4 research outputs found

    Variations on Noetherianness

    Full text link
    In constructive mathematics, several nonequivalent notions of finiteness exist. In this paper, we continue the study of Noetherian sets in the dependently typed setting of the Agda programming language. We want to say that a set is Noetherian, if, when we are shown elements from it one after another, we will sooner or later have seen some element twice. This idea can be made precise in a number of ways. We explore the properties and connections of some of the possible encodings. In particular, we show that certain implementations imply decidable equality while others do not, and we construct counterexamples in the latter case. Additionally, we explore the relation between Noetherianness and other notions of finiteness.Comment: In Proceedings MSFP 2016, arXiv:1604.0038

    Type-Theoretic Constructions of the Final Coalgebra of the Finite Powerset Functor

    Get PDF
    The finite powerset functor is a construct frequently employed for the specification of nondeterministic transition systems as coalgebras. The final coalgebra of the finite powerset functor, whose elements characterize the dynamical behavior of transition systems, is a well-understood object which enjoys many equivalent presentations in set-theoretic foundations based on classical logic. In this paper, we discuss various constructions of the final coalgebra of the finite powerset functor in constructive type theory, and we formalize our results in the Cubical Agda proof assistant. Using setoids, the final coalgebra of the finite powerset functor can be defined from the final coalgebra of the list functor. Using types instead of setoids, as it is common in homotopy type theory, one can specify the finite powerset datatype as a higher inductive type and define its final coalgebra as a coinductive type. Another construction is obtained by quotienting the final coalgebra of the list functor, but the proof of finality requires the assumption of the axiom of choice. We conclude the paper with an analysis of a classical construction by James Worrell, and show that its adaptation to our constructive setting requires the presence of classical axioms such as countable choice and the lesser limited principle of omniscience

    Finiteness in cubical type theory

    Get PDF
    This thesis will explore and explain finiteness in constructive mathematics: using this setting, it will also serve as an introduction to constructive mathematics in Cubical Agda, and some related topics

    Variations on Noetherianness

    No full text
    corecore