65,903 research outputs found

    Vector connectivity in graphs

    Get PDF

    AKLT Models with Quantum Spin Glass Ground States

    Full text link
    We study AKLT models on locally tree-like lattices of fixed connectivity and find that they exhibit a variety of ground states depending upon the spin, coordination and global (graph) topology. We find a) quantum paramagnetic or valence bond solid ground states, b) critical and ordered N\'eel states on bipartite infinite Cayley trees and c) critical and ordered quantum vector spin glass states on random graphs of fixed connectivity. We argue, in consonance with a previous analysis, that all phases are characterized by gaps to local excitations. The spin glass states we report arise from random long ranged loops which frustrate N\'eel ordering despite the lack of randomness in the coupling strengths.Comment: 10 pages, 1 figur

    Fast Distributed PageRank Computation

    Full text link
    Over the last decade, PageRank has gained importance in a wide range of applications and domains, ever since it first proved to be effective in determining node importance in large graphs (and was a pioneering idea behind Google's search engine). In distributed computing alone, PageRank vector, or more generally random walk based quantities have been used for several different applications ranging from determining important nodes, load balancing, search, and identifying connectivity structures. Surprisingly, however, there has been little work towards designing provably efficient fully-distributed algorithms for computing PageRank. The difficulty is that traditional matrix-vector multiplication style iterative methods may not always adapt well to the distributed setting owing to communication bandwidth restrictions and convergence rates. In this paper, we present fast random walk-based distributed algorithms for computing PageRanks in general graphs and prove strong bounds on the round complexity. We first present a distributed algorithm that takes O\big(\log n/\eps \big) rounds with high probability on any graph (directed or undirected), where nn is the network size and \eps is the reset probability used in the PageRank computation (typically \eps is a fixed constant). We then present a faster algorithm that takes O\big(\sqrt{\log n}/\eps \big) rounds in undirected graphs. Both of the above algorithms are scalable, as each node sends only small (\polylog n) number of bits over each edge per round. To the best of our knowledge, these are the first fully distributed algorithms for computing PageRank vector with provably efficient running time.Comment: 14 page

    On the complexity of the vector connectivity problem

    Full text link
    We study a relaxation of the Vector Domination problem called Vector Connectivity (VecCon). Given a graph GG with a requirement r(v)r(v) for each vertex vv, VecCon asks for a minimum cardinality set SS of vertices such that every vertex v∈V∖Sv\in V\setminus S is connected to SS via r(v)r(v) disjoint paths. In the paper introducing the problem, Boros et al. [Networks, 2014] gave polynomial-time solutions for VecCon in trees, cographs, and split graphs, and showed that the problem can be approximated in polynomial time on nn-vertex graphs to within a factor of log⁡n+2\log n+2, leaving open the question of whether the problem is NP-hard on general graphs. We show that VecCon is APX-hard in general graphs, and NP-hard in planar bipartite graphs and in planar line graphs. We also generalize the polynomial result for trees by solving the problem for block graphs.Comment: 14 page

    Graph-Based Analysis and Visualisation of Mobility Data

    Full text link
    Urban mobility forecast and analysis can be addressed through grid-based and graph-based models. However, graph-based representations have the advantage of more realistically depicting the mobility networks and being more robust since they allow the implementation of Graph Theory machinery, enhancing the analysis and visualisation of mobility flows. We define two types of mobility graphs: Region Adjacency graphs and Origin-Destination graphs. Several node centrality metrics of graphs are applied to identify the most relevant nodes of the network in terms of graph connectivity. Additionally, the Perron vector associated with a strongly connected graph is applied to define a circulation function on the mobility graph. Such node values are visualised in the geographically embedded graphs, showing clustering patterns within the network. Since mobility graphs can be directed or undirected, we define several Graph Laplacian for both cases and show that these matrices and their spectral properties provide insightful information for network analysis. The computation of node centrality metrics and Perron-induced circulation functions for three different geographical regions demonstrate that basic elements from Graph Theory applied to mobility networks can lead to structure analysis for graphs of different connectivity, size, and orientation properties.Comment: 19 pages, 7 figure

    Representation and generation of plans using graph spectra

    Get PDF
    Numerical comparison of spaces with one another is often achieved with set scalar measures such as global and local integration, connectivity, etc., which capture a particular quality of the space but therefore lose much of the detail of its overall structure. More detailed methods such as graph edit distance are difficult to calculate, particularly for large plans. This paper proposes the use of the graph spectrum, or the ordered eigenvalues of a graph adjacency matrix, as a means to characterise the space as a whole. The result is a vector of high dimensionality that can be easily measured against others for detailed comparison. Several graph types are investigated, including boundary and axial representations, as are several methods for deriving the spectral vector. The effectiveness of these is evaluated using a genetic algorithm optimisation to generate plans to match a given spectrum, and evolution is seen to produce plans similar to the initial targets, even in very large search spaces. Results indicate that boundary graphs alone can capture the gross topological qualities of a space, but axial graphs are needed to indicate local relationships. Methods of scaling the spectra are investigated in relation to both global local changes to plan arrangement. For all graph types, the spectra were seen to capture local patterns of spatial arrangement even as global size is varied
    • 

    corecore