71,148 research outputs found

    Stochastic embedding of dynamical systems

    Full text link
    Most physical systems are modelled by an ordinary or a partial differential equation, like the n-body problem in celestial mechanics. In some cases, for example when studying the long term behaviour of the solar system or for complex systems, there exist elements which can influence the dynamics of the system which are not well modelled or even known. One way to take these problems into account consists of looking at the dynamics of the system on a larger class of objects, that are eventually stochastic. In this paper, we develop a theory for the stochastic embedding of ordinary differential equations. We apply this method to Lagrangian systems. In this particular case, we extend many results of classical mechanics namely, the least action principle, the Euler-Lagrange equations, and Noether's theorem. We also obtain a Hamiltonian formulation for our stochastic Lagrangian systems. Many applications are discussed at the end of the paper.Comment: 112 page

    Spacetime deployments parametrized by gravitational and electromagnetic fields

    Full text link
    On the basis of a "Punctual" Equivalence Principle of the general relativity context, we consider spacetimes with measurements of conformally invariant physical properties. Then, applying the Pfaff theory for PDE to a particular conformally equivariant system of differential equations, we make explicit the dependence of any kind of function describing a "spacetime deployment", on n(n+1) parametrizing functions, denoting by n the spacetime dimension. These functions, appearing in a linear differential Spencer sequence and determining gauge fields of spacetime deformations relatively to a "substrat spacetime", can be consistently ascribed to unified electromagnetic and gravitational fields, at any spacetime dimensions n greater or equal to 4.Comment: 26 pages, LaTeX2e, file macro "suppl.sty", correction in the definition of germs and local ring

    A parametrix for quantum gravity?

    Full text link
    In the sixties, DeWitt discovered that the advanced and retarded Green functions of the wave operator on metric perturbations in the de Donder gauge make it possible to define classical Poisson brackets on the space of functionals that are invariant under the action of the full diffeomorphism group of spacetime. He therefore tried to exploit this property to define invariant commutators for the quantized gravitational field, but the operator counterpart of such classical Poisson brackets turned out to be a hard task. On the other hand, the mathematical literature studies often an approximate inverse, the parametrix, which is, strictly, a distribution. We here suggest that such a construction might be exploited in canonical quantum gravity. We begin with the simplest case, i.e. fundamental solution and parametrix for the linear, scalar wave operator; the next step are tensor wave equations, again for linear theory, e.g. Maxwell theory in curved spacetime. Last, the nonlinear Einstein equations are studied, relying upon the well-established Choquet-Bruhat construction, according to which the fifth derivatives of solutions of a nonlinear hyperbolic system solve a linear hyperbolic system. The latter is solved by means of Kirchhoff-type formulas, while the former fifth-order equations can be solved by means of well-established parametrix techniques for elliptic operators. But then the metric components that solve the vacuum Einstein equations can be obtained by convolution of such a parametrix with Kirchhoff-type formulas. Some basic functional equations for the parametrix are also obtained, that help in studying classical and quantum version of the Jacobi identity.Comment: 27 page

    Continuum thermodynamics of chemically reacting fluid mixtures

    Get PDF
    We consider viscous, heat conducting mixtures of molecularly miscible chemical species forming a fluid in which the constituents can undergo chemical reactions. Assuming a common temperature for all components, we derive a closed system of partial mass and partial momentum balances plus a mixture balance of internal energy. This is achieved by careful exploitation of the entropy principle and requires appropriate definitions of absolute temperature and chemical potentials, based on an adequate definition of thermal energy excluding diffusive contributions. The resulting interaction forces split into a thermo-mechanical and a chemical part, where the former turns out to be symmetric in case of binary interactions. For chemically reacting systems and as a new result, the chemical interaction force is a contribution being non-symmetric outside of chemical equilibrium. The theory also provides a rigorous derivation of the so-called generalized thermodynamic driving forces, avoiding the use of approximate solutions to the Boltzmann equations. Moreover, using an appropriately extended version of the entropy principle and introducing cross-effects already before closure as entropy invariant couplings between principal dissipative mechanisms, the Onsager symmetry relations become a strict consequence. With a classification of the factors in the binary products of the entropy production according to their parity--instead of the classical partition into so-called fluxes and driving forces--the apparent anti-symmetry of certain couplings is thereby also revealed. If the diffusion velocities are small compared to the speed of sound, the Maxwell-Stefan equations follow in the case without chemistry, thereby neglecting wave phenomena in the diffusive motion. This results in a reduced model with only mass being balanced individually. In the reactive case ..
    • …
    corecore