

[73] A. Frangioni, M.G. Scutellà, and E. Necciari. A Multi-exchange Neighborhood for Minimum
Makespan Machine Scheduling Problems. Journal of Combinatorial Optimization, 8:195–220,
2004.

[74] A. Frangioni and S. Serra Capizzano. Spectral Analysis of (Sequences of) Graph Matrices.
SIAM Journal on Matrix Analysis and Applications, 23(2):339–348, 2001.

0.0. BIBLIOGRAPHY 153

[75] Antonio Frangioni and Claudio Gentile. Perspective cuts for a class of convex 0-1 mixed
integer programs. Math. Program., 106(2):225–236, 2006.

[76] G12: A Constraint Programming Platform. http://www.g12.csse.unimelb.edu.au/.

[77] A. M. Geoffrion. Generalized benders decomposition. Journal of Optimization Theory and
Applications, 10:237–260, 1972.

[78] Andrew V. Goldberg and Robert E. Tarjan. Finding minimum-cost circulations by canceling
negative cycles. J. ACM, 36(4):873–886, 1989.

[79] Andrew V. Goldberg and Robert E. Tarjan. Finding minimum-cost circulations by successive
approximation. Math. Oper. Res., 15(3):430–466, 1990.

[80] D.E. Goldberg. Genetic Algorithms in Search, Optimization, and Machine Learning.
Addison-Wesley, Reading, MA., 1989.

[81] E. Gourdin, P. Hansen, and B. Jaumard. Finding maximum likelihood estimators for the
three-parameter weibull distribution. Journal of Global Optimization, 5(4):373–397, 1994.

[82] M. Grant, S. Boyd, and Y. Ye. Disciplined convex programming, pages 155–210. Liberti and
Maculan [115].

[83] J. Gondzio A. Grothey. Exploiting structure in parallel implementation of interior point
methods for optimization. Technical report, School of Mathematics, University of Edinburgh,
Scotland, December 2004.

[84] M. Guignard. Lagrangean Relaxation. TOP, 11(2):151–228, 2003.

[85] P. Hansen, J. Brimberg, N. Mladenović, and D. Urosević. Primal-dual variable neighbourhood
search for the simple plant location problem. INFORMS Journal on Computing, 19(4):552–
564, 2007.

[86] P. Hansen and B. Jaumard. Cluster analysis and mathematical programming. INFORMS
Journal on Computing, 79:191–215, 1997.

[87] P. Hansen and N. Mladenović. Variable neighbourhood search: Principles and applications.
European Journal of Operations Research, 130:449–467, 2001.

[88] R. Hemmecke, M. Köppe, J. Lee, and R. Weismantel. Nonlinear integer programming. In
M. Jünger, T. Liebling, D. Naddef, G. Nemhauser, W. Pulleyblank, G. Reinelt, G. Ri-
naldi, and L. Wolsey, editors, 50 Years of Integer Programming 1958–2008: The Early Years
and State-of-the-Art Surveys, Studies in Computational Intelligence. Springer-Verlag, Berlin,
2009.

[89] M. Hinze, R. Pinnau, M. Ulbrich, and S. Ulbrich. Optimization with PDE Constraints.
Springer, 2009.

[90] J. N. Hooker. A hybrid method for planning and scheduling. Constraints, (10):385–401,
2005.

[91] J. N. Hooker. Logic-based modeling. In L. Pitsoulis G. Appa and H. P. Williams, editors,
Handbook on Modelling for Discrete optimization, pages 61–102. Springer, 2006.

[92] J. N. Hooker and G. Ottosson. Logic-based benders decomposition. Math. Program, (96):33–
60, 2003.

[93] John Hooker. Logic-Based Methods for Optimization, Combining Optimization and Con-
straint Satisfaction. John Wiley & Sons, Inc, 2000.

154 CHAPTER 0. BIBLIOGRAPHY

[94] John Hooker. Integrated Methods for Optimization. 2007.

[95] R. Horst and N. V. Thoai. Dc programming: Overview. Journal of Optimization Theory
and Applications, 103(1):1–43, October 1999.

[96] F. Hutter, H.H. Hoos, K. Leyton-Brown, and T. Stützle. Paramils: An automatic algorithm
configuration framework. Journal of Artificial Intelligence Research, 36:267–306, 2009.

[97] IBM. Passing your model using mathematical programming system (MPS) format.
http://www-306.ibm.com/software/data/bi/osl/pubs/Library/featur11.htm, 2003.

[98] A. Frangioni J. Castro. A parallel implementation of an interior-point algorithm for multicom-
modity network flows. In Vector and Parallel Processing - VECPAR 2000: 4th International
Conference, Porto, Portugal, June 2000. Selected Papers and Invited Talks, volume 1981 of
Lecture Notes in Computer Science, page 301. Springer Berlin / Heidelberg, 2001.

[99] B. Jaumard, P. Hansen, and M. Poggi de Aragão. Column generation methods for probabilistic
logic, pages 313–331. IPCO, University of Waterloo Press, 1990.

[100] David S. Johnson. Approximation algorithms for combinatorial problems. In STOC ’73:
Proceedings of the fifth annual ACM symposium on Theory of computing, pages 38–49, New
York, NY, USA, 1973. ACM.

[101] J. Judice and G. Mitra. Reformulation of mathematical programming problems as linear com-
plementarity problems and investigation of their solution methods. Journal of Optimization
Theory and Applications, 57(1):123–149, 1988.

[102] Michael Kifer, Georg Lausen, and James Wu. Logical fundations of object-oriented and
frame-based languages. Technical report, Department of Computer Science, SUNY at Stony
Brook, NY, 1994.

[103] Morton Klein. primal method for minimal cost flows with applications to the assignment
and transportation problems. MANAGEMENT SCIENCE, 14(3):205–220, November 1967.

[104] M. Kočvara and J.V. Outrata. Optimization problems with equilibrium constraints and their
numerical solution. Mathematical Programming, 101(1):119–149, 2004.

[105] S. Kucherenko, P. Belotti, L. Liberti, and N. Maculan. New formulations for the kissing
number problem. Discrete Applied Mathematics, 155(14):1837–1841, 2007.

[106] Steve Homer L. Fortnow. A short history of computational complexity. In J. Dawson D. van
Dalen and A. Kanamori, editors, The History of Mathematical Logic. North-Holland, Ams-
terdam, 2002/2003.

[107] M. Labbé, D. Peeters, and J.-F. Thisse. Location on networks. Network Routing, volume 8 of
Handbooks in Operations Research and Management Science. North-Holland, Amsterdam,
1995.

[108] C. Lavor, L. Liberti, and N. Maculan. Molecular distance geometry problem. Encyclopedia
of Optimization, Springer, New York, 2 edition, 2009.

[109] C. Lavor, L. Liberti, N. Maculan, and M.A. Chaer Nascimento. Solving Hartree-Fock systems
with global optimization metohds. Europhysics Letters, 5(77):50006p1–50006p5, 2007.

[110] C. Kun Lee, A. Singer, and P. Barton. Global optimization of linear hybrid systems with
explicit transitions. Systems & Control Letters, 51(5):363–375, 2004.

[111] Claude Lemarchal. Lagrangian relaxation. Technical report, Inria, 655 avenue de l’Europe,
Montbonnot, 38334 Saint Ismier, France, 2002.

0.0. BIBLIOGRAPHY 155

[112] L. Liberti. Reformulation techniques in mathematical programming, in preparation. Thèse
d’Habilitation à Diriger des Recherches, Université Paris IX.

[113] L. Liberti. Reformulations in mathematical programming: Definitions and systematics.
RAIRO-RO, 43(1):55–86, 2009.

[114] L. Liberti, S. Cafieri, and F. Tarissan. Reformulations in mathematical programming: a com-
putational approach. In A. Abraham, A.-E. Hassanien, P. Siarry, and A. Engelbrecht, editors,
Foundations of Computational Intelligence Vol. 3, number 203 in Studies in Computational
Intelligence, pages 153–234. Springer, Berlin, 2009.

[115] L. Liberti and N. Maculan. Global Optimization: from Theory to Implementation. Springer,
Berlin, 2006.

[116] L. Liberti, N. Maculan, and Y. Zhang. Optimal configuration of gamma ray machine radio-
surgery units: the sphere covering subproblem. Optimization Letters, 3:109–121, 2009.

[117] L. Liberti and C.C. Pantelides. An exact reformulation algorithm for large nonconvex nlps
involving bilinear terms. Journal of Global Optimization, (36):161–189, 2006.

[118] D. S. Johnson M. R. Garey and L. Stockmeyer. Some simplified np-complete problems. In
STOC ’74: Proceedings of the sixth annual ACM symposium on Theory of computing, pages
47–63, New York, NY, USA, 1974. ACM.

[119] C. Maranas and C. Floudas. Global optimization in generalized geometric programming.
Computers and Chemical Engineering, 21(4):351–369, 1997.

[120] F. Marinelli, O. de Weck, D. Krob, and L. Liberti. A general framework for combined module-
and scale- based product platform design. Technical report, LIX, Ecole Polytechnique, 2007.

[121] K. Marriott and P. J. Stuckey. Programming with constraints: an introduction. MIT Press,
1998.

[122] J.R.R.A. Martins, C. Marriage, and N. Tedford. pyMDO: An Object-Oriented Framework
for Multidisciplinary Design Optimization. ACM Transactions on Mathematical Software,
36(4):Article No. 20, 2009.

[123] Ted Ralphs Matthew Saltzman, Lszlo Ladnyi. The COIN-OR Open Solver Interface: Tech-
nology Overview, May 2004.

[124] The MCFClass Project. http://www.di.unipi.it/optimize/Software.

[125] Multicommodity Problems. http://www.di.unipi.it/optimize/Data/MMCF.html.

[126] G. Moser and R. Zach. The epsilon calculus. In Computer Science Logic, volume 2803 of
Lecture Notes in Computer Science, page 455. Springer Berlin / Heidelberg, 2003.

[127] George L. Nemhauser and Laurence A. Wolsey. Integer and Combinatorial Optimization.
John Wiley & Sons, New York, 1988.

[128] NEOS: Network-Enabled Optimization Server. http://neos.mcs.anl.gov/.

[129] Ulf Nilsson and Jan Maluszyński. Logic, Programming and PROLOG (2ED). John Wiley &
Sons Ltd., 1995.

[130] OptimJ. http://www.ateji.com/optimj.html, 2009.

[131] I. Papamichail and C. Adjiman. A rigorous global optimization algorithm for problems with
ordinary differential equations. Journal of Global Optimization, 24:1–33, 2002.

156 CHAPTER 0. BIBLIOGRAPHY

[132] C. Le Pape. Implementation or resource constraints in ilog schedule: A library for the
development of constraint-based scheduling systems. Intelligent Systems Engineering, (3):55–
66, 1994.

[133] Benjamin C. Pierce. Types and programming languages. MIT Press, Cambridge, MA, USA,
2002.

[134] puLP. http://code.google.com/p/pulp-or/.

[135] I. Quesada and I.E. Grossmann. An LP/NLP based branch and bound algorithm for convex
MINLP optimization problems. Computers & Chemical Engineering, 16(10-11):937 – 947,
1992. An International Journal of Computer Applications in Chemical Engineering.

[136] Rima: A Tool for Math Modelling. http://www.incremental.co.nz/projects/rima/,
2009.

[137] Kipp Martin Robert Fourer, Jun Ma and Wayne Sheng. Optimization Services 1.0 User’s
Manual, November 2007.

[138] A. G. Robinson, N. Jiang, and C. S. Lerme. On the continuous quadratic knapsack problem.
Math. Program., 55(1-6):99–108, 1992.

[139] J. M. Robson. Algorithms for maximum independent sets. J. Algorithms 7, pages 425–440,
1986.

[140] SDPA File Format. http://euler.nmt.edu/~brian/sdplib/FORMAT.

[141] B. Settles. Active Learning Literature Survey. Computer Sciences Technical Report 1648,
University of Wisconsin–Madison, 2009.

[142] .D. Sherali and W.P. Adams. A Reformulation-Linearization Technique for Solving Discrete
and Continuous Nonconvex Problems. Kluwer Academic Publishers, Dodrecht, 1999.

[143] H. Sherali. Personal communication. 2007.

[144] E.M.B. Smith and C.C. Pantelides. A symbolic reformulation/spatial branch-and-bound
algorithm for the global optimisation of nonconvex minlps. Computers and Chemical Engi-
neering, 23:457–478, 1999.

[145] S. Sonnenburg, G. Raetsch, C. Schaefer, and B. Schoelkopf. Large Scale Multiple Kernel
Learning. Journal of Machine Learning Research, (7):1531–1565, 2006.

[146] Robert A. Stubbs and Sanjay Mehrotra. A branch-and-cut method for 0-1 mixed convex
programming. Mathematical Programming, 86(3):515 – 532, 1999.

[147] Terrance Swift and David S. Warren. The XSB System Version 3.2.

[148] R. E. Tarjan and A. E. Trojanowski. Finding a maximum independent set. Technical report,
Stanford University, June 1976.

[149] Tawarmalani, Mohit, Sahinidis, and Nikolaos V. Semidefinite relaxations of fractional pro-
grams via novel convexification techniques. J. of Global Optimization, 20(2):133–154, 2001.

[150] E. Tomita and T. Seki. Discrete Mathematics and Theoretical Computer Science, volume 2731
of Lecture Notes in Computer Science, chapter An Efficient Branch-and-Bound Algorithm
for Finding a Maximum Clique, pages 278–289. Springer Berlin / Heidelberg, 2003.

[151] A. Turing. On computable numbers, with an application to the entscheidungsproblem. In
Reprinted in M. Davis (ed.), editor, London Mathematical Society, Series 2, Volume 42
(1939). The Undecidable, Raven Press, Hewlett, NY, 1965.

0.0. BIBLIOGRAPHY 157

[152] E. Pesch U. Dorndorf and T. Phan-Huy. Solving the open shop scheduling problem. Journal
of Scheduling, (4):157–174, 2001.

[153] Jean van Heijenoort. A Source Book in Mathematical Logic, 1879-1931. Harvard Univ. Press,
1967.

[154] T.J. van Roy and L.A. Wolsey. Solving mixed integer programming problems using automatic
reformulation. Operations Research, 35(1):45–57, 1987.

[155] J. von Neumann. The principles of large-scale computing machines. IEEE Annals of the
History of Computing, 10(4):243–256, October-December 1988.

[156] Arthur Westerberg. Ascend iv, advanced system for computations in engineering design.
Technical report, Department of Chemical Engineering, Carnegie Mellon University, june
1998.

[157] May Wolfang. Florid: User Manual.

[158] D. R. Wood. An algorithm for finding a maximum clique in a graph. Operations Research
Letters, 21:211–217, January 1997.

[159] Guizhen Yang, Michael Kifer, Hui Wan, and Chang Zhao. Flora-2: User’s Manual.

158 CHAPTER 0. BIBLIOGRAPHY

Appendix A

Frame Logic – F LORA-2

Abstract

Frame Logic (FL) [102] is a formalism that provides higher expressive power, in order to
represent entities, relations and processes between these entities. At the same time, since
the main concept of FL is represented as an object, FL embraces many aspects of Object-
Oriented languages, expressed in a richer way. FL sees the objects as active entities (and not
just as data structures with simple process attached), overcoming the deficiencies of the classic
Object-Oriented paradigms to represent knowledge and reasoning. There are many (partial)
implementation of FL, like FLORID [157], Ontoprise [10] and FLORA-2 [159]. We will focus
on the FLORA-2 variant, since it was the one selected to develop this thesis.

A.1 FL Syntax

Fl allows the representation of two expression classes: terms and formulas, which can be constructed
from the following sets of symbols

A.1.1 Alphabet

Variable symbols: the variables will be represented by finite sequences of characters, having the
following restriction: they must start with the symbol ?, followed by 0 or more letters and/or digits
and/or the character .

For instance: ?Q, ?warehouse 12, ? , ? num.

Constant symbols: There three syntactically different types of constants: symbolic constants
denoted by finite sequences of alpha-numeric characters plus (not starting with ?); numeric
constants represented according to the usual arithmetic rules; and ASCII character strings being
any symbol combination enclosed in simple quotes.

For example: a, Warehouse 01, 1, 25, 35.0, ’s89 54h ’, ’Q#G T ’.

First-order function symbols: These symbols have a name and an arity . The name is
symbolic constant and the arity is a numeric constant n ≥ 0. Constants can be seen as a functional
symbol of arity 0.

For instance: f/2, author of/1.

Constructors:

• The constants are constructors of arity 0,

• The following characters are used in class construction : [,], {, }, “ ,”, “ ;”, %, −>, ∗−>, =>,
∗=>, :, :: .

160 APPENDIX A. FRAME LOGIC – FLORA-2

Predicate symbols: These symbols have also a name and an arity. The name is a sym-
bolic constant and the arity is a number. The following examples present a general notation:
p/1, ancestor of /2.

Note there is no syntactical difference between functional and predicate symbols.
Logic operators:

• Negation: + classic Prolog negation as failure, not negation implementing well-founded se-
mantics [159].

• Disjunction: “ ;”

• Conjunction: “ ,”

• Implication: “:−”

Auxiliary symbols: Grouping symbols, “(”, “)”.

A.1.2 Terms

The class of first-order terms (FoT) of FL es the smallest class that satisfies the following require-
ments. Let t be a linear finite sequence of symbols, then:

1. If t is a variable, then t ∈ FoT,

2. If fm/0 is a function, then fm/0 ∈ FoT,

3. If fm/n is a function and t1, ..., tn ∈ FoT, then fm(t1, ..., tn) ∈ FoT.

FoTs will be used to name objects, methods and classes. Therefore they are called identi-
fier terms (term-id). Between the FoTs we can point out the basic FoTs (i.e. a FoT with no
occurrence of variables). The basic FoTs are used to identify objects (objeto-id). For example,
?x, warehouse, ’Ana’, siblings (?Parent), age of(siblings (?Parent)), are FoTs.

On the other hand, the class of higher-order terms (HoT), is the one ensuring the following
requirements:

1. If t ∈ FoT , then t ∈ HoT.

2. If t ∈ FoT and t1, ..., tn ∈ HoT, entonces t(t1, ..., tn) ∈HoT.

For instance: a, f(?X), ?x(s ,?x), ?x(f , ?Y)(?x, g(k)), are HoTs.
The HoTs allow the naming of (like the FoTs) objects, methods and classes. Moreover, HoTs

permit to name predicates. Observe that the HoTs are built from a wider set of symbols (with
respect to the FoTs), enabling the usage of variables or object schemes while naming a function.

A.1.3 Formulas

In order to describe the objects, FL uses formulas, formed of conjunctions and/or disjunctions:
of atomic formulas in an extended representation and/or molecules in a compact representation.
First we will see the more elementary (or atomic) object descriptions, called data atoms. In a second
place, we will introduce the data atoms that can be built using the the constructors previously
introduced.

The symbols O, M , V and T are called meta-variables, which represent any term that names
an object, a method or a value, depending on the place they take in the following descriptions.
The comments introduced are self explanatory.

Data atoms:

1. O[M −> V] – method M applied to object O provides the result V;

A.1. FL SYNTAX 161

2. O[M −>>{V1, ...,Vn}] – method M applied to object O provides as a result the set V1, ...,Vn.

We can point out a particular type of formula to represent objects, called molecule. In fact, a
molecule is a formula that represents an object in a more compact way.

Molecules:

1. A formula of the form:
O[M1Cons1V1], ..., O[MnConsnVn], with Consi ∈ {−>, −>>},
can be denoted in a compact way as,
O[M1Cons1V1, ...,MnConsnVn]

2. A formula of the form:
O[M1Cons1V1]; ...; O[MnConsnVn], with Consi ∈ {−>, −>>},
can be denoted in a compact way as,
O[M1Cons1V1; ...;MnConsnVn]

3. A formula of the form:
O[M1Cons1V1], V1[M2Cons2V2], ..., Vn−1[MnConsnVn]

can be denoted in a compact way as,
O[M1Cons1V1[M2Cons2V2[... Vn−1[MnConsnVn] ...]]]

4. A formula of the form:
O:C, O[M Cons V]

can be denoted in a compact way as,
O:C[M Cons V] or O[M Cons V]:C

Type atoms

The Type atoms describe the type T provided by a method M when applied to a class C. Type
atoms are also called signatures.

Type atoms (signatures)

1. C[M => T] – method M is applied to class C returning a value of type T,

2. C[M =>> T] – method M is applied to class C returning a set of values of type T.

For example,

1 per son [name => s t r i n g] .
2 paper [a u tho r s =>> s t r i n g] .

The signature molecules are defined using the same methodology of data molecules. For in-
stance,

1 per son [name => s t r i n g , s i b l i n g s (pe r son) =>> per son] .
2 paper [a u tho r s =>> person , t i t l e => s t r i n g] .

Classes

A type molecule defines partially a class. Therefore, the previously exposed examples are class
partial definitions, person and paper.

Class can be seen as the abstraction of a group of objects, or as the type of such objects. For
example,

1 Jane : pe r son .

162 APPENDIX A. FRAME LOGIC – FLORA-2

denotes that Jane is a person, and alternatively that Jane is a value of type persona.
In FL we can define the inheritance relation using the operator :: ,

1 woman : : pe r son .

this way we are specifying that the class woman is a subclass of person.
Furthermore, using the operators ∗−>, ∗−>>, ∗=> and ∗=>>, we can define inheritable prop-

erties and signatures, for example,

1 per son [name ∗=> s t r i n g , s i b l i n g s (pe r son) ∗=>> person , mother ∗=> woman] .

Having the previous definitions, the following rules define the concept of formula, where F is a
metavariable.

1. Let P/n be a n-ary predicate symbol and T1 . . . Tn be terms, then P (T1, . . . , Tn) is a formula;

2. Data atoms, molecules and predicates are formulas, signature atoms are also formulas;

3. If F is a formula, then notF is a formula;

4. If F1 and F2 are formulas, then (F1,F2) and (F1;F2) are formulas;

5. If F1 is a molecule and F2 is a formula, then F1:−F2 is a formula.

Some method examples

The methods can be defined not just as properties, but also through rules. This rules determine,
in a dynamic way, the result of the method in question.

1 ?p [age −> ?a] :− ?p : person ,
2 ?p [dob [y ea r −> ? yea r]] ,
3 p r e s e n t d a t e [y ea r −> ? pyea r] ,
4 ?a i s ? pyea r − ? yea r .

Note that this rule is applied each time a goal ?x[age −> ?a] appears. This goal causes the
evaluation of the rule only if ?x:person (the first thing verified in the rule). Therefore, this is a rule
that is only applied to objects of type person.

Virtual classes

Virtual classes are classes which compute their members in a dynamic way, using rules. These
rules evaluate whether a certain object belongs or not to the class in question. For instance,

1 ?x : t a l l p e r s o n :− ?x : persona , ? x [h e i gh t −> ?h] , ?h > 1 . 8 0 .

As can be seen, this example defines the class of tall person s, which is formed from the persons
with height grater that 1.80.

A.1.4 Higher-Order Logic

Higher-Order Logic (HOL), in FL, allows us to represent functor terms (including object-id) and
predicates. In HOL, complex terms (HoT) may appear wherever function term can appear, for
example, group(?x)(?y, ?z) is a HoT, that belongs to HOL, where the function symbol is the term
group(?x). Variables in HOL can take values on the set of terms, predicates, functions and even
atomic formulas.

Using this potentiality we can, for instance, implement an algorithm capable of computing the
transitive closure of any transitive binary relation.

1 t c l o s u r e (? p) (? x , ? y) :− ?p (? x , ? y) .
2 t c l o s u r e (? p) (? x , ? y) :− ?p (? x , ? z) , t c l o s u r e (? p) (? z , ?y) .

A.1. FL SYNTAX 163

Note that this predicate is parametrized using the name of the relation of which we want to
find the closure. Also, observe that this predicate is highly prone to go into an infinite loop if the
relation has some symmetry. This problem is avoided in FLORA-2 , due to the table mechanism
[159], which stores the previously computed terms, saving the system from processing them again.

