\‘ ‘ ORA Cork Open Research Archive
[Cartlann Taighde Oscailte Chorcai

UCC Library and UCC researchers have made this item openly available.
Please let us know how this has helped you. Thanks!

Title Finiteness in cubical type theory

Author(s) Kidney, Donnacha Oisin

Publication date 2020-09

Original citation Kidney, D. O. 2020. Finiteness in cubical type theory MRes Thesis,

University College Cork.

Type of publication |Masters thesis (Research)

Rights © 2020, Donnacha Oisin Kidney.

https://creativecommons.org/licenses/by-sa/4.0/

Item downloaded http://hdl.handle.net/10468/11338
from

Downloaded on 2021-11-27T16:43:247

University College Cork, Ireland
Colaiste na hOllscoile Corcaigh

https://libguides.ucc.ie/openaccess/impact?suffix=11338&title=Finiteness in cubical type theory
https://creativecommons.org/licenses/by-sa/4.0/
http://hdl.handle.net/10468/11338

OLLSCOIL NA HEIREANN, CORCAIGH
NATIONAL UNIVERSITY OF IRELAND, CORK

Finiteness in Cubical Type Theory

thesis submitted by

Donnacha QOisin Kidney

for the degree of Master of Science

University College Cork
School of Computer Science and Information Technology

Supervisors Head of Department
Prof. Gregory Provan Prof. Cormac SREENAN
Dr. Nicolas Wu

September 2020

In memory of Joseph Manning

Contents

Contents 2
1 Introduction 5
1.1 Overview L e 6
1.2 Contributions L 7
1.3 WhatisaProof? L L 9
1.4 Homotopy Type Theory 10
2 Programming and Proving in Cubical Agda 13
2.1 Basic Functional ProgramminginAgda 14
22 SomeFunctions 16
2.3 AnExpression Evaluator 19
2.4 Safe Evaluation With Maybe 20
2.5 Statically Proving the EvaluationisSafe 22
2.6 Equalities 25
2.7 Some Proofsof Equality 26
28 Quotients 26
29 BasicTypeFormers 27
2.10 The Menagerie of Foundational Theories 29
2.11 Comparing Classical And Constructive Proofsin Agda 30
2.12 Computational Behaviour 31
3 Finiteness Predicates 33
3.1 Split Enumerability L. 34
3.2 Manifest Bishop Finiteness 37
3.3 Cardinal Finiteness 40
3.4 Manifest Enumerability o oL 45
3.5 KuratowskiFiniteness oL 47
4 Topos 51
4.1 CategoriesinHoTT 51
42 The CategoryofSets 52
43 Closure vt e 53
4.4 The Absence of the Subobject Classifier 56

CONTENTS

5 Search
5.1 How to make the Typechecker do Automation
52 Omniscience i e e e
5.3 An Interface for Proof Automation
54 Countdown.

6 Countably Infinite Types
6.1 Countability
6.2 Closure e

7 Related Work
8 Conclusion

Bibliography

59
60
61
62
67

73
73
74

77

79

81

CHAPTER

Introduction

Finiteness in classical mathematics is a simple, almost uninteresting subject. There
are many interesting finite things, mind you, and many of those things are finite for
interesting reasons; finiteness itself, though, is downright boring.

Part of the reason for the simplicity of finiteness is that there’s really only one
notion of finiteness: we say that some set is finite if it has a cardinality equal to some
natural number. If we want to prove that something is finite we have at our disposal
a rich array of techniques and insights: we could show that it has a surjection from
another finite set, or that it’s equivalent to another finite set. We could show that
any infinite list of its elements must contain duplicates (this is called “streamless”),
or that there is a finite list which contains all of its elements. Once proven, though,
all of that complexity collapses.

In constructive mathematics the story is a little different. When we prove some-
thing constructively, often the thing proven retains components of the proof itself.
Take the proposition P “there is a prime number greater than 100”.

P = 3n.isPrime(n) A n > 100 (1.1)

A classical proof of the above proposition can avoid naming an n: if we know there
are infinite primes, for instance, it is not too hard to deduce that there must be some
that are larger than 100.

The constructive existential, on the other hand, is represented by a concrete pair.
In the case of the proposition above, the first component of this pair is n, and the
second is a proof that that n adheres to the predicate (isPrime(n) An > 100 in this
case). As such, modulo some caveats we will explain soon, there is no way to provide
a proof of P which doesn’t reveal the particular prime number we had in mind while
proving.

This phenomenon is what makes finiteness in constructive mathematics so much
richer and more complex than classical finiteness. Proving that something is “stream-
less” proves something fundamentally different to showing a bijection with a finite

1.1

6 CHAPTER 1. INTRODUCTION

set. The other sense in which proofs in constructive mathematics are objects which
can be manipulated is that, when these proofs are written on a computer, they of-
ten can be executed as computer programs. The program “there is a prime number
greater than 100” isn’t a terribly useful one, but we will see some examples which
are later on.

This thesis will explore and explain finiteness in constructive mathematics: us-
ing this setting, it will also serve as an introduction to constructive mathematics in
Cubical Agda (Vezzosi et al., 2019), and some related topics.

An exploration of finiteness also provides ample opportunity to explain much
of the fundamentals of Homotopy Type Theory (Univalent Foundations Program,
2013): this theory is a foundational system for mathematics, which has at its core the
univalence axiom. We will dive much more into this axiom later on, but for now know
that it gives a formal grounding to say “if two types are isomorphic, it is possible to
treat them as the same” We could, for instance, have two different representations
for the natural numbers (binary and unary possibly): the univalence axiom allows us
to say “all of the things we have proven about the unary numbers are also true about
the binary numbers”. This is an essential technique in most areas of mathematics,
which had no formal basis in type theory until recently.

All of our work will be formalised in Agda (Norell, 2008), a dependently typed,
pure, functional programming language which can be used as a proof assistant. Proof
assistants are computer programs which verify the correctness of formal proofs.
Proofs in Agda are programs which can be run: its syntax is quite similar to Haskell’s.
A recent extension to Agda, Cubical Agda (Vezzosi et al., 2019), allows Agda to com-
pile and typecheck programs written in Cubical Type Theory (Cohen et al., 2016):
this type theory gives a computational interpretation of the univalence axiom. By
“computational interpretation” here we mean that we will be able to run the pro-
grams we write which rely on this axiom.

This thesis is aimed at individuals with some knowledge of Haskell (although
extensive knowledge of Haskell is not an absolute necessity) and a curiosity about
dependent types. We will explain the basics of dependently-typed programming in
Agda, how to write programs and how to write proofs, and we will explain something
of the internals of dependent type theory along the way.

Overview

This thesis is structured as follows: in Chapter 2 we will introduce Agda, its syntax,
and quickly bring reader up to speed with how to write programs in it. We will
also begin to talk about some more foundational type-theory concepts, and we will
explain a little about Agda’s particular interpretation of HoTT and CuTT. As we
mentioned, some programming experience in Haskell is useful, although not strictly
speaking necessary. Certainly no knowledge of dependent type theory is required.
In Chapter 3 we will look in-depth at the focus of this thesis: finiteness. As
mentioned finiteness in constructive mathematics is a good deal more complex than
finiteness classically: in this thesis alone we will see five separate definitions of
“finiteness”, each different, and each with reasonable claim to being the “true” defi-

1.2

1.2. CONTRIBUTIONS 7

nition of finiteness. We will see which predicates imply each other, what extra infor-
mation we can derive from the predicates, and what types are included or excluded
from each. Along the way we will learn a little more about HoTT and univalence,
and we’ll see some practical and direct uses of the univalence axiom.

In Chapter 4 we will look a little at a slightly more advanced application of HoT T:
topos theory. A topos is quite a complex, abstract object: it behaves something like
the category of sets, although it is more general. For us, showing that sets in Ho-
motopy Type Theory form a topos (well, nearly) will give us access to the general
language of toposes.

In Chapter 5 we will combine everything from the previous chapters into a (some-
what) practical program for proof search. This program will automatically construct
proofs of predicates over finite domains. We will demonstrate the program with the
countdown problem (Hutton, 2002): this is a somewhat famous puzzle where players
are given five numbers and a target, and have to construct an expression using some
or all of the supplied numbers which evaluates to the target.

Finally, in Chapter 6 we will see how we can adapt the work of previous chapters
to the setting of countably infinite types. Countably infinite are those types that
have a bijection with the natural numbers: we will see that we can develop a similar
framework of proofs for them as we did for the finite types (with some important
differences).

Contributions

Since much of this thesis is dedicated to exploring well-researched topics from a new
perspective, some of the contributions can be difficult to tease out. There are three
types of valuable and useful work provided in this thesis:

Exposition of Already-Existing Work Many explorations of dependent types in
programming follow the well-trodden path of describing length-indexed vec-
tors, explaining one or two aspects of totality, and perhaps building up to a
proof that reverse o reverse = id. One of the aims of this thesis is to pro-
vide a different introduction to dependent types which also touches on some
of the core aspects of HoTT, a topic missing much introductory material for
functional programmers.

Formalised Proofs of Theorems proved Informally Elsewhere “Informal”here
means not machine checked. All theorems stated in this thesis are proved for-
mally in Cubical Agda and machine-checked: the full code for these proofs
is available online!. Formal proofs can be quite different from their informal
counterparts, and it is usually not trivial to formalise a pen-and-paper proof.
Furthermore, often in formalising a proof new insights about the proof are
revealed.

'https://doisinkidney.com/code/masters-thesis/README.html

8 CHAPTER 1. INTRODUCTION

New Fundamental Theoretical Contributions Several of the constructions pre-
sented in this thesis are in fact novel, and some of the theorems proven have
not been proven (either formally or informally) elsewhere.

What follows is an accounting of the specific technical contributions of this the-
sis:

A classification of five finiteness predicates in Cubical Type Theory. Four of
these predicates have been previously defined and described in Homotopy
Type Theory (Frumin et al., 2018), and two in Martin-Lof type theory (Fru-
min et al., 2018), this work defines the same predicates in the slightly different
setting of Cubical Type Theory. This has the advantage of giving the proofs
computational content, a feature used in Section 5. One of the predicates is
new (manifest enumerability), and has not been described before.

Proof of implication between finiteness predicates. Some of these proofs have
been seen in the literature before (from cardinal finiteness to manifest Bishop
finiteness is present informally in Yorgey (2014), and formally (though in HoTT)
in Frumin et al. (2018)). Theorem 3.7 in particular is new, to the best of our
knowledge.

Proof of relation between listed and Fin-based finiteness predicates. There are
broadly two different ways to define finiteness predicates: through a list-based
approach, or through relations with a finite prefix of the natural numbers. Our
container-based treatment of the finiteness predicates is novel, to the best of
our knowledge, and allows us to prove that the two forms of the predicates are
equivalent, which is also novel.

Proof that Sets form a II-Pretopos. This is a proof that has been presented be-
fore, in both Univalent Foundations Program (2013) and Rijke and Spitters
(2015): here we present the first machine-checked version of this proof.

Proof that Kuratowski Finite Sets form a II-Pretopos (Theorem 4.4). Thisisa
new proof, both formally and informally.

A library for proof search. While several libraries for proof search based on finite-
ness exist in dependently-typed programming languages (Firsov and Uustalu,
2015), the one that is presented here is strictly more powerful than those that
came before as it is capable of including functions in the search space. This is
a direct consequence of the use of Cubical Type Theory: in MLTT functions
would not be able to be included at all, and in HoTT the univalence axiom
would not have computational content, so a proof search library (structured
in the way presented here) would not function. There are other more minor
contributions of this library: they are described in detail in section 5.

A verified solver for the countdown problem. The countdown problem (Hutton,
2002) has been studied from a number of angles in functional programming
Bird and Mu (2005); ours is the first verified solver of the problem.

1.3

1.3. WHAT IS A PROOF? 9

What is a Proof?

Constructive mathematics is, fundamentally, a different way of thinking about proofs.
Classically we have two different universes of things: we have objects, like the natu-
ral numbers, or the rings; and the proofs on those things. Constructive mathematics
joins those two worlds together.

Practically speaking this means that in constructive mathematics we can’t always
“prove the existence of” some thing; instead we simply provide that thing. We men-
tioned an example where this comes into play: to prove that something is finite we
might want to prove that it is in bijection with some other finite type. Constructively,
this proof is a bijection.

Constructive mathematics is also deeply tied to computers. Dependently-typed
programming languages, like Agda (Norell, 2008), Coq (Team, 2020), or Idris (Brady,
2013), allow us to compile and run our proofs. If we provide a bijection between two
types in Agda we also provide a function to and from each type. Agda is therefore
both a formal language for constructive proofs and a programming language which
can run those proofs.

This relation between proofs and programs is often called the Curry-Howard
correspondence. Under this framework, propositions in the logical sense correspond
to types in the programming sense (Wadler, 2015); proofs of those propositions then
correspond to programs which inhabit those types. As an example we have from
propositional logic the following:

ANB
A
This is conjunction elimination: if we know A and B, we also know A.

Via Curry-Howard, the type corresponding to conjunction is in fact the pair (or
tuple). A and B are also types. So, the above proposition, as a type, is the following:

(a,b) — a

And the proof which inhabits this type? It is the function often called fst: the
selector for the first component of the pair.

fst::(a,b) — a
fst(x,y) = x

Occasionally we don’t want to provide the extra information that constructive-
ness demands: it is occasionally useful to say “there exists some x which satisfies
some predicate P” without revealing the value of x. In other words, we want to
retrieve something of the classical notion of an existential in a constructive setting.
Later, for instance, we will begin to work with the category of finite sets. The objects
of this category are (of course) finite sets: however, if our notion of “finite” is tied
to an explicit bijection, that means that the type of “things which are finite” is pairs
of types and bijections between those types. Since there are n! bijections between a
type of cardinality n and any other, this means that for every such type we have n!

1.4

Definition 1.1
(ZFC)

10 CHAPTER 1. INTRODUCTION

different objects, instead of just 1. We’ll see a way to fix this problem with Homotopy
Type Theory.

The proofs we will provide in this thesis will be written in the syntax of Agda:
they are, however, all valid classical proofs. Constructive mathematics is a subset of
classical, after all. When we say “constructive” we really just mean that these proofs
avoid reliance on certain axioms like the law of the excluded middle, or the axiom of
choice.

Homotopy Type Theory

While this thesis can serve as an introduction to proofs in dependent type theory
generally, it can also serve as an introduction to Homotopy Type Theory (Univalent
Foundations Program, 2013). HoTT is both a type theory and a foundational theory
for mathematics. As a type theory it can be thought of as an alternative to things
like Martin-Lof type theory; as a foundational theory it can be compared to other
foundational theories like Zermelo—Fraenkel set theory.

Zermelo-Fraenkel set theory with choice is a foundational theory for mathematics,
which is based on set theory. It is the most commonly-used foundational theory
(although it is important to stress that most modern mathematics is foundation-
agnostic).

The Axiom of Choice is a non-constructive axiom which is independent of the
rest of Zermelo-Fraenkel set theory: when included the theory is often abbreviated
to “ZFC”.

A full exploration of ZFC and its axioms is beyond the scope of this thesis; we
will, see, however, a definition of the axiom of choice in CuTT (Definition 4.1).

Central to the theory is the univalence axiom. This axiom states that isomor-
phism implies equality: more precisely, that “equivalence” is equivalent to equality.
We haven’t defined equivalence yet (and we haven’t defined equality rigorously yet),
but the core thrust of the axiom is that it gives proofs of isomorphism all the power
of proofs of equality.

From a proof perspective, this is quite useful for transporting proofs from one do-
main to another: for instance, a proof that some type A is finite can be transported
to a proof that any type isomorphic to A is finite. From a programming perspective,
this is quite useful for transporting programs: an API defined on some type can sud-
denly be reused, without change, on another type as long as the latter is isomorphic
to the former. It’s worth noting that the technique mentioned here is used quite per-
vasively in everyday mathematics: it’s just that foundational systems (like MLTT)
could not justify its use.

The other addition that HoTT gives to traditional type theory is that of Higher
Inductive Types. Traditional inductive types are defined by listing their constructors:
with HITs we can also list the equalities they must satisfy. The most obvious imme-
diate use of this is quotient types: another concept which is regarded as standard in
normal mathematics, but somewhat embarrassingly missing from most constructive
theories. In truth, the fact that HITs can be used to describe simple set quotients is

1.4. HOMOTOPY TYPE THEORY 11

almost incidental: in HoTT they are a far more powerful, general tool, which can be
used to define a wide variety of essential constructions like the circle, torus, etc. This
thesis isn’t very interested in these homotopy-focused topics, however it is worth
mentioning as it is one of HoTT’s great strengths.

Finally, we have to explain where Cubical Type Theory (Cohen et al., 2016) fits in.
Strictly speaking in this thesis we will not work directly in HoTT: we work instead in
CuTT, which is very closely related, but not quite the same, as HoTT. CuTT’s main
departure from HoTT is in its representation of equalities, which it calls “paths”. In
HoTT (and Martin-Lof type theory, which we will describe later) equalities are an
inductive type. In CuTT, paths behave like functions from the real line: an equality
x = y is a function which, when applied to 0, returns x, and when applied to 1,
returns y.

e X
(1.2)

y, 1=1

This different “implementation” of paths is central to how CuTT can give computa-
tional content to univalence, but it also slightly changes the way paths function.

There is one crucial difference between the two theories: in CuTT the univa-
lence “axiom” is in fact a theorem, with computational content. This means that
univalence is not a built-in, assumed to be true, but instead it’s actually derived from
other axioms in the system. Practically speaking it means that univalence has com-
putational content: i.e. if we see that two types are equal then we can actually derive
the isomorphism that that equality implies. As we’re using CuTT as a programming
language (in the form of Cubical Agda (Vezzosi et al., 2019)), this is an essential fea-
ture. It means that the proofs we write using univalence still correspond to programs
which can be run.

! To be absolutely correct we should not say that CuTT implements HoTT, as the two have some
subtle differences. While everything we can prove in HoTT can also be proven in CuTT, it is not the
case that one is a strict subset of the other. CuTT has many of the same features of HoTT, like HITs and
univalence, so almost all of the theory of HoTT applies to both (and indeed almost all of the univalent
foundations program applies to both), but there are some slight differences between the theories which
mean that some proofs which are valid HoT T are not valid in CuTT.

CHAPTER

Programming and Proving in
Cubical Agda

Agda (Norell, 2008) is a dependently-typed, pure, functional programming language
and proof assistant. In this chapter we will introduce the language with some basic
examples, and explain a little about how to program and prove in Agda. Some Haskell
knowledge will help, as much of the syntax (any many concepts) are similar, but it
is possible to struggle through without it. It is recommended to try out the code
examples in your own editor, or to look at them in the real Agda files in the source.
The source is rendered and structured to be read alongside this document: it can be
found at https://doisinkidney.com/code/masters-thesis/README.html.

Agda is first and foremost a functional programming language, similar in syn-
tax and design to Haskell. It is pure, meaning that it doesn’t allow undeclared side
effects, and lazy, meaning that expressions are not evaluated until they are needed
(although this has no effect on Agda’s semantics: since Agda is total, both lazy and
strict evaluation will result in the same output).

While Agda can be compiled (to Haskell, or to JavaScript), it is usually just type-
checked: this is because Agda is also a proof assistant. Programs written in Agda
correspond to proofs in the formal language of Martin-L6f Type Theory (Martin-Lof,
1980), in the style of “Propositions as Types” (Wadler, 2015). Types in Agda corre-
spond to formal propositions; the programs which inhabit those types correspond to
proofs of those propositions.

Proposition ¢~~~ Type
2 ?
proves inhabits
\ \
Proof e~ Program

13

2.1

(2.1)

14 CHAPTER 2. PROGRAMMING AND PROVING IN CUBICAL AGDA

Basic Functional Programming in Agda

The basic unit of functionality in Agda is the type. Let’s define a type: the type of
booleans (we include the equivalent code in Haskell on the right).

data Bool : Typey where data Bool :: Type where
false : Bool False :: Bool
true : Bool True :: Bool

There’s a lot of syntax wrapped up in this small snippet. In prose, it provides four
basic pieces of information:

1. We are defining a new data type.

2. Its name is Bool.

3. Bool is a Type, kind of thing.

4. There are two ways to construct values of type Bool: false and true.

Let’s explain each piece one by one.

Data Types

We first say that we're defining a new data type. Using the “data” keyword is just
one of the many ways of defining types: it basically means that we are going to define
the type by listing all of its constructors (all of the ways to construct values of the
type). There are other ways to define types: with the record keyword, for instance,
which we’ll see later; or we can define types by referencing other types, creating a
synonym. Here, for instance, we define the Boolean type:

Boolean : Typeg type Boolean = Bool
Boolean = Bool

This snippet says “I am defining a new thing called Boolean, it is a Type,, and it
is equal to Bool”. Of course this isn’t a very interesting declaration: as the equals
sign implies, Boolean is the same as Bool (other than the spelling). We’ve basically
defined a synonym for the old type.

Notice that in Haskell we needed a special keyword in order to define this type
synonym: in Agda, types are first-class values, which we can manipulate just as we
would functions or numbers. As such, defining a type synonym is exactly the same
as defining a new variable: it doesn’t need any special syntax.

Type Names

The second point is pretty straightforward: the name of the type we’ve defined is
Bool. The only thing to watch out for here is that Agda has relatively few restrictions
on type names, unlike, say, Haskell. This type could have included Unicode symbols
(Agda supports roughly 50 Unicode mathematical symbols), it could have started
with a lowercase letter, etc.

2.1. BASIC FUNCTIONAL PROGRAMMING IN AGDA 15

Typeo

The third point is the most interesting: we say that Bool is a “Type,” kind of thing.
What does this mean?

Well, we’ve seen that we can assign types to variables just as easily as we might
assign values to variables: this is what was happening in the Boolean example. In
fact, in Agda, there is no real distinction between “types” and “values™ types like
Bool are values, just as much as true or false! This means that our types must them-
selves have types: hence we say that Boolean has type Type,,.

But why the subscript 0? Well we know that types are values in Agda, and so
they themselves have types. We know that the type of Bool is Type,. But what’s the
type of Type,? It turns out that if we say:

Typey : Type,

We actually introduce a paradox into the language: Girard’s paradox (Girard, 1972).
This is the type-theoretic analogue of Russell’s paradox, and, if present, it would
allow us to prove things that are not true. So we disallow it.

Dependently-types programming languages have many different ways of resolv-
ing the issue: Agda’s approach is called universe polymorphism. Basically, we say
that the type of true is Bool, the type of Bool is Type, the type of Type is Type,,
the type of Type, is Type,, and so on.

To be honest, avoiding Girard’s paradox is one of things that isn’t done especially
well in dependently-typed languages: most approaches require quite a bit of tedious
busywork from the programmer, and it’s quite rare that a programmer would run
into a genuine universe size issue that exposes a deep logical impossibility (we will
run into one of the few cases in this thesis). Most of the time, managing universe
levels amounts to bookkeeping. For that reason, and also because the current system
of universe polymorphism in Agda is quite under flux and likely to be changed soon,
we won’t spend too much time on the topic. Every code example provided is as
universe-polymorphic as possible, though.

Constructors

The last point is the simplest: we have listed the ways to construct values of type
Bool. Two ways, in fact, true and false, and they’re called the constructors. We can
use these constructors in programs by (for instance) assigning them to variables.

a-boolean : Bool aBoolean :: Bool
a-boolean = true aBoolean = True

Here we’ve declared a variable! called a-boolean with the type Bool, and said it is
equal to the value true.

!Note that although we use the term “variable”, the value of the variable a-boolean can not change.
We couldn’t reassign it on the following line.

2.2

(2.2)

16 CHAPTER 2. PROGRAMMING AND PROVING IN CUBICAL AGDA

Some Functions

That’s quite a lot of information on how to define things in Agda: let’s look a little
about how to do computation. What we need is a function:

not : Bool — Bool not :: Bool — Bool
not false = true not True = False
not true = false not False = True

This function is defined by pattern-matching: when the clause on the left-hand-side
of the equals sign is seen, the right-hand-side is what’s computed.

This syntax with the equals sign is actually just syntactic sugar for a A\. The
identity function, for instance, could be written as follows:

id:A— A
id=\x—x

The not function could also have been written with a .

not : Bool — Bool
not = \ { false — true
; true — false

}

For a more complex example, we’re going to need a more complex type:

data N : Type; where
zero: N
suc : N = N

This is the type of the natural numbers. With Bool (Equation 2.1) we were able to list
all the actual values in the type: doing so for the natural numbers would somewhat
bloat the page count of this thesis. Instead, we list the two ways to construct natural
numbers: first, zero is a natural number. Next, if you have a natural number, its
successor (suc) is a natural number.

Agda has special syntax for constructing natural numbers: we can write 3 instead
of suc (suc (suc zero)).

There are several small pieces of information we’ll need to understand in order
to write functions in Agda. We’ll go through them one by one.

Multi-Argument Functions

Agda, like Haskell, doesn’t really have a built-in notion of “multi-argument” func-
tions. Instead, multiple arguments are kind of simulated with currying.
Here’s how we define the addition of two natural numbers:

add:N—-N—N
addzero m=m
add (suc n) m = suc (add n m)

Instead of taking two Ns and returning a third, this function takes a N, and returns

(2.3)

2.2. SOME FUNCTIONS 17

a function which takes a N and returns a N. add 0 returns a function which adds 0
to a number; add 2 returns a function which adds 2 to a number.

Operators

Here’s a function on the natural numbers:

- :N—->N-=>N

n - Zero = Zero
sucn-sucm=n-m
Zero - suc m = zero

We’ve defined subtraction.

Notice that this function is defined as an operator: for the function declaration
(the line with the type signature), we put underscores where we expect the argu-
ments to the operator to go.

We can also specify the precedence and fixity of the operator:

infixl6 -

Total Functions

In the introduction, we described Agda as a “total” programming language. This
means that if we give a function the type A — B, then we have also proven that,
given an A, it will produce a B (in finite time).

Practically speaking, this means that Agda will perform some checks on our code
to ensure that every function is indeed total. There are three checks that Agda per-
forms that we will run into in this thesis: coverage, termination, and productivity.

Coverage

This is the simplest check that Agda performs: it’s also performed by GHC (if -Wall
is turned on). This check ensures that functions are defined for all inputs.

Our definition of subtraction above (Equation 2.3), for instance, truncates to zero
when there’s arithmetic underflow. In other words 5 — 6 = 0, according to our
definition. We could have removed the clause which allows for this:

- :N—-N=N
n - Zero = zZero
sucn-sucm=n-m

But now the expression 5 — 6 is undefined.

Termination

The other major check that Agda will preform on our function definitions is for
termination (or productivity, which we will see later). This checks that no function
we write accidentally contains an infinite loop. Most of the time, we won’t butt
heads with the termination checker, but it does happen occasionally, so it’s helpful

(2.4)

18 CHAPTER 2. PROGRAMMING AND PROVING IN CUBICAL AGDA

to understand a little how it works. When we define the following function (addition
on the natural numbers):

+ :N—->N—>N
zero + m=m
suc n+ m=suc (n+ m)

Agda checks that the argument to the recursive call is structurally smaller than the
argument given to the outer function. “Structurally smaller” effectively means that
the smaller thing must be a subexpression of the larger: here, n is subexpression of
suc n.

Structural recursion is actually surprisingly powerful: a great many algorithms
can be converted to forms where the recursive calls recurse on some substructure
of their arguments. It does require careful definitions, though. For instance, the
following will not pass the termination checker:

+ :N—->N—=N
zero+ m=m
n +m=suc((n-1)+m)

Though it defines the same function as Equation 2.4, it doesn’t make it absolutely
obvious to the termination checker that the first argument to the recursive call (n—1)
is structurally smaller than the outer argument (n).

Occasionally a function can’t be refactored to the extent where it will be obvi-
ously structurally terminating to Agda. In those cases, there are facilities to describe
more complex termination conditions (although we should stress that these facilities
are not built in to the compiler or anything: they’re actually just extremely clever
ways to express structural recursion), but if you have to reach for those facilities it’s
usually a sign you’ve gone wrong. We won’t use them here.

Productivity

Productivity isn’t something we’ll describe just yet, but we will give a hint as to
its purpose. Often when describing total programming languages like Agda people
make the mistake of saying that they are “not Turing complete”. This is in fact not
true, partly because Agda has the ability to describe non terminating (and infinite)
computations. This allows us to implement, for instance, a Turing machine or A-
calculus interpreter (McBride, 2015), or more prosaic things like a web server or repl.

While these things don’t “terminate”, Agda still needs to check that they are valid
with regards to computation in another sense. This sense is productivity: they need
to always be able to produce another piece of information in finite time, even if they
never “finish” producing pieces of information.

What’s it all For?

One thing we haven’t answered is why we bother checking for termination or total-
ity. The answer is that it’s necessary for Agda to be a valid proof assistant. Imagine
if we could construct a type for “proofs of the Riemann hypothesis”. We might call

2.3. AN EXPRESSION EVALUATOR 19

it RiemannlsTrue. In a language like Haskell, the following is a completely valid
program:

riemann-proof : RiemannlsTrue
riemann-proof = riemann-proof

But of course we haven’t provided a proof of the Riemann hypothesis (and if we had
we certainly wouldn’t have buried the lead to this extent). The termination checker
is vital to rule out these kinds of “proofs”: that’s why it’s an integral part of Agda.

2.3 An Expression Evaluator

Let’s put all of the different things we’ve learned into a more complex example. We’re
going to write a small evaluator for arithmetic expressions. Later, we’ll use this to
help us solve the Countdown problem (Hutton, 2002).

We want to define a language of arithmetic expressions. With countdown in
mind, we’ll only need to support four operators, which we can define in a simple
data type:

data Op : Typey where
+ : Op
(2.5) x': Op
- :0p
+":Op

Next, we’ll define the actual type of expressions.

data Expr: Typey where
(2.6) lit: N — Expr
{)_:Expr = Op — Expr — Expr
What we’ve defined here is actually a simple leafy binary tree. The syntax for the
second constructor is not so simple, however: it defines a mixfix operator. Each
underscore in _(_)_ represents a hole which expressions can be put into. This allows
us to use the constructor like so:

lit4 (+) lit5
Evaluation of an expression is done by the following function:

[]: Expr = N
[litx] =x
[xs(+") ys]=lxs]+[ys]

(2.7) [xs (x") ys|=lxs] " [ys]
[xs (&) ys]=Txs]-[ys]
[xs{+") ys] with [ys]
[xs{=+")ys]|zero =zero

[xs(=") ys]|sucys =[xs] <+ sucys
We’ve introduced the with syntax here: it functions somewhat like a case expression

in Haskell. Basically, it allows us to pattern-match on the result of applying a function
to one of the input arguments without defining a new function.

24

(2.8)

(2.9)

20 CHAPTER 2. PROGRAMMING AND PROVING IN CUBICAL AGDA

Safe Evaluation With Maybe

The evaluator we have written isn’t exactly correct. It implies things like 4 — 5 = 0,
or 10 =3 = 3, or 2 + 0 = 0; this doesn’t make the function “wrong” per se, but it
might be more desirable to have expressions like 2 =- 0 be undefined. It’s especially
important for countdown, as division by zero (or any of the other equations) isn’t
permitted.

To remedy the problem we’re going to introduce a new type.

data Maybe (A : Type a) : Type a where
nothing : Maybe A
just : A — Maybe A

Maybe is a container that can contain at most one item. It’s the first parameterised
type we have seen: Maybe can contain an item of any type. Here, for instance, is a
Maybe which contains the number 2:

maybe-two : Maybe N
maybe-two = just 2

Or here is a Maybe which doesn’t contain anything, but whose type says it could
contain a function from N to N:

maybe-func : Maybe (N — N)
maybe-func = nothing

Maybe is used often in functional programming to represent partiality: if you
have a function which is undefined for certain inputs, you can wrap Maybe around
its return type, and return nothing for the cases where those inputs are given. We
can use it here, for instance, to define a version of subtraction which doesn’t truncate
arithmetic underflow:

-:N— N — Maybe N
n -zero =justn
sucn-sucm=n-m
zero -suc m = nothing

It’s often also used for similar purposes as null is in imperative programming, al-
though it is of course far safer since it’s impossible to forget to check for nothing by
definition.

We can use Maybe in our evaluator for expressions, so that we return nothing
on expressions which evaluate to undefined values. That changes the type to the
following:

[_] : Expr = Maybe N
The first case is relatively simple:
[lit x] = just x

The second two cases are slightly more complex: the result of evaluating each
sub-tree is Maybe N, not N, so we will have to pattern-match on the outputs to check
for nothing.

(2.10)

2.4. SAFE EVALUATION WITH MAYBE 21

[x(+)] - add-helper [x] [y]
where
add-helper : Maybe N — Maybe N — Maybe N
add-helper nothing nothing = nothing
add-helper nothing (just x) = nothing
add-helper (just x) nothing = nothing
add-helper (just x) (just y) =just (x+ y)

Code like this is quite tedious. Luckily, there’s a common pattern we can abstract
out: whenever we have a multi-argument function, we can apply it to arguments
wrapped in Maybe using the following two functions.

<*>: Maybe (A — B) —

Maybe A —
pure : A — Maybe A Maybe B
pure = just nothing <*> xs = nothing

just f <> nothing = nothing
just f <"sjustx =just(fx)

Any type which implements these functions (in a certain law-abiding way) is said
to be an “Applicative Functor” (McBride and Paterson, 2008), a full explanation of
which is beyond the scope of this thesis.

It might not be immediately clear how those two functions can help us. Basically,
we can replace the add-helper function with the following:

[x{+")y]=pure _+_<">[x]<">[vy]

And, as it happens, Agda has special syntax which will automatically insert the pure
and _<*>_ operators for us, making both the addition and multiplication cases the
following:

[x(+)y]
[x(x")y]

—

[x]+[y]
[x]" [yl

Next, we have to handle subtraction. In contrast to addition and multiplication,
subtraction itself can produce a nothing: instead of having type N — N — N, it has

type N — N — Maybe N. To construct multi-argument functions of this particular
type, we’ll need another function:

—

»=: Maybe A — (A — Maybe B) — Maybe B
nothing »= f= nothing
justx »=f=fx

Types which implement this function (along with pure), modulo some laws, are called
Monads (Moggi, 1991). This function will allow us to easily chain together several
maybes even with functions that return Maybe. It’s used like this:

2.5

22 CHAPTER 2. PROGRAMMING AND PROVING IN CUBICAL AGDA

[x(-")y]=
[[xﬂ»:)\x’%
[yl»=)y —
-y

And of course Agda also provides a syntax (do notation, just like Haskell) to express
the same:

Finally, we will handle the division case. Here, we want to pattern-match on the
returned value of the recursive call. Agda also provides syntax for that:

[x(+)y]-do
sucy < [yl
where zero — nothing

X« [x]
guard (rem ¥’ (suc) = 0)
just (¥ = suc y/)

The where keyword here lets us match on zero within the do-notation.

Statically Proving the Evaluation is Safe

Using this evaluator in practice can be a little annoying: because it always returns
a Maybe, simple expressions which are obviously valid still need to be checked at
run-time.

example-eval : Maybe N
example-eval = [lit4 { x’) lit 2]

This is where Agda can add a little to the usual example for monads of an expres-
sion evaluator: using dependent types, we can actually statically (and automatically)
prove that a given expression is valid, and evaluate it without checking for nothing
safely.

First, we will need the following function:

is-just : Maybe A — Bool
is-just nothing = false
is-just (just _) = true

This simple function can tell us if the result of evaluating an expression is successful
or not. In other words, it can test if an expression is valid.

To use this statically, however, we will need to employ the following dependent
function:

(2.11)

2.5. STATICALLY PROVING THE EVALUATION IS SAFE 23

T : Bool — Typeg
T true = T
T false = L

This function turns our boolean values into types: T (tautology), or | (impossibility).
These types are defined like so:

data | : Typey where record T : Typey where
constructor tt

The first type here, |, has no constructors: there are no values which inhabit the
type L. Logically speaking, it is the type of falsehoods. It is quite useful in practice:
any function of type A — | we know can never return, so we know that it must
be impossible to call such a function. In other words, the type A must not have any
values which inhabit it. As such, we can use | to define a notion of “not” for types:

—_:Typea— Typea
—“A=A— L

The second type, T, is arecord. Types defined using record are quite like classes
or structs in an imperative programming language: instead of listing the construc-
tors, we list the fields of these types.

Of course, in this case, our type doesn’t have any fields. Perhaps a more instruc-
tive example of a record is the following:

record Pair (A : Type a) (B: Type b) : Type (a (L! b) where

field
fst : A
snd : B

Here we’ve defined the type of pairs.

Types defined with data and types defined with record are in some sense duals
of each other: to consume a data type, we have to handle each of the constructors;
to construct a record type, we have to handle each of the fields. Another way to
say this same thing is that data types are sum types, and record types are products.
What we have in | and T is the identity for sums and products, respectively.

Now, to be completely clear, we could absolutely have defined T as a data type
with one constructor:

data T : Typey where
tt: T

We use the record definition simply because it tends to work a little better in terms
of ergonomics: basically, to construct a record type automatically, Agda attempts to
construct all of its fields one by one. Since T has no fields, this is an easy task, and
hence Agda will be able to automatically construct a value of type T in many situa-
tions (We can ask Agda to construct something for us automatically by supplying an
underscore in place of where the value should go). Agda is more conservative about

(2.12)

(2.13)

24 CHAPTER 2. PROGRAMMING AND PROVING IN CUBICAL AGDA

automatically constructing data types, so there are fewer situations where it will do
it automatically.

So, now that we have a way of turning booleans into their logical equivalents we
can define a type for proofs that a given expression is valid:

Valid : Expr — Typeg
Valid e =T (is-just [e])

A value of type Valid e, for some expression e, is a proof that e doesn’t have (for
example) any divisions by zero, or arithmetic underflows.

Now we can write a function that takes an expression e and a proof that that
expression is valid; then, when we pattern-match on evaluating the expression Agda
will automatically rule out the case where it evaluates to nothing.

[_]': (e: Expr) — Valid e - N
[e]! vwith [e]

[e]!v]justx=x

A way to make calling this function a little cleaner (syntactically speaking) is to
use an implicit argument:

[_]!: (e: Expr) —{_:Valide} - N
[e]!with[e]
[e]!]justx=x

By surrounding the argument here in braces we are basically going to pass around the
argument invisibly and automatically (as much as is possible). Though it’s invisible,
it’s clearly still usable as a variable: in this case the proof still rules out the clause
where the evaluation returns nothing. The real use of this feature, however, is that
the argument is passed invisibly.

example-static-eval : N
example-static-eval = [lit 4 { X") lit 2]!

What’s happened here is that the type of Valid e uniquely determines one value:
Agda can derive this, and it can also derive the value determined. As a result, it
provides it automatically. The precise rules for when Agda can “provide something
automatically” are actually a little tricky (it’s quite important that we defined T as a
record, for instance): a fuller explanation is available in the Agda manual.

Two more things about implicit arguments: first, it is possible to retrieve an ar-
gument even when it’s supplied implicitly, with the following syntax:

[_]':(e: Expr) = {_:Valide} — N
[e]!{valid}with [e]
[e]!{valid}|just x=x

Here we have bound the proof that the expression is valid to the variable valid.
Secondly, we have actually been using implicit arguments throughout the pa-

per, in combination with automatically generalised variables. These two features are

quite natural to most programmers (especially to Haskellers), so it might come as a

(2.14)

2.6

Definition 2.1
(Path Types)

(2.15)

2.6. EQUALITIES 25

surprise that we’ve been using them, but it’s true. Take the following definition of
the identity function:

id:A— A
idx=x

This is the same function with all implicit arguments made explicit:

id:V{a}{A:Typead} - A— A
id{a} {A} x=x

We have hidden the universe level of the type (a) and the type itself (A).

Furthermore, not only have we made these things implicit, we haven’t actually
specified them in the type at all! We’re able to do this because at the top of our Agda
file we say the following:

variable
abc: Level
A:Typea
B:Typeb
C:Typec

This variable declaration means that if we ever refer to A in a function signature
without defining it beforehand, Agda will automatically insert the implicit arguments
present in Equation 2.14.

Equalities

We actually have encountered our first “proof” with dependent types: we have proven
that a given expression is valid or not. Now we’re going to look at another kind of
proof: one that shows that an expression is equal to something. To do so we’ll first
have to explore path types in Cubical Agda.

A proof that two values are equal in Cubical Agda is represented by a path. This path
will be denoted with the symbol =. In other words, a value of type = y is a proof
that x equals y.

Equalities as paths is the first topic we have reached where Cubical Type Theory
begins to differ from traditional Martin-L6f Type Theory. There, we would usually
define the type of proofs of equality like so:

data _=_{a}{A:Type a} (x: A): A — Type a where
refl : x=x

This is an inductive data type, with one constructor: the constructor can only be
used when the two parameters to the type are the same, meaning a value of this
type contains a proof that they are the same. We can retrieve this proof by pattern-
matching on that constructor.

This is actually a perfectly usable equality type in CuTT, although the elimination
rule is a little complex and we won’t look into it just yet. However we prefer to

pid=x pil=y

symp: y = T

o ————0

sym p i0 = sympil =

p(-i0) = p(-i1) =
pil=y pid=x

Figure 2.1: Diagram of sym p

2.7

(2.16)

2.8

Definition 2.2
(Higher Inductive

Type)

26 CHAPTER 2. PROGRAMMING AND PROVING IN CUBICAL AGDA

represent equalities in a slightly more primitive way, as it turns out to be a little
more flexible. This is the path representation.

When represented as a path, an equality between two values of type A actually
behaves more like a function from | to A. | here is the type of the interval: it ranges
from i0 to i1. So, as a function then, when the path x = y is applied to i0, it returns
x, and when it is applied to i1, it returns y.

Already we can manipulate paths in some interesting ways. First, we can ma-
nipulate values in the interval: we can take the inverse of a point in the interval, for
instance. It’s worth thinking about what this “inverse” corresponds to in the equality:
we will name it in the next listing.

SYym: x=y—y=x
symx=yi=x=y(~ i)

We will see some more intricate ways to manipulate paths later on, but for now the
“function from an interval” intuition is enough to understand the basics.

Some Proofs of Equality

So now that we know something about the equality type, let’s put it to some use.
We can construct equality proofs of things which are “obviously equal” with the
following function:

refl: x = x
refl{x=x}i=x
With this we can prove that the output from Equation. 2.13 is 8:
example-static-proof : [lit4 { x') lit2]! =8
example-static-proof = refl

Of course, these proofs aren’t very interesting. Something a little more complex
might be the following:

+-assoc:Vxyz—(x+y)+z=x+(y+2)
+-assoc zero yzi=y+z
+-assoc (suc x) y z i = suc (+-assoc x y z i)

Unfortunately we can’t look at much more complex proofs without building up some
more machinery around path types: we can’t currently compose paths, for instance.

Quotients

We’ve seen that data types can be defined by listing their constructors, where each
constructor is just a function whose return type is the type being defined. However,
we’ve also seen that equalities are just functions from the interval. If we combine
these two notions, we can actually define a higher inductive type.

A normal inductive type (like Bool, or N) is a type where its point constructors are
listed. A higher inductive type can have point constructors, but it can also have path

(2.17)

2.9

Definition 2.3
(Dependent
Functions)

2.9. BASIC TYPE FORMERS 27

constructors: instead of adding new values to the type, these constructors add new
equalities to the type.

One of the nice aspects of CuTT is that higher inductive types arise naturally
from the “function from an interval” interpretation of path types. Expand out the
definition of = in the following type, for instance:

data S': Typeg where
base : S'

loop : base = base

We see that the loop constructor, though odd looking, still does represent a function
whose return value is S'.

Just with regards to this S' type: it’s actually the HoTT representation of the
circle. We won’t examine its more interesting properties all that much: however it
is a good example of the simplest type with complex homotopy, so we will use it to
demonstrate several HoTT principles.

Basic Type Formers

So far alot of our descriptions of Agda have mixed Agda’s type theory with its syntax.
If this were a paper presenting the core type theory of Agda to an audience of type
theorists we probably would describe things in a slightly different way, which has a
lot less fancy syntax: we would instead present the core type formers in Agda, and
describe their semantics. These type formers are basic types from which all other
types can be built (although it’s usually much more ergonomic to use the syntax that
we have been using up until now: working with these type formers exclusively can
feel a little low-level at times).

We’re going to explore them a little here: as the kind of basic subatomic particles
that make up every other type, they reveal a lot about the way types work in general
in Agda. Also they can be useful in their own right: we’ve actually used all but one
of these types already.

The types L, T, and Bool are three of the basic type formers in MLTT. Often
they’re called 0, 1, and 2; they’re named for the number of elements which inhabit
them.

The next basic type is usually called II: it’s the type of dependent functions. We’ve
seen this type already, but here we should define it in a little more depth.

A dependent function is one where the return type depends on the value of the input.
Here’s a silly example:

N-or-String : (x: Bool) — if x then N else String
N-or-String true =1
N-or-String false = "It was false!"

When supplied with true, the return type of this function is N; when given false, the
return type is String.

Definition 2.4
(The Dependent Sum)

28 CHAPTER 2. PROGRAMMING AND PROVING IN CUBICAL AGDA

Dependent functions are a built-in type in Agda, and they get the built-in syntax
that looks like the following:

(x: A)— Bx
If the A can be inferred, we could alternatively use the following syntax:
Vx— Bx
Finally, if we wanted to avoid syntactic sugar altogether, we can use the II symbol:
ITAB

All three of these expressions denote the same type.

As the symbol suggests, 1 types are product types. This might seem strange at
first: a product type is usually a tuple, i.e. the pair type we saw in Equation 2.11. As
it happens, given the basic type formers we’ve defined so far, we can actually make
the pair type:

Pair : Type a — Type a — Type a
Pair A B = (x: Bool) — if xthen A else B

This type has all the functions we might need on a standard pair:

fst: PairAB— A snd : Pair AB— B pair: A— B — Pair AB
fst x = x true snd x = x false pair x y true = x
pair x y false = y

Now that we have the type of dependent products, it’s natural to ask if we have
a type for dependent sums. This is a type we haven’t seen before, although we have
all the pieces needed to define it.

Dependent sums are denoted with the usual 3 symbol, and has the following defini-
tion in Agda:

record X (A: Type a) (B: A — Type b) : Type (a /LI b) where
constructor ,
field
fst: A
snd : Bfst

The dependent sum is like the constructive version of the existential quantifier: the
expression > A B can be interpreted as “there exists an A such that B”.

There are a number of different syntactic ways to express > A B. The following
are all equivalent:

> AB Y[x:A]Bx I x]Bx 4B

Though we have shown that the dependent function type is suitable as a pair
type, 2 is actually a little easier to use as our basic pair type.

(2.18)

(2.19)

2.10

2.10. THE MENAGERIE OF FOUNDATIONAL THEORIES 29

x_: Type a — Type b — Type (a (LI b)

AXxB=YAN_—B

So how, then, is ¥ a sum type? Sum types in non-dependent type theory are the
disjoint unions:

data _&_ (A:Type a) (B: Type b) : Type (a (LI b) where
inl:A— AWB
inr:B— AWB

It turns out that we can actually use a quite similar trick to how we got the pair from
1I:

AW B=>[x:Bool | if xthen Aelse B

The Menagerie of Foundational Theories

So far we have mentioned four different foundational theories: Martin-Lof Type The-
ory, Homotopy Type Theory, Cubical Type Theory, and Zermelo-Fraenkel set theory.
We have given some hints as to the differences between these theories, but now We
have enough background information to give a fuller explanation as to their differ-
ence and historical context.

Firstly we have Zermelo-Fraenkel set theory, or ZFC, where the C stands for
“choice”, i.e. the axiom of choice. This is the standard foundational system for most
mathematics these days: it’s a set theoretic foundation, and it’s classical, by which
we mean non-constructive. This means that it has the law of the excluded middle
(for any given proposition, the proposition is either true or false), and the axiom of
choice (the product of a collection of non-empty sets is non-empty).

We won’t describe ZFC in much detail here, we only mention it to contrast it
with type theory. Type theory is less extensional than set theory: in set theory we
construct sets by saying which things they contain. These things exist ambiently,
independent of the set (or sets) which contain them. To define the set of the natural
numbers, for example, we first need there to exist objects which represent each of
the numbers. Before defining N, we need to have defined 1 and 2.

Type theory is quite different in this sense. The analogous construct to the set
(the type) constructs its contents in its definition. So the type of the natural numbers
contains the definition (or construction) of its contents. It doesn’t make sense to
define a type which contains items in other types: in fact it’s not possible.

So that is the difference in mechanics between type theory and set theory: other
than the non-constructive components of set theory, though, the two theories are
equivalent.

Within type theory then we have three different systems: MLTT, HoTT, and
CuTT (of course there are many more type theories than just these three: these
are only the theories we will study here). The first of these was one of the first type
theories to be defined: Per Martin-L6f’s intuitionistic type theory (Martin-Lof, 1980)
defined the basics of dependent types as we use them in Agda today. This early
theory had the ¥ and II types we have above, as well as the boolean types, and T

2.11

(2.20)

30 CHAPTER 2. PROGRAMMING AND PROVING IN CUBICAL AGDA

and L. With some changes to the system (the addition of universe levels prompted
by Girard’s paradox), it’s basically the core of Agda today.

HoTT (Univalent Foundations Program, 2013) is a type theory which stems in
many ways from MLTT, but mixes it with homotopy theory. The fundamental ad-
dition of HoTT is the univalence axiom, which allows for isomorphic types to be
treated as equivalent. CuTT (Cohen et al., 2016) is closely related to HoTT: it is the
theory which allows us to use univalence in Agda while retaining the computational
properties that we would expect in a constructive system.

Comparing Classical And Constructive Proofs in Agda

The dependent sum is a great example of the difference between “classical” and “con-
structive” mathematics: the closest analogue in classical mathematics to ¥ is 3, but
the semantics of the two constructs are subtly different. If I say “there exists an in-
teger larger than 10” I'm making a rather trivially true statement; to provide a proof
that > N' A n — 10 < nis more akin to providing a natural number, and proving that
it’s bigger than 10.

More formally speaking, there are a number of axioms which we don’t have ac-
cess to constructively. One such axiom is double negation elimination:

A=A

One way to “do” classical mathematics within Agda, then, would be to write all of the
proofs assuming these axioms. We don’t have to break the guarantees Agda provides,
either: we could say “given the axiom of choice, law of the excluded middle, etc., the
following is true...”, although this is a little clunky.

Instead, using this axiom of double negation, we can actually provide a type for
classical computation.

Classical : Type a — Type a
Classical A=—— A

In the “propositions-as-types” sense, a value of type Classical A is a classical proof of
the proposition A. This translation between classical and constructive proofs using
double negation is sometimes called the double-negation translation.

We can prove, inside this type, things like the law of the excluded middle:

lem : Classical (AW (— A))
lem —lem = —lem (inr X p — —lem (inl p))

This type forms a monad, meaning that it implements the following functions:
pure : A — Classical A
pure x -x =X X
»=: Classical A — (A — Classical B) — Classical B
——x»=f=X"B— x(\x— fx—B)

This gives us a convenient syntax to work with classical proofs.

2.12

2.12. COMPUTATIONAL BEHAVIOUR 31

Finally, in HOTT we have a notion of stability. Certain types do support double-
negation elimination:

Stable A=——A— A

We will see a use for this notion later on, but we mention it here to point out that
we do have a way of describing types which can be pulled out of classical proofs.

The purpose of this last section was to demonstrate that constructive mathe-
matics, far from being constrained in comparison to classical, are technically more
capable. We can actually use systems to Agda to check and verify classical proofs
just as much as we can constructive.

Computational Behaviour

Up until this point we have been suspiciously quiet on the issue of performance or
efficiency. While everything we’re doing is absolutely valid as a purely theoretical
exercise, it is nonetheless interesting to ask what these proofs and programs perform
like on a computer.

The first thing to note is that Agda is a lazy language. This means that expres-
sions are not evaluated until they’re needed. Take the following function:

f:N— N
f_ =1

Since this function ignores its argument, Agda won’t compute its argument. If we
called, for instance, f (1000 + 1000), we wouldn’t ever have to pay the cost of com-
puting 1000 + 1000.

It’s important to note that this difference in performance is usually not observable
in actual computation. Unless we are working with coinductive types (which we
will not do in this thesis), Agda’s semantics are agnostic as to evaluation strategy. A
program that terminates with lazy evaluation will also terminate with strict. It’s just
that one might take a much longer (but still finite!) amount of time to do so.

The second thing to note is that, in order to make proofs easier, we often work
with inefficient forms of certain data types. The natural numbers, for instance, we
represent as basically a singly-linked list; there are no flat arrays to be found any-
where in Agda; and recursion (albeit tail-call optimised recursion) is the tool of choice
for iterative computation. There is some help: in certain cases Agda will optimise
the natural numbers to actual binary numbers (arbitrary precision Haskell integers),
and Agda’s purity allows for a certain degree of optimisation. Overall, though, un-
fortunately Agda is quite slow. Computing an expression like n + m will usually take
O(n) time, and there’s not really a great way to get around it.

CHAPTER

Finiteness Predicates

In this section, we will define and briefly describe each of the five predicates in Fig-
ure 3.1. We will also explain why there are five separate predicates: how can it be the
case that so many different things describe “finiteness”? As we will see, some predi-
cates are too informative (they tell us more about the underlying type other than it
just being finite), or too restrictive (they don’t allow certain finite types to be classi-
fied as finite). These diversions won’t be dead-ends, however: the final predicate we
will land on as the “correct” (or, more accurately, most useful) notion of finiteness
will be built out of all of the others.

Non Discrete i Discrete
. _— Discrete — .
Ordered Manifest ! Split Enumerable
Enumerable (3.4) . ! (3.1) \

: L 7 Ord
i Manifest Bishop
i (3.2)

_— Dis;crete - J

Unordered Kuratowski (3.5) ! Cardinal (3.3)
— ' — More Informative

More Restrictive

Figure 3.1: Classification of finiteness predicates according to whether they are dis-
crete (imply decidable equality) and whether they imply a total order.

33

3.1

Definition 3.1
(Split Enumerable
Set)

(3.1)

Finzero =1
Fin (sucn)= T WFinn
Listing 3.2: Finite Prefixes of N

Definition 3.2
(Containers)

34 CHAPTER 3. FINITENESS PREDICATES

Split Enumerability

We will start with a simple notion of finiteness, called split enumerability. This pred-
icate is perhaps the first definition of “finite” that someone might come up with (it’s
certainly the most common in dependently-typed programming): put simply, a split
enumerable type is a type for which all of its elements can be listed.

To say that some type A is split enumerable is to say that there is a list support :
List A such that any value x : A is in support.

&V A=Y support : List A] ((x: A) — x € support)

We call the first component of this pair the “support” list, and the second component
the “cover” proof. An equivalent version of this predicate was called Listable in
Firsov and Uustalu (2015).

This predicate is simple and useful, but we will see later on how it is perhaps a
little imprecise. Before we dive in to exploring the predicate itself, though, we will
need to explain some of the terms we used in its definition.

What is a List?
In this paper we prefer a slightly unusual definition for the type of lists:
List = [N, Fin |

This is the definition for a container (Definition 3.2): effectively, the above definition
says that “Lists are a datatype whose shape is given by the natural numbers, and
which can be indexed by numbers smaller than its shape”.

If that seems needlessly complex, don’t worry: this definition is precisely equiv-
alent to the usual inductive one.

data List (A : Type a) : Type a where
[l :ListA
_i :A—ListA— List A

And this isn’t some kind of hand-waving equivalence, either: since we are working
in HoTT, we can (and do) prove that the two types are equal, allowing us to use
one or the other depending on whichever is more convenient, and subst in the other
representation without loss of generality. That said, defining lists as containers will
reveal several interesting connections and proofs about split enumerability and the
other predicates, so for the remainder of the paper whenever we say List we will
mean Equation 3.1.

We still must define containers themselves, of course. Containers are a well-
studied topic in dependent type theory, with a rich theory: we won’t dive in to that
here.

A container (Abbott et al., 2005) is a pair S, P where S is a type, the elements of
which are called the shapes of the container, and P is a type family on S, where the
elements of P(s) are called the positions of a container. We “interpret” a container
into a functor defined like so:

(3.3)

(3.4)

(3.6)

Lemma 3.1

3.1. SPLIT ENUMERABILITY 35

[S,P]X=%[s:S](Ps—X)

The definition of container is a little abstract: it is instructive to think of it more
concretely for the case of lists. The container representing finite lists is a pair of
a natural number n representing the length (or “shape”) of the list, and a function
Fin n — A, representing the indexing function into the list.

One of the nice things about containers is it gives us a generic way to define
“membership”:

x € xs = fiber (snd xs) x

Here we’re using the homotopy-theory notion of a fiber to define membership: a
fiber for some function f and some point y in its codomain is a value = and a proof
that f * = y. Membership also makes more sense when described concretely in
terms of lists: € zs means “there is an index into zs such that the index points at
an item equal to z”.

Split Surjections

Now that we have our terms defined, let’s look a little at how split enumerability
relates to more traditional, classical notions of finiteness. In a classical setting we
likely wouldn’t mention “lists” or the like, and would instead define finiteness based
on the existence of some injection or surjection, say a surjection from a finite prefix
of the natural numbers. In HoTT, surjections (or, more precisely, split surjections
(Univalent Foundations Program, 2013, definition 4.6.1)), are defined like so:

SplitSurjective f=V y — fiber fy A —»! B=23 (A — B) SplitSurjective

As it turns out, our definition of finiteness here is precisely the same as a surjection-
based one, in quite a deep way!
A proof of split enumerability is equivalent to a split surjection from a finite prefix

of the natural numbers.

E'A< Y[n:N](Finn—!A)

Proof.

EA =() Def. 3.1 (&)
[xs: List A]((x: A) — x € xs) =() Eqn. 3.4 (€)
Y[xs: List A] ((x: A) — fiber (snd xs) x) =() Eqn. 3.6

[xs: List A] SplitSurjective (snd xs) =() Eqn. 3.1 (List)
Y[xs: [N, Fin] A]SplitSurjective (snd xs) =() Eqn. 3.3

Y[xs: X[n:N](Fin n— A)] SplitSurjective (snd xs) =(reassoc) Reassociation
Y[n:N]X[f:(Fin n— A)] SplitSurjective f =() Eqn. 3.6
Y[n:N](Finn—='A) N

In the above proof syntax the =() connects lines which are definitionally equal,
i.e. they are “obviously” equal from the type checker’s perspective. Clearly, only one
line isn’t a definitional equality:

fiber : (A — B) — B — Type _
fiber fy=d[x] (fx=y)
Listing 3.5: A Fiber (Univalent
Foundations Program, 2013,
definition 4.2.4)

&2) : &' Bool

&12) fst = [false, true]
&1(2) .snd false =0, refl
&1(2) .snd true =1, refl

Listing 3.7: Proof of £! Bool

Lemma 3.2

36 CHAPTER 3. FINITENESS PREDICATES

reassoc: L (LU AB)C< X[x:A]lX[y:Bx]C(x,y)
This means that we could have in fact written the whole proof as follows:

split-enum-is-split-surj: 1 A < X[n: N] (Fin n —! A)
split-enum-is-split-surj = reassoc
The simplicity of this proof, by the way, is why we preferred the container-based
definition of lists over the traditional one.

In Firsov and Uustalu (2015), there is a proof that split enumerability and surjec-
tions from Fin are propositionally equivalent; i.e. a function from each to the other
is provided. The fact that the two proofs are precisely equivalent is not proven (and,
indeed, it is impossible to prove in MLTT).

Instances

To actually show that a type A is finite amounts to constructing a term of type £! A.
For simple types like Bool, that is simple: it just amounts to basically listing the
constructors. As a slightly more complex example, consider the Fin type we’ve been
using. Remember that split enumerability is in fact the same as a split surjection from
Fin (Lemma 3.1): to show that Fin is split enumerable, then, we need only show that
it has a split surjection from itself. We’ll prove the following slightly more general
statement:

—»l-ident: A —»! A
—»!-ident .fst = id
—»!l-ident .snd y fst =y
—!-ident .snd y.snd _ =y

Decidable Equality

One thing that characterises all split enumerable types is that they are all discrete,
i.e. they have decidable equality.

data Dec (A : Type a) : Type a where

Discrete A = (x y: A) — Dec (x=y) yes: A— DecA
o :7A—DecA

We will see later that this has implications for the space of types we’re dealing with,
but for now it simply provides a useful function on split enumerable types.

Split enumerability implies decidable equality.

Proof. To prove that split enumerability implies decidable equality we’ll take a quick
detour through injections.

Injective f=Vxy—= fx=fy—x=y A— B=%[f: (A— B)] Injective f

These are useful because we know that any type which injects into a discrete type is
itself discrete:

3.2. MANIFEST BISHOP FINITENESS 37

Discrete-pull-inj : A — B — Discrete B — Discrete A
Discrete- pull inj (f, inj)_=_xy=
case (fx = fy) of
X {(no =p) — no (—p o cong fj
;(yes p) — yes (injx y p) }

And we can turn a split surjection from A to B into an injection from B to A:

surj-to-inj : (A —! B) = (B — A)
surj-to-inj (f, surj) .fst x = surj x .fst
surj-to-inj (f, surj) .snd x y f1(x)=F1(y) =
x ="(surjx.snd)
[(surj x fst) =(cong ffHx)=f(y))
f(surjy fst) =(surjy.snd)
yH
Yielding a simple proof that any type with a split surjection from a discrete type is
itself discrete:

Discrete-distrib-surj : (A —! B) — Discrete A — Discrete B
Discrete-distrib-surj = Discrete-pull-inj o surj-to-inj

Since split enumerability is really just a split surjection from Fin, and since we know
that Fin is discrete, the overall proof resolves quite simply:

&'=Discrete : &1 A — Discrete A

&'=Discrete = flip Discrete-distrib-surj discreteFin
o snd
o &< Fin—! fun

This lemma is also proven in Firsov and Uustalu (2015), although using a signif-
icantly different technique.

3.2 Manifest Bishop Finiteness

We mentioned in the introduction that occasionally in constructive mathematics
proofs will contain “too much” information. With split enumerability we can see
an instance of this. Consider the following proof of the finiteness of bool:

&12) : &' Bool

(3.8) &12) fst = false , true , false]
&1(2) .snd false =0, refl
&1(2) .snd true = 1 refl

There is an extra false at the end of the support list. There’s nothing terribly wrong
with that: it is still a valid proof of finiteness, after all, but it does mean that this
proof has some extra information which we didn’t necessarily intend to encode.

(3.9)

(3.10)

Definition 3.3
(Manifest Bishop
Finiteness)

38 CHAPTER 3. FINITENESS PREDICATES

There is “slop” in the type of split enumerability: there are more distinct values
than there are usefully distinct values. To reconcile this, we will disallow duplicates
in the support list.

This is where manifest Bishop finiteness comes in: this is a definition of finiteness
quite similar to split enumerability in other regards, except that it does not allows
for duplicates in the support list.

How exactly to prohibit duplicates is the next question. One approach might be
to change the definition of List, or introduce a new type NoDupelList, and use it in
the predicate instead. However, this would mean we lose access to the functions we
have defined on lists, and we have to change the definition of € as well.

There is a much simpler and more elegant solution: we insist that every member-
ship proof must be unique. This would disallow a definition of £! Bool with dupli-
cates, as there are multiple values which inhabit the type false € [false, true, false].
It also allows us to keep most of the split enumerability definition unchanged, just
adding a condition to the returned membership proof in the cover proof.

To specify that a value must exist uniquely in HoTT we can use the concept of a
contraction (Univalent Foundations Program, 2013, definition 3.11.1).

isContrA=X[x:A]Vy—x=y
A contraction is a type with the least possible amount of information: it represents
the tautologies. All contractions are isomorphic to T.

By saying that a proof of membership is a contraction, we are saying that it must
be unique.

x €! xs = isContr (x € xs)

Now a proof of x €! s means that x is not just in xs, but it appears there only once.
With this we can define manifest Bishop finiteness:

A type is manifest Bishop finite if there exists a list which contains each value in the
type once.

B A =3[support: List A] ((x: A) — x €! support)
The only difference between manifest Bishop finiteness and split enumerability is
the membership term: here we require unique membership (€!), rather than simple

membership (€). An equivalent version of this predicate was called ListableNoDup
in Firsov and Uustalu (2015).

We use the word “manifest” here to distinguish from another common interpre-
tation of Bishop finiteness, which we have called cardinal finiteness in this paper:
this version of the proof is “manifest” because we have a concrete, non-truncated list
of the elements in the proof.

The Relationship Between Manifest Bishop Finiteness and Split
Enumerability

While manifest Bishop finiteness might seem stronger than split enumerability, it
turns out this is not the case. Both predicates imply the other.

3.2. MANIFEST BISHOP FINITENESS

39

Going from manifest Bishop finiteness is relatively straightforward: to construct
a proof of split enumerability from one of manifest Bishop finiteness, it suffices to
convert a proof of z €! xs to one of z € wxs, for all x and ws. Since €! is defined as a
contraction of &, such a conversion is simply the fst function.

Going the other direction takes significantly more work.

Lemma 3.3 Any split enumerable set is manifest Bishop finite.

This lemma is proven in Firsov and Uustalu (2015). We will only sketch the proof
here: the “unique membership” condition in 3 means that we are not permitted du-
plicates in the support list. The first step in the proof, then, is to filter those duplicates
out from the support list of the £! proof: we can do this using the decidable equality
provided by £! (Lemma 3.2). From there, we need to show that the membership proof

carries over appropriately.

We have now proved that every manifestly Bishop finite type is split enumerable,
and vice versa. While the types are not equivalent (there are more split enumerable
proofs than there are manifest Bishop finite proofs), they are of equal power.

From Manifest Bishop Finiteness to Equivalence

We have seen that split enumerability was in fact a split-surjection in disguise. We
will now see that manifest Bishop finiteness is in fact an equivalence in disguise.
We define equivalences as contractible maps (Univalent Foundations Program, 2013,

definition 4.4.1):

(3.11) isEquiv f=V y — isContr (fiber fy) A~B=3[f:(A— B)]isEquiv f

Lemma 3.4 Manifest bishop finiteness is equivalent to an equivalence to a finite prefix of the

natural numbers.
BA< dn](Finnx~A)

Proof.
BA
Y[xs:List A]((x: A) — x€! xs)
Y[xs: List A] ((x: A) — isContr (x € xs))
Y[xs: List A] ((x: A) — isContr (fiber (snd xs) x))
[xs: List A] isEquiv (snd xs)
Y[xs: [N, Fin] A]isEquiv (snd xs)
Y[xs
X[n

T e

%[n:N](Fin n— A)] isEquiv (snd xs)
:N]X[f: (Finn— A)]isEquiv f
dn](Finn~A) M

o~~~ o~~~

-

This proofis almost identical to the proof for Lemma 3.1: it reveals that enumeration-

reassoc)

Def. 3.3 (B)
Eqn. 3.10 (€!)
Eqn. 3.4 (€)
Eqn. 3.11
Eqn. 3.1 (List)
Eqn. 3.3
Reassociation
Eqn. 3.11

based finiteness predicates are simply another perspective on relation-based ones.
Firsov and Uustalu (2015) provides a proof of the related statement; that mani-
fest Bishop finiteness implies an equivalence to a prefix of the natural number (and

3.3

(3.12)

(3.13)

40 CHAPTER 3. FINITENESS PREDICATES

vice versa), but similarly to split enumerability they cannot show that the two are
equivalent as we have done here.

As we are working in CuTT, a proof of equivalence between two types gives us
the ability to transport proofs from one type to the other. This is extremely powerful,
as we will see.

Cardinal Finiteness

While we have removed some of the unnecessary information from our finiteness
predicates, one piece still remains. The two following proofs are both valid proofs of
the finiteness of Bool, and both do not include any duplicates:

&1(2) : &1 Bool ("7<)+ & Bool

&N2) fst— false , true] &1(2) fst = [true, false]
&(2) .snd false =0, refl &1(2)" .snd false =1, refl
(”!<) .snd true = 1 , refl &12)" .snd true =0, refl

Clearly they’re not the same though: the order of their support lists differs. Each
finiteness predicate so far has contained an ordering of the underlying type. For our
purposes, this is too much information: it means that when constructing the “cate-
gory of finite sets” later on, instead of each type having one canonical representative,
it will have n!, where n is the cardinality of the type!.

What we want is a proof of finiteness that is a proposition.

isPropA=(xy:A) —x=y

The mere propositions are one homotopy level higher than the contractions (Equa-
tion 3.9), the types for which all values are equal to some value. They represent the
types for which all values are equal, or, the types isomorphic to | or T. You can also
define propositions in terms of the contractions: propositions are the types whose
paths are contractions. Soon (Equation 3.15) we will see the next homotopy level,
which are defined in terms of the propositions.

Despite now knowing the precise property we want our finiteness predicate to
have, we’re not much closer to achieving it. To remedy the problem, we will use the
following type:

data ||_|| (A: Type a) : Type a where
A=Al
squash: (xy: ||Al) > x=y

This is a higher inductive type. Normal inductive types have point constructors: con-
structors which construct values of the type. The first constructor here (|_|), or the
constructor true for Bool, are both “point” constructors.

What makes this type higher inductive is that it also has path constructors: con-
structors which add new equalities to the type. The squash constructor here says

1 We actually do get a category (a groupoid, even) from manifest Bishop finiteness (Yorgey, 2014): it’s
the groupoid of finite sets equipped with a linear order, whose morphisms are order-preserving bijections.
We do not explore this particular construction in any detail.

(3.14)

Definition 3.4
(Cardinal Finiteness)

Lemma 3.5

3.3. CARDINAL FINITENESS 41

that all elements of || A || are equal, regardless of what A is. In this way it allows us
to propositionally truncate types, turning information-containing proofs into mere
propositions. Put another way, a proof of type || A || is a proof that some A exists,
without revealing which A.

To actually use values of this type we have the following eliminator:

rec:isPropB— (A—B)— ||A| — B

This says that we can eliminate into any proposition: interestingly, this allows us to
define a monad instance for ||_||, meaning we can use things like do-notation.
With this, we can define cardinal finiteness:

A type A is cardinally finite if there exists a propositionally truncated proof that A
is manifest Bishop finite or equivalent to a finite prefix of the natural numbers.

“A-|BA|

This predicate is called Bishop finiteness in Frumin et al. (2018).

Deriving Uniquely-Determined Quantities

At first glance, it might seem that we lose any useful properties we could derive from
B. Luckily, this is not the case: we will show here how to derive decidable equality
(Lemma 3.5) and cardinality (Lemma 3.6) out from under the truncation. Those two
lemmas are proven in (Yorgey, 2014) (Proposition 2.4.9 and 2.4.10, respectively), in
much the same way as we have done here. Our contribution for this section is simply
the formalisation.

First we’ll show that decidable equality carries over from manifest Bishop finite-
ness. Before we do, note that the fact that we can do this says something interesting
about propositional truncation: it has computational, or algorithmic, content. That is
in contrast to other ways to “truncate” types: =— P, for instance, is a way to provide
a “proof” of P without revealing anything about P in MLTT. No matter how much
we prove that a function from P doesn’t care about which P it got, though, we can
never extract any kind of algorithm or computation from ——P.

Any cardinal-finite set has decidable equality.
% A — Discrete A

Proof. We already know that manifest Bishop finiteness implies decidable equality;
to apply that proof to cardinal finiteness we’ll use the eliminator in Equation 3.14.
Our task, in other words, is to prove the following:

isProp (Discrete A)

To show that this type is a proposition we must show that any two given members
of the type are equal, i.e. we are given two proofs of decidable equality on A and
we must show that they are equal. Remember that Discrete A is a function of two
arguments returning a Dec of whether those two arguments are equal or not. By
function extensionality, to prove that that is a proposition we have to prove that

(3.15)

(3.16)

Lemma 3.6

42 CHAPTER 3. FINITENESS PREDICATES

Dec (z = y) is a proposition. This proof requires that we show that the payload of
each of the constructors (yes and no) are propositions. no’s payloadis z = y — L,
which is a proposition because L is a proposition.

yes is a little more interesting: its payload is x = y. How can we prove that the
path between x and y is a proposition? It turns out that there is a class of types for
which all paths are propositions: the sets.

isSet A= (xy: A) — isProp (x=y)

This is the next homotopy level up from the propositions (Equation 3.12). More im-
portantly, there is an important theorem relating to sets which also relates to decid-
able equality: Hedberg’s theorem (Hedberg, 1998). This tells us that any type with
decidable equality is a set.

Discrete A — isSet A

And of course we know that A here has decidable equality: we were just given two
proofs of that fact at the beginning of this proof!

This suffices to prove that decidable equality is itself a proposition, and therefore
that we can apply Equation 3.14 and the proof that bishop finiteness implies decidable
equality to cardinal finiteness, proving our goal.]

The next thing we can derive from underneath the truncation in cardinal finite-
ness is a natural number representing the actual cardinality of the finite type. Of
course N isn’t a proposition, so the eliminator in equation 3.14 won’t work for us
here. Instead we will use the following:

rec—set:isSet B— (f: A—-B) - (Vxy— fx=fy — ||A|| - B

This says that we can eliminate into a set as long as the function we use doesn’t
care about which value it’s given: formally, f in this example has to be “coherently
constant” (Kraus, 2015).

With that, we can move on to the proof:

Given a cardinally finite type, we can derive the type’s cardinality, as well as a propo-
sitionally truncated proof of equivalence with Fins of the same cardinality.

cardinality-is-unique : ¢ A— 3[n] ||Finn~ A ||

Proof. The high-level overview of our proof is as follows:

cardinality-is-unique = rec—set card-isSet alg const-alg o ||map|| B=Fin~

It is the composition of two operations: first, with ||map||, we change the truncated
proof of manifest bishop finiteness to a proof of equivalence with fin.

Then we use the eliminator from Equation 3.16 with three parameters. The first
simply proves that that the output is a set:

card-isSet : isSet (I[n] || Finn~ A)

The second is the function we apply to the truncated value:

Theorem 3.7

3.3. CARDINAL FINITENESS 43

alg: X[n:N](Finn~A) = X[n:N]| Finn~A|
alg (n, f~A)=n, | f~A]

And the third is a proof that that function is itself coherently constant:
const-alg: (xy: [n] (Finn~ A)) — algx=alg y

The tricky part of the proofis const-alg: here we need to show that alg returns the
same value no matter its input. That output is a pair, the first component of which
is the cardinality, and the second the truncated equivalence proof. The truncated
proofs in the output are trivially equal by the truncation, so our obligation now has
been reduced to:

(n: N) (p:Finn~A) (m: N) (¢:Finm>~A)

n=m

Given univalence we have Fin n = Fin m, and the rest of our task is to prove:

Finn = Finm

n=m

This is a well-known puzzle in dependently-typed programming, and one that
has a surprisingly tricky and complex proof. We do not include it here, since it has
already been explored elsewhere, but it is present in our formalisation. |

Going from Cardinal Finiteness to Manifest Bishop Finiteness

We know of course that we can convert any proof of manifest Bishop finiteness to
a proof of Cardinal finiteness: it’s just the truncation function |_|. It’s the other
direction which presents a difficulty:

Any cardinal finite type with a total order is Bishop finite.

Proof. The proof for this particular theorem is quite involved in the formalisation,
so we only give its sketch here.

Our strategy will be to sort the support list of the proof for Bishop finiteness,
and then prove that the sorting function is coherently constant, thereby satisfying
the eliminator in Equation 3.16. We need to show, in other words, that sorting two
support lists from proofs of manifest Bishop finiteness on the same type with the
same order always returns the same result. For simplicity’s sake we will use insertion
sort:

insert : E— List E— List E

insert x [] = x:: (] sort : List E— List E
insert x (y: xs) with x <? y sort [] =]

I ::Ir ;ig’; ; i};;e)rc"fxxs sort (x :: xs) = insert x (sort xs)
eee X = ..

And we prove that sort produces a list which is sorted, and a permutation of its input.

(3.17)

(3.18)

44 CHAPTER 3. FINITENESS PREDICATES

sort-sorts : V xs — Sorted (sort xs) sort-perm : V xs — sort xs e~ xs

We’ve introduced two new types here: Sorted is a predicate enforcing that the
given list is sorted, and «~» is a permutation relation between two lists. We take
the definition of permutations from (Danielsson, 2012): two lists are permutations of
each other if their membership proofs are all equivalent.

xs e~ Ys =Y x — (x € x5) < (x € ys)

This definition fits particularly well for two reasons: first, it is defined on containers
generically, which fits well with our finiteness predicates. Secondly, it is extremely
straightforward to show that the support lists of any two proofs of manifest Bishop
finiteness must be permutations of each other:

(xs ys: B A) — xs .fst «~ ys fst

Almost all of the pieces are in place now: we know that the support lists of all
proofs of 3 A are permutations of each other, and we know that sort returns a sorted
permutation of its input. The final piece of the puzzle is the following:

sorted-perm-eq : V xs ys — Sorted xs — Sorted ys — xs e~ ys — xs = ys

If two sorted lists are both permutations of each other they must be equal. Connect-
ing up all the pieces we get the following:

perm-invar : V xs ys — xs <~ ys — sort xs = sort ys

Because we know that all support lists of 5 A are permutations of each other this is
enough to prove that sort is coherently constant, and therefore can eliminate from
within a truncation. The second component of the output pair (the cover proof)
follows quite naturally from the definition of permutations.]

To the best of our knowledge, this is the first explicit proof of this theorem.

Restrictiveness

So far our explorations into finiteness predicates have pushed us in the direction
of “less informative”: however, as mentioned in the introduction, we can also ask
how restrictive certain predicates are. Since split enumerability and manifest Bishop
finiteness imply each other we know that there can be no type which satisfies one
but not the other. We also know that manifest Bishop finiteness implies cardinal
finiteness, but we do not have a function in the other direction:

CA—BA

So the question arises naturally: is there a cardinally finite type which is not manifest
Bishop finite?
It turns out the answer is no! The proof of this fact is relatively short:

~(¢N\B):~X[A:Typeal ¢ Ax - BA
—~(¢NB) (_,c,—b)=recisPropl —bec

34

(3.20)

3.4 MANIFEST ENUMERABILITY 45

We can apply the function of type 5 A — | (ie. = B A) to the value of type
|| B Al (ie. C A)using Equation 3.14, since L is itself a proposition. This tells us
that manifest bishop finiteness, cardinal finiteness, and split enumerability all refer
to the same class of types.

Interestingly, while we cannot construct a function with the type in Equation 3.17,
it does exist classically. In fact we can derive it from Equation 3.18 using the classical
monad we developed in the introduction, since Equation 3.18 is actually equivalent
to classical implication.

classical-impl : = (A x = B) — Classical (A — B)
classical-impl ~Ax—B = do
A?<+ lem {A = A}
B?< lem {A = B}
case (A?, B?) of
A{(inla ,inl b)— pure (const b)
;(inl @ ,inr=b)— Ll-elim (mAx—B(a, —b))
;(inr —a,inl b) — pure (const b)
; (inr ma, inr =b) — pure A x = L-elim (—a x))

}

Manifest Enumerability

Given that we have just proven that all of our finiteness predicates apply to the same
types, the natural next step is to try find a predicate which applies to a different class
of types. Let’s first talk about what this new class of types might look like: what
we’re looking for is a type which is in some sense finite, but doesn’t conform to any
of the predicates we’ve seen so far. The circle (Listing 3.19) is such a type. The thing
that this type has which precludes it from being, say, split enumerable, is its higher
homotopy structure.

So far we have seen three levels of homotopy structure: the contractions (Equa-
tion 3.9), the propositions (Equation 3.12), and the sets (Equation 3.15). You may have
noticed the pattern that each new level is generated by saying its paths are members
of the previous level; if we apply that pattern again, we get to the next homotopy
level: the groupoids.

isGroupoid A = (x y: A) — isSet (x = y)

These types do not necessarily have unique identity proofs: there is more than one
value which can inhabit the type z = y. The circle is one of the simplest examples
of non-set groupoids: the constructor loop is the extra path in the type which isn’t
the identity path.

We now need to recall two facts: first, Hedberg’s theorem tells us that every
discrete type is a set. Second, every finiteness predicate we’ve seen thus far implies
decidable equality. From this it’s clear that all of the previous predicates are restricted
to sets, and can’t include types like the circle.

data S' : Typey where
base : S'
loop : base = base

Listing 3.19: The Circle

Definition 3.5
(Manifest
Enumerability)

(3.21)

Lemma 3.8

46 CHAPTER 3. FINITENESS PREDICATES

But the type certainly seems finite! It has finitely many points, for instance. In
order to explore the “restrictiveness” axis in Figure 3.1, then, we’ll need to construct
a predicate which admits the circle. Manifest enumerability is one such predicate.

Manifest enumerability is an enumeration predicate like Bishop finiteness or split
enumerability with the only difference being a propositionally truncated member-
ship proof.

& A =X[support : List A] ((x: A) — || x € support ||)

This predicate is novel, to the best of our knowledge.

It might not be immediately clear why this definition of enumerability allows the
circle to conform while the others do not. The crux of the issue was that the cover
proofs of the previous definitions didn’t just tell us that some element was in the
support list, they told us where it was in the support list. From the position we were
able to derive decidable equality: that position is precisely what’s hidden in manifest
enumerability.

And indeed this means that the circle is manifestly enumerable.

&S : &S
&(S") fst =[base]
&(S") .snd = ||map|| (0,_) o isConnectedS'

We use a lemma here, proven in the Cubical Agda library, that S' is connected:

isConnectedS': (s: S') — || base = s ||

Surjections

We already saw that split enumerability was the listed form of a split surjection:
what we didn’t explain was why the word “split” was placed before surjection. In
the presence of higher homotopies than sets, split surjections are actually not a satis-
factory definition of surjection. And we are most certainly in the presence of higher
homotopies: just moments ago we were introduced to the circle. In these cases,
the following definition of surjections is preferred (Univalent Foundations Program,
2013, definition 4.6.1):

Surjective f=V y — || fiber fy || A — B =% (A — B) Surjective
Much in the same way that split enumerability were split surjections, our new
predicate of manifest enumerability corresponds to the proper surjections.

Manifest enumerability is equivalent to a surjection from a finite prefix of the natural
numbers.

A= Y[n:N](Finn— A)

Lemma 3.9

(3.22)

3.5

(3.23)

3.5. KURATOWSKI FINITENESS 47

Relation To Split Enumerability

It is trivially easy to construct a proof that any split enumerable type is manifest
enumerable: we simply truncate the membership proof. Going the other way is more
difficult, as we need to extract the membership proof from under a truncation. We do
know what we need, however: the key difference between manifest enumerability
and split enumerability is that the latter implied decidable equality. So that’s the
missing piece we should require in order to go from one to the other:

A manifestly enumerable type with decidable equality is split enumerable.

Now that we know what extra bit of information we are allowed use in this proof,
the path forward becomes a little more clear. In terms of the actual conversion func-
tion, the support list will stay the same, and only the return type of the cover proof
needs to change: from || x € zs || to x € zs.

That can be accomplished with the help of the following function:

recompute: DecA— || A|| — A

recompute (yes p) _=p
recompute (no —p) p= L-elim (rec isProp L =p p)

Given a decision procedure for some type, and a propositionally truncated value of
that type, we can construct an element of the type.

In the case of z € zs we can construct a decision procedure for membership of a
list, since we already have decidable equality on the elements of the list, proving our
obligation.

Kuratowski Finiteness

We now finally arrive at the most important definition of finiteness: Kuratowski
finiteness. As a definition, it is quite different from the predicates we’ve seen (it
doesn’t involve lists, for instance), but it plays a much larger role in the literature on
finiteness predicates than, say, manifest enumerability.

We start with the definition of Kuratowski-finite subsets.

data IC (A : Type a) : Type a where
[l :LA
A= KA—-KA
com:VXxyxs—xmyuxs=yix:txs
dup :Vxxs— xux:xs=x: xS
trunc : isSet (IC A)

The first two constructors are point constructors, giving ways to create values of
type IC A. They are also recognisable as the two constructors for finite lists, a type
which represents the free monoid. The next two constructors add extra paths to
the type: equations that usage of the type must obey. These extra paths turn the
free monoid into the free commutative (com) idempotent (dup) monoid. The final
constructor truncates the type C A to a set.

Definition 3.6
(Kuratowski
Finiteness)

Lemma 3.10

48 CHAPTER 3. FINITENESS PREDICATES

The Kuratowski finite subset is a free join semilattice (or, equivalently, a free
commutative idempotent monoid). More prosaically, K is the abstract data type for
finite sets, as defined in the Boom hierarchy (Boom, 1981; Bunkenburg, 1994). How-
ever, rather than just being a specification, K is fully usable as a data type in its own
right, thanks to HITs.

Other definitions of /C exist (such as the one in (Frumin et al., 2018)) which make
the fact that C is the free join semilattice more obvious. We have included such a
definition in our formalisation, and proven it equivalent to the one above.

data /C (A : Type a) : Type a where
n:A—-KA
U :KA—-KA—-KA
h:ICA
U-assoc : V xs ys zs — (xs U ys) U zs = xs U (ys U zs)
U-commutative : V xs ys — xs U ys = ys U xs
U-idempotent : V xs — xs U xs = xs
U-identity : V xs — xs U () = xs
trunc : isSet (IC A)

Next, we need a way to say that an entire type is Kuratowski finite. For that, we
will need to define membership of /C.

z e (] =1
zeynys=|lz=ydaxcys|

The com and dup constructors are handled by proving that the truncated form of
itself commutative and idempotent. The type of propositions is itself a set, satisfying
the trunc constructor. This gives us enough to define Kuratowski finiteness.

A type is Kuratowski finite if there exists a Kuratowski-finite subset of that type
which contains every element of the type.

KFA=S[xs: KA]((x: A) — x € xs)

While Kuratowski finiteness is something of the standard formal definition of
finiteness, it is quite separated from the enumeration-based definitions we have pre-
sented so far. It’s difficult to relate to surjections and equivalences, and requires a
different style of proof to reason about. As such, we want to get away from Kura-
towski finiteness as quickly as possible. To do so we use the following lemma:

Kuratowski finiteness is equivalent to truncated manifest enumerability.

| &A= KA

Proof. This proof is constructed by providing a pair of functions, to and from each
side of the equivalence. This pair implies an equivalence, because both source and
target are propositions. This proof, as well as its auxiliary lemmas, are also provided
in Frumin et al. (2018), although there the setting is HoT T rather than CuTT.]

(3.24)

3.5. KURATOWSKI FINITENESS 49

By relating Kuratowski finiteness—with a full equivalence, no less—to an enu-
merated predicate, we have made it possible to talk about Kuratowski finiteness
without interacting with the type at all.

In the next section, we will explore the category of discrete Kuratowski finite
sets. Under the hood, however, we will really be working with cardinal finite sets.
We can do this in a fully rigorous way because Lemma 3.10 allows us to prove the
following:

¢ A<= K A x Discrete A

4.1

CHAPTER
Topos

In this section we will examine the categorical interpretation of finite sets. In partic-
ular, we will prove that discrete Kuratowski finite types form a II-pretopos. A lot of
the work for this proof has been done already: we have already proven that discrete
Kuratowski finiteness is equivalent to cardinal finiteness (Theorem 3.24), meaning
that we can work with the latter definition which is much simpler to prove things
about.

There are two reasons we’re interested in the categorical and topos-theoretic in-
terpretation of finite sets: first, it’s an important theoretical grounding for finite sets,
which allows us to understand them in the context of other set-like constructions.
Secondly, and more practically, the language of a topos is (or in our case the II-
pretopos) is a common standard framework for doing mathematics generally. This
makes it a good basis for an API for building QuickCheck-like generators, for exam-
ple.

Categories in HoTT

At first glance, HoTT seems like a perfect setting for category theory: the univa-
lence axiom identifies isomorphisms with equality, a useful tool for category theory
missing from MLTT. While this initial impression is broadly true, the construction
of categories in HoTT is unfortunately quite complex and involved.

Much of this section is simply a summary of parts of Univalent Foundations Pro-
gram (2013, chapter 9). The formal proofs we provide are part translation of those
proofs in that chapter, part from (Iversen, 2018a) (Hu and Carette, 2020), and part our
own.

First, we need to think about the type of objects and arrows. We cannot, unfor-
tunately, leave them unrestricted: because of the potential for higher homotopy in
HoTT types, we have to restrict the type of arrows to just the sets. This notion: that
of a category with all the usual laws such that arrows are a set, is called a precategory.

51

52 CHAPTER 4. TOPOS

record PreCategory ¢; /5 : Type ({suc (¢1 (U £3)) where
field
Ob :Type f;
Hom : Ob — Ob — Type {5
Id :V{X} - Hom XX
Comp:V{XYZ} - HomYZ— HomXY— Hom X Z
(4.1) assoc-Comp : V{WXYZ
(f: Hom Y 2)
(g: Hom X'Y)
(h: Hom WX) —
Comp f(Comp g h) = Comp (Comp fg) h
Comp-Id : V{X Y} (f: Hom X Y) — Comp fId = f
Id-Comp : V{X Y} (f: Hom X Y) — Comp Id f= f
Hom-Set : V {X Y} — isSet (Hom X Y)

We will use long arrows to refer to morphisms within a category:
_— =Hom
From here, we can define a notion of isomorphisms.

[somorphism : (X — Y) — Type £o
(4.2) [somorphism {X}{Y} f=2[g: Y — X]((g- f=1Id) x (f- g=1d))

X=Y=%(X— Y) Isomorphism

It’s a condition on this type which separates the precategories from the categories:
if it satisfies a form of univalence, it the precategory is a full category.

(4.3) univalent : {XY: Ob} - (X=Y) >~ (XZY)

4.2 The Category of Sets

Next we’ll look at how to construct the category of sets (in the HoT T sense). Much
of this work comes directly from Rijke and Spitters (2015) and Univalent Founda-
tions Program (2013, chapter 10) (the latter of which is in fact an updated and slightly
less detailed version of the former). In particular, our treatment (and definition) of
categories and topoi comes directly from those works. We have provided in the for-
malisation a proof that sets in CuTT form a II-pretopos: this proof (in HoTT) is
in fact the main result of Rijke and Spitters (2015); our contribution is simply the
formalisation.
The objects are represented by a X:

Ob =3[t: Typeo] isSet t

This will be quite similar to our objects for finite sets.

Since sets in HOTT don’t form a topos, there are quite a few smaller lemmas we
need to prove to get as close as we can (a IIW -pretopos): we won’t include them
here, other than the closure proofs in the following section.

4.3

Lemma 4.1

4.3. CLOSURE 53

Closure

The two most involved proofs for showing that discrete Kuratowski sets form a II-
pretopos are those proofs that show closure under II and ¥. We will describe them
here.

In (Frumin et al., 2018, Theorem 4.21), Kuratowski finite types are proven to be
closed under surjections, products, and sums. Here we prove closure under products
and sums, but also functions, 3, and IT (and furthermore our closure proofs are given
on all of the finiteness predicates that they apply to).

Closure of the Ordered Predicates

First, we will show that split enumerability (and, by extension, manifest enumerabil-
ity) are closed under II and ¥. This is the first stepping stone on our way to prove
that cardinal finiteness is closed under the same.

Practically speaking, these proofs also open up a wide number of other closure
proofs to us. By proving that dependent products and sums are finite, we get the
non-dependent cases for free.

Split enumerability is closed under X.

B ETAS (Vx— £ (UX) — &S AD)

Proof. Our task is to construct the two components of the output pair: the support
list, and the cover proof. We’ll start with the support list: this is constructed by taking
the Cartesian product of the input support lists.

sup-2 : List A —
((x: A) — List (Ux)) —

List (X A U)
sup-2 xs ys = do x <— xs
Y ysx
[x,y]

We use do notation here because we’re working the list monad: this applies the latter
function (ys) to every element of the list zs, and concatenates the results.

To show that this does indeed cover every element of the target type is a little
intricate, but not necessarily difficult. |

Next we’ll look at closure under IT. In MLTT, this is of course not provable: since
all of the finiteness predicates we have seen so far imply decidable equality, and since
we don’t have any kind of decidable equality on functions in MLTT, we know that we
won’t be able to show that any kind of function is finite; even one like Bool — Bool.

CuTT is not so restricted. Since we have things like function extensionality and
transport, we can indeed prove the finiteness of function types. Our proof here makes
use directly of the univalence axiom, and makes use furthermore of all the previous
closure proofs.

Theorem 4.2

54 CHAPTER 4. TOPOS

Split enumerability is closed under dependent functions (II-types).

TS A = (0 A) — & (UR) — & ((x: A) — Ux)

Proof. Let A be a split enumerable type, and U be a type family from A, which is
split enumerable over all points of A.

As Ais split enumerable, we know that it is also manifestly Bishop finite (Lemma 3.3),
and consequently we know A ~ Fin n, for some n (Lemma 3.4). We can therefore
replace all occurrences of A with Fin n, changing our goal to:

El(Finn) ((x:Finn)—= & (U x))
El'((z:Finn) - U x)

We then define the type of n-tuples over some type family.

Tuple : ¥V n — (Fin n — Typeg) — Typeo
Tuple zero f=T
Tuple (suc n) f= ff0 x Tuple n(fo fs)

We can show that this type is equivalent to functions (proven in our formalisation):
Tuple nU< ((i: Fin n) — Ui)

And therefore we can simplify again our goal to the following:

EN'(Finm) ((z:Finn)— (U x))
El (Tuple n U)

We can prove this goal by showing that Tuple n U is split enumerable: it is made
up of finitely many products of points of U, which are themselves split enumerable,
and T, which is also split enumerable. Lemma 4.1 shows us that the product of
finitely many split enumerable types is itself split enumerable, proving our goal. W

Closure on Cardinal Finiteness

Since we don’t have a function of type C A — B A, closure proofs on 53 do not
transfer over to C trivially (unlike with £! and B). The cases for |, T, and Bool are
simple to adapt: we can just propositionally truncate their Bishop finiteness proof.

Non-dependent operators like x, &, and — are also relatively straightforward:
since ||_|| forms a monad, we can apply n-ary functions to values inside it, combining
them together.

IxX|_:BA—
B B—
B (A x B)

Into a truncated context:

4.3. CLOSURE 55

Ix|_: € A—
¢ B—
% (A x B)
xs || x| ys = do
X 4 Xs
y< ys
[x|x|y|

Unfortunately, for the dependent type formers like ¥ and II, the same trick does
not work. We have closure proofs like:
BA ((x:A)— B(Ux))
B((x:A) —=Uzx)

If we apply the monadic truncation trick we can derive closure proofs like the fol-
lowing:
|BA| [[((z:A4) =B U=)) |
| B((z:A)=Uxz)|

However our desired closure proof is the following:

[BAJ ((z:4) = B(Ux)l)
IB((x:A) = Ux)|

They don’t match!
The solution would be to find a function of the following type:

((:A) = BU))= (z:4)=>BU=)|

However we might be disheartened at realising that this is a required goal: the above
equation is extremely similar to the axiom of choice!

Definition 4.1 In HoTT, the axiom of choice is commonly defined as follows (Univalent Founda-
(Axiom of Choice) tions Program, 2013, lemma 3.8.2). For any set A, and a type family U which is a set
at all the points of A, the following function exists:

(:A) = [[U@)) = [(z:A) = Ulz) |

Luckily the axiom of choice does hold for cardinally finite types, allowing us to
prove the following:

Lemma 4.3 The axiom of choice holds for finite sets.
CA=((z:4) = U))= (z:4) = Ulz) |

Proof. Let A be a cardinally finite type, U be a type family on A, and f be a dependent
function of type Il(x : A), || U(z) |

First, since our goal is itself propositionally truncated, we have access to values
under truncations: put another way, in the context of proving our goal, we can rely
on the fact that A is manifestly Bishop finite. Using the same technique as we did

Theorem 4.4

4.4

56 CHAPTER 4. TOPOS

in Lemma 4.2, we can switch from working with dependent functions from A to
n-tuples, where n is the cardinality of A. This changes our goal to the following:

Tuplen (||_|| o U) = || Tuplen U || (4.4)
Since ||_|| is closed under finite products, this function exists (in fact, using the fact
that ||_|| forms a monad, we can recognise this function as sequenceA from the
Traversable class in Haskell). |

This lemma is a well-known folklore theorem.
This gets us all of the necessary closure proofs on C, and as a result we know the
following theorem.

Decidable Kuratowski finite sets form a II-pretopos.

The Absence of the Subobject Classifier

It’s a little unsatisfying that our topos construction has so many caveats: we have to
prove a lot of small, uninteresting lemmas just to get to a II-pretopos, all because we
can’t prove the one or two larger, simple lemmas which would show that sets form
a topos. So what exactly are we missing?

Well, one of the characteristic features of topos theory is that there are a wide
variety of equivalent ways to show that something is a topos (a natural consequence
of their being a wide variety of things which qualify as toposes). For the direction
we have been going, though, the big missing feature is the subobject classifier.

A subobject in this context refers to a subset. In set theory, we can often describe
a subset of some set A with the following notation:

{z |z € A;P(z)}

This is the subset of elements in A which satisfy some predicate P.

Type theoretically, the way to express the same would be > A P: if we wanted
to describe the subset of N smaller than 10 we would write X[n: N] n < 10. In
general, however, this type holds too many elements to properly classify the subsets
of the larger set: there may be more than one inhabitant of P z for any given x. For
propositions, however, (i.e. where P is a proposition), > represents a perfectly valid
encoding of subsets.

The subobject classifier is an object within the topos (which must be a contrac-
tion) which classifies monomorphisms (injections). We can actually show that the
“subset” notion we just defined does in fact classify monomorphisms in sets in HoTT
(in fact directly through univalence), but at this point we run into our one and only
size problem in this thesis. The actual object corresponding to the subobject classifier
is the following:

Prop-univ : Type;
Prop-univ = X[t: Typeg] isProp t

The problem here, crucially, is that the universe level of this type is one higher than

Definition 4.2
(Propositional
Resizing)

4.4. THE ABSENCE OF THE SUBOBJECT CLASSIFIER 57

the universe level of the types it bounds. In other words, this is not an object in our
[T-pretopos of sets, where the types are all of universe level 0.

Remember that the purpose of universe levels was to prevent Girard’s paradox.
However, there is an axiom which removes universe levels to a certain extent which
does not imply the paradox: propositional resizing.

The axiom of propositional resizing states that the following two types, for any uni-
verse level u, are equivalent:

Y[t:Type u]isProp t~ X[t: Type ({suc u)] isProp ¢

If propositional resizing holds, then we can in fact construct a subobject classifier,
for both sets and finite sets.

CHAPTER

Search

A common theme in dependently-typed programming is that proofs of interesting
theoretical things often correspond to useful algorithms in some way related to that
thing. Finiteness is one such case: if we have a proof that a type A is finite, we should
be able to search through all the elements of that type in a systematic, automated way.

As it happens, this kind of search is a very common method of proof automation
in dependently-typed languages like Agda. Proofs of statements like “the following
function is associative”

A: Bool — Bool — Bool
false /\ false = false
false A true = false
true A false = false
true A true = true

can be tedious: the associativity proof in particular would take 22 = 8 cases. This
is unacceptable! There are only finitely many cases to examine, after all, and we’re
already on a computer: why not automate it? A proof that Bool is finite can get us
much of the way to a library to do just that.

Similar automation machinery can be leveraged to provide search algorithms for
certain “logic programming”-esque problems. Using the machinery we will describe
in this section, though, when the program says it finds a solution to some problem
that solution will be accompanied by a formal proof of its correctness.

In this section, we will describe the theoretical underpinning and implementation
of alibrary for proof search over finite domains, based on the finiteness predicates we
have introduced already. The library will be able to prove statements like the proof of
associativity above, as well as more complex statements. As a running example for a
“more complex statement” we will use the countdown problem, which we have been
using throughout: we will demonstrate how to construct a prover for the existence
of, or absence of, a solution to a given countdown puzzle.

59

(5.1)

5.1

60 CHAPTER 5. SEARCH

The API for writing searches over finite domains comes from the language of
the Il-pretopos: with it we will show how to compose QuickCheck-like generators
for proof search, with the addition of some automation machinery that allows us to
prove things like the associativity in a couple of lines:

A-assoc:Vxyz— (xANyYANz=xA(yA 2)
A-assoc =V4"3XNxyz—= (xAYAz=xA(yA 2)

We have already, in previous sections, explored the theoretical implications of
Cubical Type Theory on our formalisation. With this library for proof search, how-
ever, we will see two distinct practical applications which would simply not be pos-
sible without computational univalence. First and foremost: our proofs of finiteness,
constructed with the API we will describe, have all the power of full equalities. Put
another way any proof over a finite type A can be lifted to any other type with the
same cardinality. Secondly our proof search can range over functions: we could, for
instance, have asked the prover to find if any function over Bool is associative, and
if so return it to us.

some-assoc : X[f: (Bool — Bool = Bool) |[Vxyz— f(fxy)z=fx(fy2)
some-assoc = "IN f—= V"3 Nxyz— f(fxy) z= fx(fy2)

The usefulness of which is dubious, but we will see a more interesting application
soon.

How to make the Typechecker do Automation

For this prover we will not resort to reflection or similar techniques: instead, we
will trick the type checker to do our automation for us. This is a relatively common
technique, although not so much outside of Agda, so we will briefly explain it here.

To understand the technique we should first notice that some proof automation
already happens in Agda, like the following:

obvious : true A false = false
obvious = refl

The type checker does not require us to manually explain each step of evaluation
of true A false. While it’s not a particularly impressive example of automation, it
does nonetheless demonstrate a principle we will exploit: closed terms will compute
to a normal form if they’re needed to type check. The type checker will perform
[B-reduction as much as it can.

So our task is to rewrite proof obligations like the one in Equation 5.1 into ones
which can reduce completely. As it turns out, we have already described the type
of proofs which can “reduce completely”: decidable proofs. If we have a decision
procedure over some proposition P we can run that decision during type checking,
because the decision procedure itself is a proof that the decision will terminate. In
code, we capture this idea with the following pair of functions:

5.2

5.2. OMNISCIENCE 61

True : Dec A — Typeg toWitness : (decision : Dec A) —
True (yes) =T {_:True decision} — A
True (no)= 1 toWitness (yes x) = x

The first is a function which derives a type from whether a decision is success-
ful or not. This function is important because if we use the output of this type at
any point we will effectively force the unifier to run the decision computation. The
second takes—as an implicit argument—an inhabitant of the type generated from the
first, and uses it to prove that the decision can only be true, and the extracts the
resulting proof from that decision. All in all, we can use it like this:

extremely-obvious : true # false
extremely-obvious = from-true (! (true = false))

This technique will allow us to automatically compute any decidable predicate.

Omniscience

So we now know what is needed of us for proof automation: we need to take our
proofs and make them decidable. In particular, we need to be able to “lift” decid-
ability back over a function arrow. For instance, given z, y, and z we already have
Dec ((z Ny) Az =z A (y A z)) (because equality over booleans is decidable).
In order to turn this into a proof that A is associative we need Dec (V = y z —
(x ANy) ANz ==ax A (y A z)). The ability to do this is described formally by the
notion of “Exhaustibility”.

Exhaustible p A=V {P: A — Type p} — (V x — Dec (P x)) — Dec (V x — P x)

We say a type A is exhaustible if, for any decidable predicate P on A, the universal
quantification of the predicate is decidable.

This property of Bool would allow us to automate the proof of associativity, but
it is in fact not strong enough to find individual representatives of a type which
support some property. For that we need the more well-known related property of
omniscience.

Omniscient p A=V {P: A — Type p} = (V x — Dec (P x)) — Dec ([x] Px)

The “limited principle of omniscience” (Bishop, 1967) is a classical principle which
says that omniscience holds for all sets. It doesn’t hold constructively, of course: it
lies a little bit below LEM in terms of its non-constructiveness, given that it can be
derived from LEM but LEM cannot be derived from it.

Omniscience implies exhaustibility: we can use the usual rule of ~3x.P(z) <
Vz.=P(z) to turn omniscience for some predicate P into exhaustibility for some
predicate ——P. Usually we don’t have double negation elimination constructively,
but since P is decidable it’s actually present in this case:

Dec—DoubleNegElim : (A: Type a) - DecA— - A— A
Dec—DoubleNegElim A (yes p) _ =p
Dec—DoubleNegElim A (no —p) contra = L -elim (contra —p)

Lemma 5.1

Lemma 5.2

5.3

62 CHAPTER 5. SEARCH

All together, this gives us the following proof:

Omniscient—Exhaustible : Omniscient p A — Exhaustible p A
Omniscient—Exhaustible omn P? =
map-dec
(\ =3P x — Dec—DoubleNegElim _ (P? x) (-3Po (x,_)))
(\ =3PVYP — —3P X\ p — p .snd (VP (p fst)))
(! (omn (! © P?)))

Our focus here is on those types for which omniscience does hold, which includes
the (ordered) finite types. Perhaps surprisingly, it is not only finite types which are
exhaustible. Certain infinite types can be exhaustible (Escardo, 2007), but an explo-
ration of that is beyond the scope of this work.

All of the finiteness predicates imply exhaustibility. To prove that fact we’ll just
show that the Kuratowski finite types are exhaustible: since it’s the weakest predi-
cate, and can be derived from all the others.

Kuratowski finiteness implies exhaustibility.
Manifest enumerability is similarly the weakest of the ordered predicates:
Manifest enumerability implies omniscience.

We won’t provide these full proofs here, since they are rather tedious and don’t
provide much insight.
Finally, there is a form of omniscience which works with Kuratowski finiteness:

Prop-Omniscient p A=V {P: A — Type p} — (V x — Dec (Px)) — Dec || [x] Px ||

By truncating the returned > we don’t reveal which A we’ve chosen which satisfies
the predicate: this means that it can be pulled out of the Kuratowski finite subset
without issue.

Kf=Prop-Omniscient : K* A — Prop-Omniscient p A
Kf=Prop-Omniscient K P? =
PropTrunc.rec
(isPropDec squash)
(map-dec |_| refute-trunc o X\ xs — &=-Omniscient xs P?)
(K'=|1€11 K

With the knowledge that any Kuratowski finite type implies exhaustibility we
know that we can do proof search over all of the types we have proven to be Ku-
ratowski finite: the 0, 1, and 2 types; (dependent) sums and products; and any type
proven to be equivalent to these. It’s still not entirely clear how to actually use this
automation without incurring so much boilerplate as to defeat the point, though.

An Interface for Proof Automation

In this section we will present the more user-friendly interface to the library, de-
signed to be used to automate away tedious proofs in an easy way.

(5.2)

5.3. AN INTERFACE FOR PROOF AUTOMATION 63

The Design of the Interface

The central idea of the interface to the proof search library are the following two
functions:

V28N A— A
(V¥ x — Dec (Px)) — (V x — Dec (Px)) —
Dec (V x — Px) Dec ([x] Px)
V? & A) = &!=-Exhaustible &!(A) I? £IA) = &'=Omniscient &KA)

Clearly they’re just restatements of exhaustibility and omniscience. However, we
can combine these functions with the automation technique from above to create
the following:

Vi (ENAY : £ A) 34 (ENA) : &) A) —
(P?:V x — Dec (Px)) — (P?: V¥ x — Dec (Px)) —
{_:True (V? &XA) P?) |} — {_:True (F? &XA) P?) |} —
Vx— Px dx]Px

V4 __{t]} =toWitness ¢ 34 __{ ¢t = toWitness ¢

This automation procedure allows us to state the property succinctly, and have
the type checker go and run the decision procedure to solve it for us. Here’s an
example of its use:

A-idem:Vx— xAx=x
A-idem =V4 E2) XN x— xNx=x

Instances

One bit of cruft in the above proof is the need to specify the particular finiteness
proof for bools. While this isn’t any great burden in this case, it of course becomes
more difficult in more complex circumstances.

To solve this we can use Agda’s instance search. This changes the definitions of
our automation functions to the following:

Vi EXA): EVA — 5 ENA) : ETAL —
(P?:V x — Dec (Px)) — (P?:V x— Dec (Px)) —
{_:True (V? &XA) P?) |} — {_:True (T EHA) P?) |} —
Vx—Px dx]Px

V4 _{ t]} =toWitness t 34 _{ t]} =toWitness t

And this also changes the idempotency proof to the following:

A-idem:Vx— xANx=x
A-idem =Y/ Xx— x A x=x

Again, there’s not any great revelation in ease of use here, but more complex
examples really benefit. Especially when we build the full set of instances: any ex-
pression built out of products and sums will automatically have an instance. This
will allow us, for instance, to perform proof search over tuples, which gives us some
degree of automation for proof search in tuples.

64 CHAPTER 5. SEARCH

A-comm:Vxy—xANy=yAx
A-comm = curry (V4 (uncurry A xy — x A y= y A x)))

These instances aren’t limited to non-dependent sums and products, either: for 3,
for instance, we already have a proof that £! A — (Vo — £! (B z)) — £! (X A B).
Since A is finite, we can construct a finite constraint that “B is finite at all points of
A”, and use that to statically build our instance.

_: & (X[s: Bool] (if s then Fin 3 else Fin 4))
_ =it

The it function here is a clever helper function. It’s defined like so:

it:{_:A}— A
ityxt=x

Basically it searches for an instance for the type in the hole that it’s put into: it’s a
way of asking Agda to “find an instance which fits here”.

Generic Currying and Uncurrying

While we have arguably removed the bulk of the boilerplate from the automated
proofs, there is still the case of the ugly noise of currying and uncurrying. In this
section, we take inspiration from Allais (2019) to develop a small interface to generic
n-ary functions and properties. We will describe it briefly here.

The basic idea of currying and uncurrying generically is to allow ourselves to
work with a generic and flexible representation of function arguments which can be
manipulated more easily than a simple function itself. Our first task, then, is to define
that representation of function arguments. As in Allais (2019), our representation is
a tuple which is in some sense a “second order” indexed type. By second order here
we mean that it is an indexed type indexed by another indexed type. The reason
for this complexity is that our solution is to be fully level-polymorphic. To start, we
define a type representing a vector of universe levels:

Levels : N — Typeg max-level : Levels n — Level
Levels zero = T max-level {zero} _ = (zero
Levels (suc n) = Level x Levels n max-level {suc n} (x, xs) =

x (1 max-level xs

This will be used to assign our tuple the correct universe level generically. Next,
we define the list of types (this type is indexed by the list of universe levels of each

type):

Types : V n— (Is: Levels n) — Type (¢suc (max-level Is))
Types zero Is= T
Types (suc n) (I, Is) = Type I x Types n s

And finally, the tuple, indexed by its list of types:

5.3. AN INTERFACE FOR PROOF AUTOMATION 65

()" : Types (suc n) Is — () :Typesnls—

Type (max-level Is) Type (max-level Is)
()" {n=zero} (X, Xs) =X (){n=zero} =T
()" {n=sucn (X, Xs)=Xx (Xs)* (){n=sucnt=()" {n=n}

The reason for two separate functions here is to avoid the T-terminated tuples we
would need if we just had one. This means that, for instance, to represent a tuple of
a Bool and N we can write (true , 2) instead of (true, 2, tt).

Next we turn to how we will represent functions. In Agda there are three ways to
pass function arguments: explicitly, implicitly, and as an instance. We will represent
these three different versions with a data type:

data ArgForm : Typey where expl impl inst : ArgForm

And then we can make a type for functions in the general sense: a type which has
this sum type as a parameter.

[]—_: Type a = ArgForm — Type b — Type (a (L1 b)
Alexpl |+ B= A —B
Alimpl]—-B={_:A} — B
Alinst | > B={_:A[} —B

And we can show that this is isomorphic to a normal function:
[$]:V form — (A[form]— B) < (A — B)

This of course is only a representation of non-dependent functions. Dependent
functions are defined in a similar way:

I $]:V{B:A— Type b} fr— (x: AIl[fr]— Bx) < ((x: A) — Bx)

Using both of these things, we can now define a generic type for multi-argument
functions:

(_)[_]—_: Types nIs — ArgForm — Type £ — Type (max-level Is /L) £)
()]~ _{n=zero} XsfrY=Y
(D)= {n=sucnmX,Xs) frY=X[fr]—=(Xs)[fr]—> Y

We can also define multi-argument dependent functions in a similar way. Similarly
to how we had to define two tuple types in order to avoid the T-terminated tuples,
we have two definitions for multi-argument dependent functions. We only include
the nonempty version here for brevity.

pi-arrs-plus :

(Xs: Types (suc n) Is) —

ArgForm —

(y: (Xs)* — Type) —

Type (max-level Is (LI £)
pi-arrs-plus {n = zero }(X,Xs) frY=x: XII[fr]— Yx
pi-arrs-plus {n =sucn} (X, Xs) fr Y =

x: X[fr]— xs:(Xs)" TI[fr]— Y (x, xs)

66 CHAPTER 5. SEARCH

Finally, this all allows us to define an isomorphism between generic multi-argument
dependent functions and their uncurried forms.

TI[_ " $]:V n{ls &} fr{Xs: Types nIs} {Y: (Xs|) — Type £} —
(s :(Xs)II[fr]— Yxs) < ((xs: (Xs)) — Yxs)

The use of all of this is that we can take the user-supplied curried version of a
function and transform it into a version which takes instance arguments for each of
the types.

37" ¢ (| map-types &! Xs|)[inst |—
xs (| Xs)II[expl]—
Dec (P xs) [expl]—
Dec (X (Xs) P)
4= [n"inst $].inv X fs
— &1=Omniscient (tup-inst n fs)
o II[n" expl $] .fun

J4n:
insts :(map-types & Xs)II[inst |—
((P?: xs :(Xs)II[expl]— Dec (P xs))
—{ _:True
(&'=-Omniscient
(tup-inst n insts)
(IT[n * expl $] .fun P?) [t
— X (Xs) P
J4n =
II[n " inst $] .inv
NfsP?{ p[— toWitness p

While the type signatures involved are complex, the usage is not. Finally, here is
how we can automate the proof of commutativity fully:

A-comm:Vxy—=>xNy=yAx
A-comm=Yi"2Nxy—=xANy=yAx

With that, we now have a simple interface to a proof search library, which can
be used to automate away certain tedious proofs.

Automation of simple proofs like the associativity of conjunction is all well and
good, but tasks like that are more tedious than they are difficult. What about more
difficult problems? In the next section we will look at a problem which is too com-
plex to be solved by the simple instance-search solver we have constructed here.
Instead, we will have to combine instance search with manual construction of finite-
ness proofs, optimisation of representation, and some other tricks. At the end of it,
we will have a solver for countdown.

54

5.4. COUNTDOWN 67

Countdown
The Countdown problem (Hutton, 2002) is a well-known puz- 1 3 7 10 25 50
zle in functional programming (which was apparently turned
into a TV show). As a running example in this paper, we will
. v v
produce a verified program which lists all solutions to a given X 3 7 10 25 50
countdown puzzle: here we will briefly explain the game and
our strategy for solving it. v>%<
The idea behind countdown is simple: given a list of num- v v
bers, contestants must construct an arithmetic expression (us- 3 7 50 10 25
ing a small set of functions) using some or all of the numbers,
to reach some target. Here’s an example puzzle: E‘ E‘
v v
3 X 7 X 50 — 10 — 25

Using some or all of the numbers 1, 3, 7, 10, 25,
and 50 (using each at most once), construct an ex-
pression which equals 765.

We’ll allow the use of +, —, X, and <. The answer is at the
bottom of this page'.

Our strategy for finding solutions to a given puzzle is to
describe precisely the type of solutions to a puzzle, and then
show that that type is finite. So what is a “solution” to a count-
down puzzle? Broadly, it has two parts:

A Transformation from a list of numbers to an expression.

~

40
280
255

765

(a) Selection

(b) Permutation

(c) Operators

(d) Parentheses

Figure 5.1: The components of a transformation which
A Predicate showing that the expression is valid and evalu- makes up a Countdown candidate solution

ates to the target.

The first part is described in Figure 5.1.

This transformation has four steps. First (Fig. 5.1a) we have to pick which num-
bers we include in our solution. We will need to show there are finitely many ways
to filter n numbers.

Secondly (Fig. 5.1b) we have to permute the chosen numbers. The representation
for a permutation is a little trickier to envision: proving that it’s finite is trickier still.
We will need to rely on some of the more involved lemmas later on for this problem.

The third step (Fig. 5.1c) is a vector of length n of finite objects (in this case
operators chosen from +, X, —, and +). Although it is complicated slightly by the
fact that the n in this n-tuple is dependent on the amount of numbers we let through
in the filter in step one. (in terms of types, that means we’ll need a X rather than a
x, explanations of which are forthcoming).

Finally (Fig. 5.1d), we have to parenthesise the expression in a certain way. This
can be encapsulated by a binary tree with a certain number of leaves: proving that
that is finite is tricky again.

Once we have proven that there are finitely many transformations for a list of
numbers, we will then have to filter them down to those transformations which are

Y(gz — (0T — 09) X 1) X g :Tomsuy

68 CHAPTER 5. SEARCH

valid, and evaluate to the target. This amounts to proving that the decidable subset
of a finite set is also finite.

Finally, we will also want to optimise our solutions and solver: for this we will
remove equivalent expressions, which can be accomplished with quotients. We have
already introduced and described countdown: in this section, we will fill in the re-
maining parts of the solver, glue the pieces together, and show how the finiteness
proofs can assist us to write the solver.

Finite Vectors

We'll start with a simple example: for both the selection (Fig. 5.1a) and operators
(Fig. 5.1c) section, all we need to show is that a vector of some finite type is itself
finite. To describe which elements to keep from an n-element list, so instance, we
only need a vector of Booleans of length n. Similarly, to pick n operators requires us
only to provide a vector of n operators. And we can prove in a straightforward way
that a vector of finite things is itself finite.

&V Vec) : &1 A — & (Vec An)

&VVec) {n=zero } &ENA) = &1(PolyT)

ENVec) {n=suc n} ENA) = ENA) | x| &1{(Vec) EXA)
We’ve already shown that there are finitely many booleans, the fact that there are
finitely many operators is similarly simple to prove:

£1(0p) : &1 Op

ENOp) fst =+ x/ w1]
&Y O0p) .snd +' =0, refl

£1(Op) .snd X" = 1, refl

&Y O0p) .snd-" =2, refl

&YO0p) .snd +" =3, refl

Finite Permutations

A more complex, and interesting, step of the transformation is the first step (Fig. 5.1b),
where we need to specify the permutation to apply to the chosen numbers.
Our first attempt at representing permutations might look something like this:

Perm : N — Typeg
Permn=Finn— Finn

the idea is that Perm n represents a permutation of n things, as a function from
positions to positions. Unfortunately such a simple answer won’t work: there are
no restrictions on the operation of the function, so it could (for instance), send more
than one input position into the same output.

What we actually need is not just a function between positions, but an isomor-
phism between them. In types:

Perm : N — Typeg
Perm n = Isomorphism (Fin n) (Fin n)

5.4. COUNTDOWN 69

Where an isomorphism is defined as follows:

Isomorphism : Type a — Type b — Type (a fU b)
Isomorphism AB=Y[f:(A—B) | X[g:(B— A)] (fog=id) x (go f=id)

While it may look complex, this term is actually composed of individual components
we’ve already proven finite. First we have Fin n — Fin n: functions between finite
types are, as we know, finite (Theorem 4.2). We take a pair of them: pairs of finite
things are also finite (Lemma 4.1). To get the next two components we can filter to
the subobject: this requires these predicates to be decidable. We will construct a
term of the following type:

Dec (fo g=id)
So can we construct such a term? Yes!

We basically need to construct decidable equality for functions between Fin ns:
of course, this decidable equality is provided by the fact that such functions are them-
selves finite.

All in all we can now prove that the isomorphism, and by extension the permu-
tation, is finite:

iso-finite : B A —
B B—
B[fg:(A— B) x (B—A)]
((fg fsto fg.snd =id) x
(f.g .snd o f,g fst = id)))
iso-finite B(A) B(B) =
filter
(\ _ — isPropEqgs)
M {(f. 8 — (fog =" id && (go f) =" id})
(B{A) || B(B)) || (B(B) || B{A)))

Unfortunately this implementation is too slow to be useful. As nice and declar-
ative as it is, fundamentally it builds a list of all possible pairs of functions between
Fin n and itself (an operation which takes in the neighbourhood of O(n™) time), and
then tests each for equality (which is likely worse than O(n?) time). We will instead
use a factoriadic encoding: this is a relatively simple encoding of permutations which
will reduce our time to a blazing fast O(n!). It is expressed in Agda as follows:

Perm : N — Typeg
Perm zero =T
Perm (suc n) = Fin (suc n) x Perm n

It is a vector of positions, each represented with a Fin. Each position can only refer
to the length of the tail of the list at that point: this prevents two input positions
mapping to the same output point, which was the problem with the naive encoding
we had previously. And it also has a relatively simple proof of finiteness:

&Y(Perm) : & (Perm n)

& (Perm) {n=zero }=&NT)
&V (Perm) {n = suc n} = &!(Fin) | x| &!(Perm)

Definition 5.1
(Dyck words)

70 CHAPTER 5. SEARCH

Parenthesising

Our next step is figuring out a way to encode the parenthesisation of the expression
(Fig. 5.1d). At this point of the transformation, we already have our numbers picked
out, we have ordered them a certain way, and we have also selected the operators
we’re interested in. We have, in other words, the following:

3x7x50—10—25 (5.3)

Without parentheses, however, (or a religious adherence to BOMDAS) this expres-
sion is still ambiguous.

3 x ((7 x (50 — 10)) — 25) = 765 (5.4)
(((3 x 7) x 50) — 10) — 25 = 1015 (5.5)

The different ways to parenthesise the expression result in different outputs of eval-
uation.

So what data type encapsulates the “different ways to parenthesise” a given ex-
pression? That’s what we will figure out in this section, and what we will prove
finite.

One way to approach the problem is with a binary tree. A binary tree with n
leaves corresponds in a straightforward way to a parenthesisation of n numbers
(Fig. 5.1d). This doesn’t get us much closer to a finiteness proof, however: for that
we will need to rely on Dyck words.

A Dyck word is a string of balanced parentheses. In Agda, we can express it as the
following:

data Dyck: N =+ N — Type; where
done : Dyck zero zero
_: Dyck (suc n) m — Dyck n (suc m
Dyck Dyck
)_: Dyck n m — Dyck (suc n) m

A fully balanced string of n pairs of parentheses has the type Dyck zero n. Here are
some example strings:

_:Dyck02 _:Dyck 03

_=() () done _=(){{)) done

The first parameter on the type represents the amount of unbalanced closing
parens, for instance:

_:Dyck 12

_=) () () done

Already Dyck words look easier to prove finite than straight binary trees, but for
that proof to be useful we’ll have to relate Dyck words and binary trees somehow.
As it happens, Dyck words of length 2n are isomorphic to binary trees with n — 1

5.4. COUNTDOWN 71

leaves, but we only need to show this relation in one direction: from Dyck to binary
tree. To demonstrate the algorithm we’ll use a simple tree definition:

data Tree : Typey where
leaf : Tree
*:Tree — Tree — Tree

The algorithm itself is quite similar to stack-based parsing algorithms.

dyck—tree : Dyck zero n — Tree
dyck—tree d = go d (leaf,)

where
go : Dyck n m — Vec Tree (suc n) — Tree
go((d) ts = go d (leaf , ts)
g0()d) (t,ta,ts)=god(ts ™ty ,1ts)
go done (¢,) =t

Putting It All Together

At this point we have each of the four components of the transformation defined.
From this we can define what an expression is:

ExprTree : N — Typeg
ExprTree zero = L
ExprTree (suc n) = Dyck 0 n X Vec Op n

Transformation : List N — Typeg
Transformation ns =
Y[s: Subseq (length ns)]
let n = count s
in Perm n X ExprTree n

Notice that we don’t allow expressions with no numbers.
The proof that this type is finite mirrors its definition closely:

& (ExprTree) : &' (ExprTree n)
& (ExprTree) {n = zero } = &1(L)
& ExprTree) {n = suc n} = &!(Dyck) |x| &(Vec) &1(Op)

&!(Transformation) : &! (Transformation ns)
&!(Transformation) = &!(Subseq) |X| X _ — &(Perm) | x| &'(ExprTree)

Filtering to Correct Expressions

We now have a way to construct, formally, every expression we can generate from a
given list of numbers. This is incomplete in two ways, however. Firstly, some expres-
sions are invalid: we should not, for instance, be able to divide two numbers which
do not divide evenly. Secondly, we are only interested in those expressions which

72 CHAPTER 5. SEARCH

actually represent solutions: those which evaluate to the target, in other words. We
can write a function which tells us if both of these things hold for a given expression
like so:

<>' :N— Op - N — Maybe N

eval : Tree Op N — Maybe N x!(+ > = just $! (x+ y)
eval (leaf x) = just x x!{x") y=just$! (x*y)
eval (xs (op) ys) = do x!() y=

x < eval xs ifx<fy

y < eval ys then nothing

x!(op)ly else just $! (x — y)

x!(+')! zero = nothing
x!(=" Msucy=
if rem x (suc y) =2 0
then just $! (x = suc y)
else nothing

With this all together, we can finally write down the type of all solutions to a
given countdown problem.

Solution ns n = X[e: Transformation ns] (eval (transform ns e) = just n)

And, because the predicate here is decidable and a mere proposition, we can prove
that there are finitely many solutions:

&' (Solution ns n)
And we can apply this to a particular problem like so:

exampleSolutions : &! (Solution [1,3,7,10, 25,50] 765)
exampleSolutions = &!(Solutions)

Typecheck this in Agda and it will evaluate to a list of the valid answers for that
problem.

6.1

Definition 6.1
(Split Countability)

Definition 6.2
(Streams)

CHAPTER

Countably Infinite Types

We have now built up a substantial amount of theory relating to finite types. In this
chapter, we will look at the countable types: we will see that there is a parallel kind of
classification of predicates to the finiteness predicates, with some notable differences.

Countability

For our first countability predicate, we will mirror split enumerability:
A type is “split countable” if there is a stream which contains all of its elements.
N'A =3[xs:Stream A]((x: A) = x € xs)
The similarity to split enumerability should be clear: the only difference between
the two definitions, in fact, is the type of the container.
For countability we use streams: these are basically infinite lists. To a Haskeller,
normal lists themselves often fulfil this purpose, but in a total language like Agda,

we need a totally different type. Lists, as an inductive type, are not permitted to be
infinitely large.

In Agda the type of streams can be given as a container:
Stream = [T, const N |

Although this definition is so simple it is more common to define it without reference
to the usual container machinery:

StreamA=N— A

By inlining the definition of the container primitives it’s clear that the two types are
isomorphic, but by defining streams in these terms we’re able to use things like the
membership function on containers.

73

6.2

74 CHAPTER 6. COUNTABLY INFINITE TYPES

(1,e) (2,e) (3,¢€) (4,e) (5,¢€) (1,¢) (2,¢)
T 7 T 7 T
(1,d) (2,d) (3,d) (4,d) (5,d)
T T) T)
(1,¢) (2,¢) (3,¢) (4,¢) (5,¢)
T 7 T 7 T
(1,b) (2,b) (3,b) (4,b) (5,b)
T T) T)
(1,a) (2,a) (3,a) (4,a) (5,a) (1,a) (2,a) (3,a) (4,a) (5,a)

(a) Depth-First (b) Breadth-First

Figure 6.1: Two possible products for the sets [1...5] and [a.. . €]

In the previous sections we saw different flavours of finiteness which were re-
ally just different flavours of relations to Fin. Unsurprisingly, given the definition
of streams, we will see in this section that different flavours of countability are re-
ally just different flavours of relations to N. Case in point: our definition of split
enumerability is definitionally equal to a split surjection from N.

NN N A= (N ! A)
NS N-—»! = refl

From this we can derive decidable equality, just like we could with split enumerabil-
ity.

We also have equivalents to manifest enumerability, or even cardinal finiteness,
in the countable setting: they are less interesting than split countability, however.

Closure

The closure proofs are where countability begins to differ from split enumerability.
We will see one closure proof that stays the same, one that is absent, and one that is
additional.

Instances for Finite Types

Before we move on to the proper closure proofs, it is worth pointing out that all (non-
empty) finite types are also countable. Split countability, like split enumerability,
does not disallow duplicates: this means that for any non-empty type we can simply
repeat one of its elements infinitely to produce a countability proof.

Closure Under X

The proof that split enumerability was closed under > was quite straightforward:
we were able to use the “normal” pattern of taking the Cartesian product of two lists
in order to generate the finite support list for .. Unfortunately this doesn’t work for
infinite types: the reason for which can be seen in Figure 6.1.

6.2. CLOSURE 75

The depth-first pattern is what we used previously: this explores the first list
exhaustively before exploring anything other than the first element of the second
list. This clearly won’t work for streams, as it would mean that nothing other than
the first element of the second type could be found in the entire support stream.

So instead we use the second pattern: breadth-first search. The way we actually
code this pattern up is a little complex: we treat the search space as having several
“levels”. Each item in each input list has a level (its position in that input list); the
output level for two items is the sum of those levels. In pseudo-set-builder notation:

(zs X ys)n = [(zsi,ys;)|i < [0...n];5 < [0...n];i+j =n]

And then this is flattened to give the output support list.

One last detail of this function before we actually provide it: we use yet another
definition of lists in its implementation, instead of the normal lists, as it is useful for
termination proofs.

record _* (A: Type a) : Type a where data _«x (A:Type a): Type a where

inductive [1:Ax
constructor & — AT > Ax
field

head : A

tail : A~

This definition of lists interleaves the definition of non-empty lists with the definition
of possibly-empty lists. This makes it much easier to switch between the two without
conversion functions.

Finally, we can provide the function which actually performs the breadth-first
search two streams.

“x[_] : Stream A — (V x — Stream (U x)) — Stream (X A U)
xs % ys[zero] =]
xs“x ys[sucn]=:—(xs” ys)n

*:Stream A — (V x — Stream (U x)) — Stream (X AU ")
(xs™ ys) n.head =let x=xs0in x, ysxn
(xs ™ ys) n.tail = (xsosuc) “xys[n]

The corresponding cover proof is relatively straightforward, so we don’t include it
here.

Closure Under The Kleene Star

One of the more useful types we can prove to be countably infinite is the list. This
proof is significantly more complex than the previous, however: we need to find a
pattern which eventually covers any given element of type List A, given X! A. Again
we will tackle this pattern by first treating the exploration space as a series of finite
levels: we can then concatenate all of these levels together to a final exploration
pattern. The next trick is to figure out how to define those levels: we’ll do it by

76 CHAPTER 6. COUNTABLY INFINITE TYPES

saying the lists of a given level n each must sum (after incrementing the indices of
each element) to n. That means that the 0th level consists only of the empty list, the
1st level consists of the list [0], the 2nd of [0, 0] and [1], and so on. Again, in pseudo
set-builder notation:

N i= [[@s;—1 | j € js] | js : List Nysum js = ;0 ¢ js]

No Closure Under II

One closure proof that is certainly not possible is closure under II: it is not the case
that functions from countable types are themselves countable. While this is a pretty
basic fact in computer science, we include it here to show how simple its proof in
Agda can be:

cantor-diag : = X! (N — Bool)
cantor-diag (sup, cov) =
let n, p=cov(\ n— not (sup n n))
in xZ—x _ (cong (_$ n) p)

CHAPTER

Related Work

Homotopy Type Theory To understand the background and subject area behind
this thesis, the most important piece of work is the Univalent Foundations Program
(2013), often simply called “the HOTT Book”.

One particular paper we relied on is Kraus (2015): this gave a proof (which we
use) that one can eliminate out of a propositional truncation into a set provided the
elimination is coherently constant.

Agda and Cubical Type Theory The programming language we use in this thesis
is Cubical Agda (Vezzosi et al., 2019). This is an implementation of Cubical Type
Theory (Cohen et al., 2016), built as an extension to the programming language Agda
(Norell, 2008).

Constructive Finiteness An excellent introduction to the topic of finiteness in a
constructive setting is Coquand and Spiwack (2010): this paper introduced 4 notions
of finiteness, called enumerated, bounded, Noetherian, and streamless. We have only
looked at the first of these (enumerated, which we called “split enumerable”). The
other three are interesting definitions, though: Noetherianness in particular is ex-
plored more in Firsov et al. (2016), and streamlessness in Parmann (2015).

Finite sets have long been used for proof automation in dependently typed pro-
gramming languages: the most relevant example is Firsov and Uustalu (2015), where
they are used to automate proofs in Agda. Manifest Bishop finiteness and split enu-
merability are the only predicates explored, however, and the setting is MLTT rather
than CuTT. As a result, no proofs of equivalence are given.

Finite sets in Homotopy Type Theory in particular are explored in Frumin et al.
(2018): that paper is quite close in subject matter to this thesis, and some of the
theorems proven in this thesis are explicitly called for there. They do focus slightly
more, however, on Kuratowski finite sets: these were first defined in Kuratowski
(1920). None of the “manifest” predicates are explored in Frumin et al. (2018) (i.e.

77

78 CHAPTER 7. RELATED WORK

they focus on propositional predicates), and the only closure proofs provided are
those of (non-dependent) products and sums, and surjections, on Kuratowski finite
sets. As a result, there is no proof that those sets form a topos. Also, given that the
work was done in HoTT and not CuTT, their univalence axiom does not compute:
this means that the proof search library we have defined here would not be possible.

Set and Topos Theory Our proof that finite sets form a topos follows quite closely
along with the structure of chapter 10 of the HoT T book. This chapter itself is adapted
from Rijke and Spitters (2015).

The category of finite sets in HoTT is also explored quite a bit in Yorgey (2014):
we have formalised several of the proofs there in this thesis.

The paper Iversen (2018b) was essential in explaining the techniques and tricks
needed to formalise category-theoretic concepts in Cubical Agda.

More generally the category of finite sets is explored in Solov’ev (1983), and the
topic of toposes from cardinally finite sets in Henry (2018).

Exhaustibility The twin notions of exhaustibility and omniscience were first de-
fined in Bishop (1967). There, they were studied as to how they applied to “con-
structiveness”. In functional programming, perhaps their most famous usage was in
Escardd (2013): there, Escardé shows that there are in fact sets which satisfy this
principle of omniscience (or exhaustibility), without being finite.

Countdown The countdown problem is well-known in functional programming:
its first description was in Hutton (2002), but subsequent papers (Bird and Mu, 2005;
Bird and Hinze, 2003) explored its different aspects. As far as we know, ours is the
first paper to look at countdown from the dependently-typed, proof perspective.

Generate and Test While the formal grounding for the API for our proof search
library comes from topos theory, the less formal inspiration is from QuickCheck
(Claessen and Hughes, 2011). This more general pattern of using generators in a
principled way to generate data for tests is also explored in Runciman et al. (2008),
which is perhaps closer in spirit to our work than QuickCheck (it’s especially close
to chapter 6). In the setting of dependently-typed programming (and Agda in par-
ticular), O’Connor (2016) looks into the generate-and-test technique but for proofs,
much like we do here. There, also, partial proof search is examined.

Finally, in order to present a usable interface to the proof search library, we used
(and expanded on) some of the techniques in Allais (2019), for generic currying.

CHAPTER

Conclusion

This thesis has explored finiteness in the setting of Cubical Type Theory. Hopefully,
it will serve as a reasonable introduction to dependent type theory for functional
programmers which is a little different from most other introductions, and which
gives a taste of topics like HoTT which are on the cutting edge of the field. For those
more experienced with dependent types, hopefully the thesis makes some argument
as to the usefulness and importance of univalence in dependently-typed language,
and demonstrates its power both theoretically and practically.

As for the theoretical contributions of the paper, we have provided a thorough
accounting of many of the ways to say something is “finite” in a dependently-typed
programming language, and grounded that account in topos theory. In the future we
hope to see a similar exploration of the countably infinite types, and a connection of
those predicates to the finite predicates.

We would also like to see more uses for finite types in dependently typed pro-
gramming: termination checking seems one obvious area where they could be used
more extensively.

Automated proof search libraries based on finiteness are common in the dependently-
typed programming world. In this thesis, we have presented such a library which
has the added power of univalence: in the future we would like to see explorations
of how to improve the efficiency of the proof search, to make it more practical for
larger examples. We would also like to see a similar library for the countably infinite
types, which can perform partial proof search.

79

Bibliography

Michael Abbott, Thorsten Altenkirch, and Neil Ghani. Containers: Constructing
strictly positive types. Theoretical Computer Science, 342(1):3-27, September 2005.
ISSN 0304-3975. doi: 10.1016/j.tcs.2005.06.002.

Guillaume Allais. Generic level polymorphic n-ary functions. In Proceedings of the 4th
ACM SIGPLAN International Workshop on Type-Driven Development - TyDe 2019,
pages 14-26, Berlin, Germany, 2019. ACM Press. ISBN 978-1-4503-6815-5. doi:
10.1145/3331554.3342604.

Richard Bird and Ralf Hinze. Functional Pearl Trouble Shared is Trouble Halved. In
Proceedings of the 2003 ACM SIGPLAN Workshop on Haskell, Haskell 03, pages 1-
6, New York, NY, USA, 2003. ACM. ISBN 978-1-58113-758-3. doi: 10.1145/871895.
871896.

Richard Bird and Shin-Cheng Mu. Countdown: A case study in origami program-
ming. Journal of Functional Programming, 15(05):679, August 2005. ISSN 0956-
7968, 1469-7653. doi: 10.1017/S0956796805005642.

Errett Bishop. Foundations of Constructive Analysis. McGraw-Hill Series in Higher
Mathematics. McGraw-Hill, New York, 1967.

H. J. Boom. Further thoughts on Abstracto. Working Paper ELC-9, IFIP WG 2.1, 1981.

Edwin Brady. Idris, a general-purpose dependently typed programming language:
Design and implementation. Journal of Functional Programming, 23(05):552-593,
September 2013. ISSN 1469-7653. doi: 10.1017/5095679681300018X.

Alexander Bunkenburg. The Boom Hierarchy. In John T. O’Donnell and Kevin Ham-
mond, editors, Functional Programming, Glasgow 1993, Workshops in Computing,
pages 1-8. Springer London, 1994. ISBN 978-3-540-19879-6 978-1-4471-3236-3. doi:
10.1007/978-1-4471-3236-3_1.

Koen Claessen and John Hughes. QuickCheck: A Lightweight Tool for Random
Testing of Haskell Programs. SIGPLAN Not., 46(4):53-64, May 2011. ISSN 0362-
1340. doi: 10.1145/1988042.1988046.

Cyril Cohen, Thierry Coquand, Simon Huber, and Anders Mortberg. Cubical Type
Theory: A constructive interpretation of the univalence axiom. arXiv:1611.02108
[cs, math], page 34, November 2016.

81

82 BIBLIOGRAPHY

Thierry Coquand and Arnaud Spiwack. Constructively finite? In Contribuciones
Cientificas En Honor de Mirian Andrés Gomez, pages 217-230. Universidad de La
Rioja, 2010.

Nils Anders Danielsson. Bag Equivalence via a Proof-Relevant Membership Relation.
In Interactive Theorem Proving, Lecture Notes in Computer Science, pages 149—
165. Springer, Berlin, Heidelberg, August 2012. ISBN 978-3-642-32346-1 978-3-
642-32347-8. doi: 10.1007/978-3-642-32347-8_11.

Martin Escardo. Infinite sets that admit fast exhaustive search. In 22nd Annual IEEE
Symposium on Logic in Computer Science (LICS 2007), pages 443-452, Wroclaw,
Poland, 2007. IEEE. ISBN 978-0-7695-2908-0. doi: 10.1109/LICS.2007.25.

Martin H. Escard6. Infinite sets that Satisfy the Principle of Omniscience in any
Variety of Constructive Mathematics. The Journal of Symbolic Logic, 78(3):764—
784, September 2013. ISSN 0022-4812, 1943-5886. doi: 10.2178/js1.7803040.

Denis Firsov and Tarmo Uustalu. Dependently typed programming with finite sets.
In Proceedings of the 11th ACM SIGPLAN Workshop on Generic Programming - WGP
2015, pages 33-44, Vancouver, BC, Canada, 2015. ACM Press. ISBN 978-1-4503-
3810-3. doi: 10.1145/2808098.2808102.

Denis Firsov, Tarmo Uustalu, and Niccolo Veltri. Variations on Noetherianness. Elec-
tronic Proceedings in Theoretical Computer Science, 207:76-88, April 2016. ISSN
2075-2180. doi: 10.4204/EPTCS.207 .4.

Dan Frumin, Herman Geuvers, Léon Gondelman, and Niels van der Weide. Finite Sets
in Homotopy Type Theory. In Proceedings of the 7th ACM SIGPLAN International
Conference on Certified Programs and Proofs, CPP 2018, pages 201-214, New York,
NY, USA, 2018. ACM. ISBN 978-1-4503-5586-5. doi: 10.1145/3167085.

Jean-Yves Girard. Interprétation fonctionelle et élimination des coupures de
Parithmétique d’ordre supérieur. PhD Thesis, PhD thesis, Université Paris VII, 1972.

Michael Hedberg. A coherence theorem for Martin-Lo6f’s type theory. Journal of
Functional Programming, 8(4):413-436, July 1998. ISSN 0956-7968, 1469-7653. doi:
10.1017/50956796898003153.

Simon Henry. On toposes generated by cardinal finite objects. Mathematical Pro-
ceedings of the Cambridge Philosophical Society, 165(2):209-223, September 2018.
ISSN 0305-0041, 1469-8064. doi: 10.1017/S0305004117000408.

Jason Z. S. Hu and Jacques Carette. Proof-relevant Category Theory in Agda.
arXiv:2005.07059 [cs], May 2020.

Graham Hutton. The Countdown Problem. 7. Funct. Program., 12(6):609-616, Novem-
ber 2002. ISSN 0956-7968. doi: 10.1017/S0956796801004300.

Frederik Hanghgj Iversen. Fredefox/cat, May 2018a.

BIBLIOGRAPHY 83

Frederik Hanghej Iversen. Univalent Categories: A Formalization of Category Theory
in Cubical Agda. Master’s Thesis, Chalmers University of Technology, Géteborg,
Sweden, 2018b.

Nicolai Kraus. The General Universal Property of the Propositional Truncation.
arXiv:1411.2682 [math], page 35 pages, September 2015. doi: 10.4230/LIPIcs. TYPES.
2014.111.

Casimir Kuratowski. Sur la notion d’ensemble fini. Fundamenta Mathematicae, 1(1):
129-131, 1920. ISSN 0016-2736.

Per Martin-Lof. Intuitionistic Type Theory. Padua, June 1980.

Conor McBride. Turing-Completeness Totally Free. In Ralf Hinze and Janis Voigtlan-
der, editors, Mathematics of Program Construction, volume 9129 of Lecture Notes in
Computer Science, pages 257-275, Cham, 2015. Springer International Publishing.
ISBN 978-3-319-19796-8 978-3-319-19797-5. doi: 10.1007/978-3-319-19797-5_13.

Conor McBride and Ross Paterson. Applicative programming with effects. Journal
of Functional Programming, 18(1):1-13, January 2008. ISSN 1469-7653, 0956-7968.
doi: 10.1017/50956796807006326.

Eugenio Moggi. Notions of computation and monads. Information and Computation,
93(1):55-92, July 1991. ISSN 0890-5401. doi: 10.1016/0890-5401(91)90052-4.

Ulf Norell. Dependently typed programming in Agda. In Proceedings of the 6th Inter-
national Conference on Advanced Functional Programming, AFP’08, pages 230—-266,
Heijen, The Netherlands, May 2008. Springer-Verlag. ISBN 978-3-642-04651-3.

Liam O’Connor. Applications of Applicative Proof Search. In Proceedings of the 1st
International Workshop on Type-Driven Development, TyDe 2016, pages 43-55, New
York, NY, USA, 2016. ACM. ISBN 978-1-4503-4435-7. doi: 10.1145/2976022.2976030.

Erik Parmann. Investigating Streamless Sets. In Hugo Herbelin, Pierre Letouzey,
and Matthieu Sozeau, editors, 20th International Conference on Types for Proofs and
Programs (TYPES 2014), volume 39 of Leibniz International Proceedings in Informat-
ics (LIPIcs), pages 187-201, Dagstuhl, Germany, 2015. Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik. ISBN 978-3-939897-88-0. doi: 10.4230/LIPIcs. TYPES.
2014.187.

Egbert Rijke and Bas Spitters. Sets in homotopy type theory. Mathematical Structures
in Computer Science, 25(5):1172-1202, June 2015. ISSN 0960-1295, 1469-8072. doi:
10.1017/50960129514000553.

Colin Runciman, Matthew Naylor, and Fredrik Lindblad. SmallCheck and Lazy Small-
Check: Automatic exhaustive testing for small values. In In Haskell’08: Proceedings
of the First ACM SIGPLAN Symposium on Haskell, volume 44, pages 37-48. ACM,
2008.

84 BIBLIOGRAPHY

S. V. Solov’ev. The category of finite sets and Cartesian closed categories. Journal
of Soviet Mathematics, 22(3):1387-1400, June 1983. ISSN 1573-8795. doi: 10.1007/
BF01084396.

The Coq Development Team. The Coq Proof Assistant, version 8.11.0. Zenodo,
January 2020.

The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations
of Mathematics. https://homotopytypetheory.org/book, Institute for Advanced
Study, 2013.

Andrea Vezzosi, Anders Mortberg, and Andreas Abel. Cubical Agda: A Dependently
Typed Programming Language with Univalence and Higher Inductive Types. Proc.
ACM Program. Lang., 3(ICFP):87:1-87:29, July 2019. ISSN 2475-1421. doi: 10.1145/
3341691.

Philip Wadler. Propositions As Types. Commun. ACM, 58(12):75-84, November 2015.
ISSN 0001-0782. doi: 10.1145/2699407.

Brent Abraham Yorgey. Combinatorial Species and Labelled Structures. PhD thesis,
University of Pennsylvania, Pennsylvania, January 2014.

