3,480 research outputs found

    Development of an oceanographic application in HPC

    Get PDF
    High Performance Computing (HPC) is used for running advanced application programs efficiently, reliably, and quickly. In earlier decades, performance analysis of HPC applications was evaluated based on speed, scalability of threads, memory hierarchy. Now, it is essential to consider the energy or the power consumed by the system while executing an application. In fact, the High Power Consumption (HPC) is one of biggest problems for the High Performance Computing (HPC) community and one of the major obstacles for exascale systems design. The new generations of HPC systems intend to achieve exaflop performances and will demand even more energy to processing and cooling. Nowadays, the growth of HPC systems is limited by energy issues Recently, many research centers have focused the attention on doing an automatic tuning of HPC applications which require a wide study of HPC applications in terms of power efficiency. In this context, this paper aims to propose the study of an oceanographic application, named OceanVar, that implements Domain Decomposition based 4D Variational model (DD-4DVar), one of the most commonly used HPC applications, going to evaluate not only the classic aspects of performance but also aspects related to power efficiency in different case of studies. These work were realized at Bsc (Barcelona Supercomputing Center), Spain within the Mont-Blanc project, performing the test first on HCA server with Intel technology and then on a mini-cluster Thunder with ARM technology. In this work of thesis it was initially explained the concept of assimilation date, the context in which it is developed, and a brief description of the mathematical model 4DVAR. After this problem’s close examination, it was performed a porting from Matlab description of the problem of data-assimilation to its sequential version in C language. Secondly, after identifying the most onerous computational kernels in order of time, it has been developed a parallel version of the application with a parallel multiprocessor programming style, using the MPI (Message Passing Interface) protocol. The experiments results, in terms of performance, have shown that, in the case of running on HCA server, an Intel architecture, values of efficiency of the two most onerous functions obtained, growing the number of process, are approximately equal to 80%. In the case of running on ARM architecture, specifically on Thunder mini-cluster, instead, the trend obtained is labeled as "SuperLinear Speedup" and, in our case, it can be explained by a more efficient use of resources (cache memory access) compared with the sequential case. In the second part of this paper was presented an analysis of the some issues of this application that has impact in the energy efficiency. After a brief discussion about the energy consumption characteristics of the Thunder chip in technological landscape, through the use of a power consumption detector, the Yokogawa Power Meter, values of energy consumption of mini-cluster Thunder were evaluated in order to determine an overview on the power-to-solution of this application to use as the basic standard for successive analysis with other parallel styles. Finally, a comprehensive performance evaluation, targeted to estimate the goodness of MPI parallelization, is conducted using a suitable performance tool named Paraver, developed by BSC. Paraver is such a performance analysis and visualisation tool which can be used to analyse MPI, threaded or mixed mode programmes and represents the key to perform a parallel profiling and to optimise the code for High Performance Computing. A set of graphical representation of these statistics make it easy for a developer to identify performance problems. Some of the problems that can be easily identified are load imbalanced decompositions, excessive communication overheads and poor average floating operations per second achieved. Paraver can also report statistics based on hardware counters, which are provided by the underlying hardware. This project aimed to use Paraver configuration files to allow certain metrics to be analysed for this application. To explain in some way the performance trend obtained in the case of analysis on the mini-cluster Thunder, the tracks were extracted from various case of studies and the results achieved is what expected, that is a drastic drop of cache misses by the case ppn (process per node) = 1 to case ppn = 16. This in some way explains a more efficient use of cluster resources with an increase of the number of processes

    Network estimation in State Space Model with L1-regularization constraint

    Full text link
    Biological networks have arisen as an attractive paradigm of genomic science ever since the introduction of large scale genomic technologies which carried the promise of elucidating the relationship in functional genomics. Microarray technologies coupled with appropriate mathematical or statistical models have made it possible to identify dynamic regulatory networks or to measure time course of the expression level of many genes simultaneously. However one of the few limitations fall on the high-dimensional nature of such data coupled with the fact that these gene expression data are known to include some hidden process. In that regards, we are concerned with deriving a method for inferring a sparse dynamic network in a high dimensional data setting. We assume that the observations are noisy measurements of gene expression in the form of mRNAs, whose dynamics can be described by some unknown or hidden process. We build an input-dependent linear state space model from these hidden states and demonstrate how an incorporated L1L_{1} regularization constraint in an Expectation-Maximization (EM) algorithm can be used to reverse engineer transcriptional networks from gene expression profiling data. This corresponds to estimating the model interaction parameters. The proposed method is illustrated on time-course microarray data obtained from a well established T-cell data. At the optimum tuning parameters we found genes TRAF5, JUND, CDK4, CASP4, CD69, and C3X1 to have higher number of inwards directed connections and FYB, CCNA2, AKT1 and CASP8 to be genes with higher number of outwards directed connections. We recommend these genes to be object for further investigation. Caspase 4 is also found to activate the expression of JunD which in turn represses the cell cycle regulator CDC2.Comment: arXiv admin note: substantial text overlap with arXiv:1308.359

    Expectation-maximization for logistic regression

    Full text link
    We present a family of expectation-maximization (EM) algorithms for binary and negative-binomial logistic regression, drawing a sharp connection with the variational-Bayes algorithm of Jaakkola and Jordan (2000). Indeed, our results allow a version of this variational-Bayes approach to be re-interpreted as a true EM algorithm. We study several interesting features of the algorithm, and of this previously unrecognized connection with variational Bayes. We also generalize the approach to sparsity-promoting priors, and to an online method whose convergence properties are easily established. This latter method compares favorably with stochastic-gradient descent in situations with marked collinearity
    • …
    corecore