10 research outputs found

    A novel direct power control for open-winding brushless doubly-fed reluctance generators fed by dual two-level converters using a common DC bus

    Get PDF
    A new direct power control (DPC) strategy for open-winding brushless doubly-fed reluctance generators (BDFRGs) with variable speed constant frequency is proposed. The control winding is open-circuited and fed by dual traditional two-level three phase converters using a common DC bus, and the DPC strategy aiming at maximum power point tracking and common mode voltage elimination is designed. Compared to the traditional three-level converter systems, the DC bus voltage, the voltage rating of power devices and capacity of the single two-level converter are all reduced by 50% while the reliability, redundancy and fault tolerance of the proposed system still greatly improved. Consequently its effectiveness is evaluated by simulation tests on a 42 kW prototype generator in MATLAB/SIMULINK

    Super-twisting sliding mode control for brushless doubly fed reluctance generator based on wind energy conversion system

    Get PDF
    Introduction. Recently, wind power generation has grown at an alarming rate in the past decade and will continue to do so as power electronic technology continues to advance. Purpose. Super-twisting sliding mode control for brushless doubly-fed reluctance generator based on wind energy conversion system. Methods. This paper deals with the robust power control of a grid-connected brushless doubly-fed reluctance generator driven by the variable speed wind turbine using a variable structure control theory called sliding mode control. The traditional sliding mode approach produces an unpleasant chattering phenomenon that could harm the system. To eliminate chattering, it is necessary to employ a high-order sliding mode controller. The super-twisting algorithm is one type of nonlinear control presented in order to ensure the effectiveness of the control structure we tested these controllers in two different ways reference tracking, and robustness. Results. Simulation results using MATLAB/Simulink have demonstrated the effectiveness and robustness of the super-twisting sliding mode controller.Вступ. В останнє десятиліття виробництво вітрової енергії зростало загрозливими темпами і продовжуватиме зростати у міру розвитку технологій силової електроніки. Мета. Управління ковзним режимом суперскручування для реактивного безщіткового генератора з подвійним живленням на основі системи перетворення енергії вітру. Методи. У цій статті розглядається надійне керування потужністю підключеного до мережі безщіткового реактивного генератора з подвійним живленням, що приводиться в дію вітряною турбіною зі змінною швидкістю, з використанням теорії управління зі змінною структурою, яка називається керуванням в ковзному режимі. Традиційний підхід зі ковзним режимом створює неприємне явище вібрації, що може зашкодити системі. Для усунення вібрації необхідно використовувати регулятор ковзного режиму високого порядку. Алгоритм суперскручування - це один із типів нелінійного управління, представлений для забезпечення ефективності структури управління. Ми протестували ці контролери двома різними способами: відстеженням посилань та надійністю. Результати моделювання з використанням MATLAB/Simulink продемонстрували ефективність та надійність контролера ковзного режиму суперскручування

    Sensorless adaptive control of brushless doubly-fed reluctance generators for wind power applications

    Get PDF
    A novel model reference adaptive system for the rotor position/speed estimation and sensorless operation of a brushless doubly fed reluctance generator with maximum power point tracking is presented. Its main advantage over the existing designs are the inherent robustness and stability afforded by the complete parameter independence of the reference model using only the measured currents of the converter-fed (secondary) winding. In addition, the respective stationary frame current components are estimated by the adaptive model using the voltage and current measurements of the grid-connected (primary) winding at line frequency, offering higher accuracy. The simulation and experimental results have demonstrated the excellent real and reactive power controller performance for typical operating characteristics of wind turbines

    Emerging Multiport Electrical Machines and Systems: Past Developments, Current Challenges, and Future Prospects

    Get PDF
    Distinct from the conventional machines with only one electrical and one mechanical port, electrical machines featuring multiple electrical/mechanical ports (the so-called multiport electrical machines) provide a compact, flexible, and highly efficient manner to convert and/or transfer energies among different ports. This paper attempts to make a comprehensive overview of the existing multiport topologies, from fundamental characteristics to advanced modeling, analysis, and control, with particular emphasis on the extensively investigated brushless doubly fed machines for highly reliable wind turbines and power split devices for hybrid electric vehicles. A qualitative review approach is mainly adopted, but strong efforts are also made to quantitatively highlight the electromagnetic and control performance. Research challenges are identified, and future trends are discussed

    Dynamic Modeling and Control of BDFRG under Unbalanced Grid Conditions

    Get PDF
    The Brushless Doubly-Fed Reluctance Generator (BDFRG) is a potential alternative to the Doubly Fed Induction Generator (DFIG) in wind power applications owing to its reasonable cost, competitive performance, and high reliability. In comparison with the Brushless Doubly-Fed Induction Generator (BDFIG), the BDFRG is more efficient and easier to control owing to the cage-less rotor. One of the most preferable advantages of BDFRG over DFIG is the inherently better performance under unbalanced grid conditions. The study conducted in this paper showed that conventional vector control of the BDFRG results in excessive oscillations of the primary active/reactive power, electromagnetic torque, and primary/secondary currents in this case. In order to address such limitations, this paper presented a new control strategy for the unbalanced operation of BDFRG-based wind generation systems. A modified vector control scheme was proposed with the capability to control the positive and the negative sequences of the secondary currents independently, thus greatly reducing the adverse implications of the unbalanced supply. The controller performance has been validated by simulations using a 1.5 MW BDFRG dynamical model built upon the positive and negative sequence equations. The main benefits of the new control strategy are quantified in comparison with conventional PI current control design

    A comprehensive review on brushless doubly-fed reluctance machine

    Get PDF
    © 2021 by the authors. Licensee MDPI, Basel, Switzerland. The Brushless Doubly-Fed Reluctance Machine (BDFRM) has been widely investigated in numerous research studies since it is brushless and cageless and there is no winding on the rotor of this emerging machine. This feature leads to several advantages for this machine in comparison with its induction counterpart, i.e., Brushless Doubly-Fed Induction Machine (BDFIM). Less maintenance, less power losses, and also more reliability are the major advantages of BDFRM compared to BDFIM. The design complexity of its reluctance rotor, as well as flux patterns for indirect connection between the two windings mounted on the stator including power winding and control winding, have restricted the development of this machine technology. In the literature, there is not a comprehensive review of the research studies related to BDFRM. In this paper, the previous research studies are reviewed from different points of view, such as operation, design, control, transient model, dynamic model, power factor, Maximum Power Point Tracking (MPPT), and losses. It is revealed that the BDFRM is still evolving since the theoretical results have shown that this machine operates efficiently if it is well-designed

    A comprehensive review on brushless doubly-fed reluctance machine

    Get PDF
    The Brushless Doubly-Fed Reluctance Machine (BDFRM) has been widely investigated in numerous research studies since it is brushless and cageless and there is no winding on the rotor of this emerging machine. This feature leads to several advantages for this machine in comparison with its induction counterpart, i.e., Brushless Doubly-Fed Induction Machine (BDFIM). Less maintenance, less power losses, and also more reliability are the major advantages of BDFRM compared to BDFIM. The design complexity of its reluctance rotor, as well as flux patterns for indirect connection between the two windings mounted on the stator including power winding and control winding, have restricted the development of this machine technology. In the literature, there is not a comprehensive review of the research studies related to BDFRM. In this paper, the previous research studies are reviewed from different points of view, such as operation, design, control, transient model, dynamic model, power factor, Maximum Power Point Tracking (MPPT), and losses. It is revealed that the BDFRM is still evolving since the theoretical results have shown that this machine operates efficiently if it is well-designed

    Vector Control Methods for Brushless Doubly Fed Reluctance Machines

    No full text
    This paper is concerned with flux and voltage vector-oriented control of a promising brushless doubly fed reluctance machine (BDFRM) for generator and drive systems with limited adjustable speed ranges (e.g., wind turbines and/or pump drives). The BDFRM has been receiving increasing attention because of the low capital and operation and maintenance costs afforded by using partially rated power electronics and the high reliability of brushless design. Furthermore, it has the potential to offer competitive performance to its well-known slip-ring counterpart, i.e., doubly fed induction generator. The experimental studies have evaluated the control algorithms on a custom-built BDFRM in both motoring and generating modes under the maximum torque per inverter ampere conditions. The test results achieved should make a step forward toward the development of robust generic controllers for doubly excited machines

    Brushless doubly-fed reluctance machine modeling, desing and optimization

    Get PDF
    Tese (doutorado) - Universidade Federal de Santa Catarina, Centro Tecnológico, Programa de Pós-Graduação em Engenharia Elétrica, Florianópolis, 2015.Esta tese aborda a modelagem, o projeto e a otimização, com validação experimental, de máquinas de relutância duplamente alimentadas sem escovas (BDFRM) para sistemas de geração de energia eólica. O objetivo principal dela é de contribuir para o domínio de técnicas de projeto otimizado para a BDFRM através da proposição de uma metodologia baseada em diferentes níveis de modelagem e em otimização. Discute-se como técnicas de otimização podem ser aplicadas em todas as fases de desenvolvimento com objetivos distintos. Especificamente, a metodologia proposta se concentra na definição e na solução iterativa de problemas de otimização com restrições nas saídas utilizando um algoritmo determinístico acoplado a modelos semi-analíticos de diferentes níveis. Como conclusão geral, pode-se afirmar que a BDFRM é potencialmente uma boa candidata para ser utilizada em sistemas de geração de energia eólica. Contudo, aspectos técnicos e econômicos sobre essa escolha devem ainda ser avaliados, comparando-se as diferentes topologias existentes sob o mesmo enfoque metodológico.Abstract : This thesis addresses the modeling, design and optimization with experimental validation of the Brushless Doubly-Fed Reluctance Machine (BDFRM) for wind power systems. Its main goal is to contribute on mastering the BDFRM optimized design by proposing a methodological approach based on different modeling levels and on optimization. More precisely, it draws its attention on setting the optimization problem and on the iterative solution of a constrained inputs/outputs problem by using a deterministic algorithm. As a general conclusion, the results show that the BDFRM is potentially a good candidate to be used in wind power systems. However, the technical and economic aspects on this choice must be still assessed, analyzing and comparing the overall system solution of distinct topologies within the same framework
    corecore