8,417 research outputs found

    Mean field variational Bayesian inference for support vector machine classification

    Full text link
    A mean field variational Bayes approach to support vector machines (SVMs) using the latent variable representation on Polson & Scott (2012) is presented. This representation allows circumvention of many of the shortcomings associated with classical SVMs including automatic penalty parameter selection, the ability to handle dependent samples, missing data and variable selection. We demonstrate on simulated and real datasets that our approach is easily extendable to non-standard situations and outperforms the classical SVM approach whilst remaining computationally efficient.Comment: 18 pages, 4 figure

    Variational Bayesian multinomial probit regression with Gaussian process priors

    Get PDF
    It is well known in the statistics literature that augmenting binary and polychotomous response models with Gaussian latent variables enables exact Bayesian analysis via Gibbs sampling from the parameter posterior. By adopting such a data augmentation strategy, dispensing with priors over regression coefficients in favour of Gaussian Process (GP) priors over functions, and employing variational approximations to the full posterior we obtain efficient computational methods for Gaussian Process classification in the multi-class setting. The model augmentation with additional latent variables ensures full a posteriori class coupling whilst retaining the simple a priori independent GP covariance structure from which sparse approximations, such as multi-class Informative Vector Machines (IVM), emerge in a very natural and straightforward manner. This is the first time that a fully Variational Bayesian treatment for multi-class GP classification has been developed without having to resort to additional explicit approximations to the non-Gaussian likelihood term. Empirical comparisons with exact analysis via MCMC and Laplace approximations illustrate the utility of the variational approximation as a computationally economic alternative to full MCMC and it is shown to be more accurate than the Laplace approximation

    A sparse multinomial probit model for classification

    No full text
    A recent development in penalized probit modelling using a hierarchical Bayesian approach has led to a sparse binomial (two-class) probit classifier that can be trained via an EM algorithm. A key advantage of the formulation is that no tuning of hyperparameters relating to the penalty is needed thus simplifying the model selection process. The resulting model demonstrates excellent classification performance and a high degree of sparsity when used as a kernel machine. It is, however, restricted to the binary classification problem and can only be used in the multinomial situation via a one-against-all or one-against-many strategy. To overcome this, we apply the idea to the multinomial probit model. This leads to a direct multi-classification approach and is shown to give a sparse solution with accuracy and sparsity comparable with the current state-of-the-art. Comparative numerical benchmark examples are used to demonstrate the method

    Relevance Singular Vector Machine for low-rank matrix sensing

    Full text link
    In this paper we develop a new Bayesian inference method for low rank matrix reconstruction. We call the new method the Relevance Singular Vector Machine (RSVM) where appropriate priors are defined on the singular vectors of the underlying matrix to promote low rank. To accelerate computations, a numerically efficient approximation is developed. The proposed algorithms are applied to matrix completion and matrix reconstruction problems and their performance is studied numerically.Comment: International Conference on Signal Processing and Communications (SPCOM), 5 page

    Hierarchic Bayesian models for kernel learning

    Get PDF
    The integration of diverse forms of informative data by learning an optimal combination of base kernels in classification or regression problems can provide enhanced performance when compared to that obtained from any single data source. We present a Bayesian hierarchical model which enables kernel learning and present effective variational Bayes estimators for regression and classification. Illustrative experiments demonstrate the utility of the proposed method

    Statistical Mechanics of Learning: A Variational Approach for Real Data

    Full text link
    Using a variational technique, we generalize the statistical physics approach of learning from random examples to make it applicable to real data. We demonstrate the validity and relevance of our method by computing approximate estimators for generalization errors that are based on training data alone.Comment: 4 pages, 2 figure
    • …
    corecore