
I

FACULTAT D’INFORMÀTICA DE BARCELONA (FIB)

MASTER IN INNOVATION AND RESEARCH IN INFORMATICS

Development of an oceanographic application in HPC

Advisor

Eng. Filippo Mantovani

Ponent

Prof. Jordi Domingo Pascual

Student

Davide Basciano
Matr. M63000429

Universitat Politècnica de Catalunya Development of an oceanographic application in HPC

2

Abstract

High Performance Computing (HPC) is used for running advanced application programs

efficiently, reliably, and quickly.

In earlier decades, performance analysis of HPC applications was evaluated based on

speed, scalability of threads, memory hierarchy. Now, it is essential to consider the

energy or the power consumed by the system while executing an application.

In fact, the High Power Consumption (HPC) is one of biggest problems for the High

Performance Computing (HPC) community and one of the major obstacles for exascale

systems design.

The new generations of HPC systems intend to achieve exaflop performances and will

demand even more energy to processing and cooling. Nowadays, the growth of HPC

systems is limited by energy issues

Recently, many research centers have focused the attention on doing an automatic tuning

of HPC applications which require a wide study of HPC applications in terms of power

efficiency.

In this context, this paper aims to propose the study of an oceanographic application,

named OceanVar, that implements Domain Decomposition based 4D Variational model

(DD-4DVar), one of the most commonly used HPC applications, going to evaluate not

only the classic aspects of performance but also aspects related to power efficiency in

different case of studies.

These work were realized at Bsc (Barcelona Supercomputing Center), Spain within the

Mont-Blanc project, performing the test first on HCA server with Intel technology and

Universitat Politècnica de Catalunya Development of an oceanographic application in HPC

3

then on a mini-cluster Thunder with ARM technology.

In this work of thesis it was initially explained the concept of assimilation date, the

context in which it is developed, and a brief description of the mathematical model

4DVAR.

After this problem’s close examination, it was performed a porting from Matlab

description of the problem of data-assimilation to its sequential version in C language.

Secondly, after identifying the most onerous computational kernels in order of time, it

has been developed a parallel version of the application with a parallel multiprocessor

programming style, using the MPI (Message Passing Interface) protocol.

The experiments results, in terms of performance, have shown that, in the case of

running on HCA server, an Intel architecture, values of efficiency of the two most

onerous functions obtained, growing the number of process, are approximately equal to

80%.

In the case of running on ARM architecture, specifically on Thunder mini-cluster,

instead, the trend obtained is labeled as "SuperLinear Speedup" and, in our case, it can

be explained by a more efficient use of resources (cache memory access) compared with

the sequential case.

In the second part of this paper was presented an analysis of the some issues of this

application that has impact in the energy efficiency.

After a brief discussion about the energy consumption characteristics of the Thunder

chip in technological landscape, through the use of a power consumption detector, the

Yokogawa Power Meter, values of energy consumption of mini-cluster Thunder were

evaluated in order to determine an overview on the power-to-solution of this application

to use as the basic standard for successive analysis with other parallel styles.

Finally, a comprehensive performance evaluation, targeted to estimate the goodness of

MPI parallelization, is conducted using a suitable performance tool named Paraver,

developed by BSC.

Paraver is such a performance analysis and visualisation tool which can be used to

analyse MPI, threaded or mixed mode programmes and represents the key to perform a

Universitat Politècnica de Catalunya Development of an oceanographic application in HPC

4

parallel profiling and to optimise the code for High Performance Computing.

A set of graphical representation of these statistics make it easy for a developer to

identify performance problems. Some of the problems that can be easily identified are

load imbalanced decompositions, excessive communication overheads and poor average

floating operations per second achieved.

Paraver can also report statistics based on hardware counters, which are provided by the

underlying hardware.

This project aimed to use Paraver configuration files to allow certain metrics to be

analysed for this application.

To explain in some way the performance trend obtained in the case of analysis on the

mini-cluster Thunder, the tracks were extracted from various case of studies and the

results achieved is what expected, that is a drastic drop of cache misses by the case ppn

(process per node) = 1 to case ppn = 16.

This in some way explains a more efficient use of cluster resources with an increase of

the number of processes.

Universitat Politècnica de Catalunya Development of an oceanographic application in HPC

5

Indice

Abstract .. 2

Indice .. 5
Introduction .. 6

State of the art .. 9
Chapter 1: Model OceanVar .. 13

Paragraph 1.1: Linearizzation and Preconditioning ... 14
Chapter 2: Software DD-4DVAR .. 15

Paragraph 2.1: Description DD-4DVAR sequential application ... 15
Paragraph 2.2: Profiling DD-4DVAR sequential .. 20

Chapter 3: Parallel version DD4DVAR ... 25
Paragraph 3.1: Mont-Blanc Project .. 25
Paragraph 3.1.1: Environment of application’s development .. 27

Paragraph 3.2: MPI Implementation .. 27

Paragraph 3.3: Results.. 30

Paragraph 3.3.1: Analysis in HCA ... 31
Paragraph 3.3.2: Analysis in Thunderx cluster .. 35

Chapter 4: Power Efficiency .. 40
Paragraph 4.1: Supercomputer performances, Power Consumption and rank lists 40
Paragraph 4.2: Research in Exascale Systems ... 42

Paragraph 4.4: Power Trace of the application .. 43
Chapter 5: Inside Paraver Tool .. 47

Paragraph 5.1: Extrae ... 48
Paragraph 5.1.1: Extraction process of a trace ... 49
Paragraph 5.2: Analysis with Paraver .. 51

Paragraph 5.2.1: Parallel version with ppn=4 .. 51

Paragraph 5.2.2: Parallel version with ppn=16 .. 58
Paragraph 5.2.3: Vertical deepening of the cache management .. 60

Conclusioni e sviluppi futuri .. 65

Bibliografia .. 67

Universitat Politècnica de Catalunya Development of an oceanographic application in HPC

6

Introduction

The High Performance Computing (HPC) plays an important role in scientific research

to solve complex computational problems in meteorology, astrophysics and geophysics.

Today, computational sciences are able to address the most complex scientific problems

and investigate phenomena unimaginable even ten years ago.

This is possible thanks to the increase in performance that has characterized the

computer systems in recent years.

However, this rising demand for high-performance technology is bringing to light a

significant factor that is the need for a higher and higher energy consumption.

The trend of recent years shows that many of the HPC sector companies dedicate more

attention to the energy efficiency issue in its own research centers, in order to reduce the

energy consumption and the consequent environmental impact. For this reason, they

introduce as new metric of evaluation the power efficiency estimated as Flops / W, that

is, the number of floating point operations per second per watt.

In this optic, an important role is playing the European Project Mont Blanc, at the

headquarters of the Barcelona Supercomputing Center (BSC). It aims to the design and

construction of a new high-end HPC platform, capable of providing a new value of the

performance / energy ratio in the execution of scientific applications.

The following thesis work, realized thanks to the support and cooperation with the

above-mentioned project, focuses attention on the concept of data assimilation.

Universitat Politècnica de Catalunya Development of an oceanographic application in HPC

7

Historically the assimilation date has been developed for the analysis of the two main

terrestrial ecosystems, that is the one generated by the oceans and that generated from

the atmosphere.

Regardless of the specific application, the entire process of analysis and prediction

consists essentially of three phases:

- collection of observed data

Observed data can be of various types: measurements from buoys and ships,

measurements from satellites, etc.

- determination of the initial condition (initial condition)

Is necessary to find the most accurate initial state, considering all the observed data

collected and available in a fixed time window.

- determination of the instant current solution (status "current") through the

Forecasting Model

by solving the equations of the physical-mathematical model, known initial state and

any boundary conditions.

The observed data may be of various types: ground stations (SYNOP),

radiosonde (TEMP), boe (BUOYS), ships, measurements from commercial aircraft and

various types of satellite measurements.

In the case of oceanographic forecasts, the observations may include:

- data of the sea level anomaly

- vertical temperature profiles obtained from probes called XBT (Expendable

BathyTermograph)

- acquisition and development of temperature and salinity profiles provided by the

system of boe

The goal shared by the scientific community that deals with data assimilation is, in short,

the opportunity to integrate the experimentally acquired data with those supplied by

mathematical models in order to make them more similar as possible, in order to

improve the knowledge of the surrounding ecosystem.

It is obvious that the benefit that derives from this synergy stimulate the development of

Universitat Politècnica de Catalunya Development of an oceanographic application in HPC

8

highly efficient and reliable algorithms and software for the data assimilation , able to

cope both with a growing amount of data both with sensibility to errors that inevitably

disturb data and models.

The software tool used in the analysis of the problem is the OceanVar software (Ocean

Variational Data Assimilation) developed by CMCC (Euro-Mediterranean Centre for

Climate Change).

The study of this application, in this work of thesis, was articulated in the following

phases:

- Software analysis, initially released in Matlab version, and development in C

language of a first purely sequential version.

- Study of the software in order to identify the most onerous computational kernels.

- Identified the interested code portions, realization of a parallel version by use of the

MPI programming style

- Instrumentation of the code and the study of the parallel trace with the use of the

tool Paraver.

- Considerations on the energy consumption of the application in the various test

cases.

Universitat Politècnica de Catalunya Development of an oceanographic application in HPC

9

State of the art

A first approach to solving the problem Assimilation date was suggested by George P.

Cressman (1959) said Cressman analysis.

A first approach to solving the problem Assimilation date was suggested by George P.

Cressman (1959) said Cressman analysis.The method provides as an approximation of

the initial condition the point obtained by performing linear interpolation points

{(𝑎𝑖, 𝑏𝑖)}𝑖=1,2,..𝑛 defined in such a way that the abscissas 𝑎𝑖 represent the coordinates of

the location of the discrete domain in which is defined the forecasting model solution

and the ordinates 𝑏𝑖 are calculated as follows.

It defines a sphere of center equal to the observed data and the radius R said "sphere of

influence" of the data observed on the forecast model solution (if the distance between

the points in which there are observations and the points in which there is defined the

solution of the model is less than R, it is assumed that there is an influence of the data

observed on the model) and define the values such that:

- 𝑏𝑖 coincides with the data value observed if in 𝑎𝑖 this is present

- 𝑏𝑖 coincides with the value of the forecast model solution if 𝑎𝑖 is far from points

which are present data observed of a greater segment of R

- 𝑏𝑖 coincides with the difference between the forecast model solution and observed

data if 𝑎𝑖 is far from points which are present in an observed data of a minor segment

of R

In the following figure, the black line represents the short-term prediction of the

prediction model and the red dots the observations

Universitat Politècnica de Catalunya Development of an oceanographic application in HPC

10

The Cressman Analysis method produces the line in blue dots, which coincides with the

prediction of the model at points distant from the observations, and relaxes to the

observed data where they are present.

In this method lacks the quality control of data and especially are not taken into

consideration the weights of the errors of the observed data and the model.

Among the methods used there is the Optimal Interpolation.

It is a method of approximation in the least squares sense. This method allows to make

the first considerations on the weight that error estimate on the data must have in the

calculation of the solution provided by data assimilation.

The error on the data is estimated by calculating the variance of the set values that

describe the data. In fact, assumed that the data are affected by errors distributed

according to a Gaussian, the variance σ, for definition is the distance between the mean

value of the set of data µ and the inflection point of the curve.

Universitat Politècnica de Catalunya Development of an oceanographic application in HPC

11

 If we assume as "more reliable" data the average value, we have that the variance, which

represents the "deviation" of the remaining data from the medium value, it gives us an

estimate of the "deviation" of the data from the "more trusted " value, which is by

definition the error.

From such method were conducted studies on how to select the observed data trying to

consider only those with high reliability beginning to look for ways to involve the

forecasting model to produce a more accurate estimate of the error on the data produced

by the short-prediction term.

The main methods of data assimilation problem resolution including the issues on the

error weights in the data are essentially attributable to four models (variational model

3D 3Dvar and 4D 4DVar, Kalman filter KF and Ensemble Kalman Filter EnKF) which

differ in the presence or absence of the variable time and for the type of mathematical

problem solving.

Is possible to observe, for example, that the presence of the time variable in the models

Data Assimilation and then the tendency to use the 4D type models appears only in

recent years dictated by the increasing availability of data from satellites and then by the

introduction of a functional "more complex" than the interpolant functional used for

direct observations.

Today, there isn't a tendency that pushes the use of a method rather than another, it is

still in phase of comparison between any advantages or disadvantages that the choice of

a method can bring.

There are no criteria in literature that dictate the choice of the resolution method.

We have observed, in that regard, that the choice of the resolution method essentially

depends on two factors summarized in the following figure:

Universitat Politècnica de Catalunya Development of an oceanographic application in HPC

12

1. Type of observed data (available and / or chosen) that determines the functional;

2. Availability of a software that implements the forecasting model. This possibility

allows a more accurate estimate of the error on the data produced by the short-term

prediction of the model.

Universitat Politècnica de Catalunya Development of an oceanographic application in HPC

13

Chapter 1: Model OceanVar

This chapter describes the mathematical model implemented by OceanVar software

developed and used by CMCC for the assimilation of data in the study of evolution of

the Mediterranean Sea.

The scheme upon which the Software OceanVar is based on is of type Domain

Decomposition based 4D Variational model (DD-4DVar).

4DVAR, according to the name, is a four dimensional variational method and is actually

a direct generalization of 3D-VAR to handle observations that are distributed in time.

The cost function is the same, provided that the observation operators are generalized to

include a forecast model that will allow a comparison between the model state and the

observations at the appropriate time.

4DVAR seeks the initial condition such that the forecast best fits the observations within

the assimilation interval

It is described in this way, let:

 N = number of time steps

 𝑥0 = 𝑥(𝑡0) vector from forecasting model

 𝑦0 = 𝑦(𝑡0) , 𝑦1= 𝑦(𝑡1), 𝑦𝑁 = 𝑦(𝑡𝑁) observation vectors

the characteristic equation of the model that calculates the minimum of the function is:

J (𝑥𝐷𝐴) =
1

2
(x − 𝑥𝐷𝐴)𝑇𝐵−1 (x - 𝑥𝐷𝐴) +

1

2
 ∑ (𝑦𝑘 − 𝐺𝑘 𝑥𝐷𝐴)𝑇𝑁

𝑘=0 𝑅−1(𝑦𝑘 − 𝐺𝑘 𝑥𝐷𝐴) +

+
1

2
 ∑ (𝑀𝑘𝑥𝐷𝐴+ − 𝑀𝑘𝑥𝐷𝐴−)𝑇𝑁

𝑘=0 (𝑀𝑘𝑥𝐷𝐴+ - 𝑀𝑘𝑥𝐷𝐴−)

Universitat Politècnica de Catalunya Development of an oceanographic application in HPC

14

Where: 𝐺𝑘 = 𝐻𝑘𝑀𝑘

State variable: 𝑥𝑘 = [𝑇, 𝑆, 𝑛 , 𝑢, 𝑣]’

- T : three-dimensional temperature field

- S : three-dimensional salinity field

- n : two-dimensional free surface elevation

- u,v : horizontal velocity components

Observation: Fixed a time step Δt for temporal discretization and assumed

𝑡𝑖+1= 𝑡𝑖 + Δt for all 𝑡𝑖 = 𝑡0,…,𝑡𝑛 we have that:

𝑥𝑡1 = 𝑀𝑥𝑡1+Δt

Paragraph 1.1: Linearizzation and Preconditioning

Let:

 x = 𝑥0 + (x - 𝑥0) = 𝑥0 + δx linearization

 B = 𝑉𝑉𝑇 preconditioning

 v = 𝑉𝑇 δx change of variable

 𝑑𝑘 = 𝑦𝑘 − 𝐺𝑘𝑥0 misfit

 𝐺𝑘 = 𝐻𝑘𝑀𝑘 forecasting model

 we have the preconditioned DD-4DVAR function:

J (𝑣) =
1

2
 v𝑣𝑡 +

1

2
 ∑ (𝐻𝑘𝑀𝑘𝑉𝑣 − 𝑑𝑘)𝑇𝑁

𝑘=0 𝑅−1 (𝐻𝑘𝑀𝑘𝑉𝑣 − 𝑑𝑘) +

+
1

2
 ∑ (𝑀𝑘𝑉𝑣

+ − 𝑀𝑘𝑉𝑣
−)𝑇𝑁

𝑘=0 (𝑀𝑘𝑉𝑣
+-𝑀𝑘𝑉𝑣

−)

 The gradient of J(v) is given in:

∇J(v) = v +
1

2
 ∑ 𝑉𝑇𝑁

𝑘=0 (𝑀𝑇)𝑘 𝐻𝑘
𝑇 𝑅−1 (𝐻𝑘𝑀𝑘𝑉𝑣 − 𝑑𝑘)

 The J (𝑣) function is minimized using the L-BFGSB method (a quasi-Newton method).

Universitat Politècnica de Catalunya Development of an oceanographic application in HPC

15

Chapter 2: Software DD-4DVAR

In the following work of thesis has been analyzed and studied in detail the DD4DVAR

software, developed by INGV (Bologna Institute of Geophysics and Volcanology) and

used by CMCC (Euro-Mediterranean Centre for Climate Change), in order to contribute,

on first analysis, to its writing in a sequential version of C language, and in second

analysis, to its optimization in a parallel context.

Paragraph 2.1: Description DD-4DVAR sequential application

The under consideration software consists of a main library named Subdomain.c which

in turn is structured in five main modules.

In Subdomain.c library were, in the first instance, loaded the input data related to the

measures made,

These data, present initially in .mat format, denominated "ShallowWaterStateN64",

were converted to .csv format (comma separated value) using a greater precision of

significant digits in order to be able to perform with the accuracy required subsequent

matrix calculations to stored, ultimately, in suitable matrix data structures.

Subsequently are built matrices of observations containing all zero values except some

values of the initial dataset placed in specific locations calculated with random choise.

At this point, the library performs the BuildModel.c module for the construction of the

work grid, in essence, the forward and backward models 𝑀e 𝑀𝑇 defined previously.

The relative pseudocode is the following:

Universitat Politècnica de Catalunya Development of an oceanographic application in HPC

16

The next phase presents a series of matrix calculations to define the preliminary data

structures for the following modules, such as the definition of the misfit of the functional

Jmisf(v) and the definition of the starting point 𝑣0.

Concerning the TSVD (Truncated Singular Value Decomposition) function, included

in the Matlab code with the name svds, the idea was to use a standard software library

for numerical linear algebra named LAPACK (Linear Algebra Package), specifically a

two-level C interface named LAPACKE.

Considering that the researchers in this field have been unable to get it working in the

right way so, because of the lack of technical support to resolve this issue, it was solved

temporarily by loading a file.mat of data structures of interest.

Once calculated the necessary data structures to pass in input, it is executed the module

ComputeJ.c for the calculation of the functional J (v) and the module ComputeGradJ.c

for the calculation of gradient ∇J (v) as described in the previous model.

The various instructions of these two listings were therefore executed:

Universitat Politècnica de Catalunya Development of an oceanographic application in HPC

17

Universitat Politècnica de Catalunya Development of an oceanographic application in HPC

18

As it can be seen, both functions call further two modules:

 ApplyForwardModel.c for the application of the model 𝑀𝑘 to the vector x through

an iterative approach, described in the following pseudocode:

Universitat Politècnica de Catalunya Development of an oceanographic application in HPC

19

 ApplyBackwardModel.c : for the application of the model 𝑀𝑇𝑘
 to the vector x

through an iterative approach, described in the following pseudocode:

Universitat Politècnica de Catalunya Development of an oceanographic application in HPC

20

The functional J, returned from the call to ComputeJ.c function, is numerically

minimized using the quasi-Newton method L-BFGS in order to measure the difference

between the system state, predicted by the model, and the observed state.

In numerical optimization, the limited-memory Broyden–Fletcher–Goldfarb–Shanno

(L-BFGS) algorithm is an iterative method, described by a collection of Fortran 77

routines for solving bound-constrained nonlinear optimization problems.

The L-BFGS method approximates Newton's method, a class of hill-climbing

optimization techniques that seeks a stationary point of a function.

In the case of our application iterations of minimizer stop when the absolute value of the

gradient of the function ∇J (v) becomes relatively smaller than its initial value.

The termination condition is evaluated by specifying a tolerance parameter, named EPS,

under which the process exits from the loop minimization

In the last part of the application the accuracy of the model is estimated by comparing

the initial data structures with structures returned from the minimization process.

 Paragraph 2.2: Profiling DD-4DVAR sequential

Developed and performed a first correct sequential version of the application under

consideration, the following step was to carry out a dynamic profiling in order to

estimate the program in terms of spatial and temporal complexity.

The aim was therefore to have a clear idea on the management of memory allocated by

the program and on the most computationally expensive functions than the total program

execution time with a view to its subsequent optimization in an execution parallel

context.

As regards memory management, in this thesis was used Valgring tool. It looks like a

framework, written in C language for the GNU / Linux operating systems, which

includes within it various types of debug tools.

In our case, the attention was focused on MemCheck tool to identify possible memory

Universitat Politècnica de Catalunya Development of an oceanographic application in HPC

21

leaks in the code, wrong accesses to memory locations or overlapping pointers.

The second phase of the profiling focused on the study of the temporal aspects of the

application and therefore on identifying those portions of code that employ more time

in their execution.

The instrument used in this case is Gprof, a performance analysis tool for Unix

applications.

Two forms of output are used in this analysis:

- Flat Profile: shows the amount of time that each function constituting the program

employs and the total number of times that the function is called

- Call Graph: shows, for each function, which functions called it, which other

functions it called, and how many times. There is also an estimate of how much time

was spent in the subroutines of each function.

The result is the following:

Universitat Politècnica de Catalunya Development of an oceanographic application in HPC

22

Universitat Politècnica de Catalunya Development of an oceanographic application in HPC

23

Analyzed in detail the results of the profiling, is possible to see that the program spends

about 94% of the total time in performing ComputeJ.c and ComputeGradJ.c functions

and their submodules, which characterize the various iterations of the minimization

process.

The program structure can therefore be represented as follows:

Universitat Politècnica de Catalunya Development of an oceanographic application in HPC

24

In addressing the optimization process, the following aspects were evaluated:

- The initialization phase as well as the final stage, is performed just one time by each

process, so as long it can be, it presents an insignificant impact on performance

- The phase of the loop, instead, as is clearly seen from the results of the profiling,

turns out to be the crucial point on which focus on.

In fact, every second or in general every portion of time gained in one iteration, is

multiplied many times as the loop is executed.

Universitat Politècnica de Catalunya Development of an oceanographic application in HPC

25

Chapter 3: Parallel version DD4DVAR

Starting from the results of the sequential model described in the previous chapter, in

the second part of this work of thesis it was developed a parallel version of the

application in C language using the programming style MPI (Message Passing

Interface).

The context in which measurements are made is the Project Mont Blanc in the BSC seat

(Barcelona Supercomputing Center) which will be described in detail in the next

paragraph.

The choice to run this application in this specific computer center is dictated by the

opportunity to extract, in addition to traditional measures of performance of the HPC

world, also significant results in an innovative field such as the one of the energy.

Paragraph 3.1: Mont-Blanc Project

Energy efficiency is already a primary concern for the design of any computer system

and it is unanimously recognized that future Exascale systems will be strongly

constrained by their power consumption. This is why the Mont-Blanc project has set

itself the following objective: to design a new type of computer architecture capable of

setting future global High Performance Computing (HPC) standards that will deliver

Exascale performance while using 15 to 30 times less energy.

Universitat Politècnica de Catalunya Development of an oceanographic application in HPC

26

This project is coordinated by the Barcelona Supercomputing Center (BSC) and aims at

the following objectives:

1. To complement the effort on the Mont-Blanc system software stack, with

emphasis on programmer tools and ARM 64-bit support.

2. To produce a first definition of the Mont-Blanc Exascale architecture, exploring

different alternatives for the compute node (from low-power mobile sockets to

special-purpose high-end ARM chips), and its implications on the rest of the

system

3. To track the evolution of ARM-based systems.

A more detailed description of the Mont-Blanc system and of the individual components

is the following:

Universitat Politècnica de Catalunya Development of an oceanographic application in HPC

27

Paragraph 3.1.1: Environment of application’s development

The application was compiled and developed in the following contexts:

Paragraph 3.2: MPI Implementation

Universitat Politècnica de Catalunya Development of an oceanographic application in HPC

28

In this paragraph is described the design and the implementation of a first parallel

version of the application under consideration.

The independence in the evaluation of the final results allowed a work decomposition

across multiple processors, making the problem well suited to parallel implementation.

To implement a Data Assimilation algorithm in oceanography, it is natural to think about

Domain Decomposition (DD) approach: each sub domain of the decomposition could

be associated to a geographical area which could have its own observational and

computational resources.

The DD approach agrees with the physical characteristics of the ocean model: the 3D

domain is laid out on local processor memories following a 2D horizontal topological

splitting. Further, each sub domain computes its own surface and bottom boundary

conditions and it has a side wall overlapping interface which defines the lateral boundary

conditions for computations in the inner sub domain. The overlapping area consists of

the two rows at each edge of the sub domain. After a computation, a communication

phase starts: each processor sends to its neighboring processors the updated values of

the points corresponding to the interior overlapping area of its neighboring sub domain

(i.e. the innermost of the two overlapping rows). The communication is done through

message passing.

In DD-OceanVar we use this DD approach and the same overlapping area for the

exchange of information on boundary conditions.

The reasons behind this choice are mainly two:

- Decompose the original problem, having an initial dataset of three NxN matrices, on

an arbitrary number of processes with a problem size of smaller dimension.

- Build a topology in which we can imagine disposed processes, in order to optimize

the MPI communications. In essence, a "virtual" geometry in which the processors

are organized according to a space division of the North, South, East, West.

The solution adopted in this context was to use a programming approach SIMD with

distributed memory and consequently a style of programming MPI (Message Passing

Interface) using the library installed on the remote cluster OpenMPI.

Universitat Politècnica de Catalunya Development of an oceanographic application in HPC

29

The main phases, concerned by the parallel analysis process, are essentially the

initialization phase and the most onerous computationally functions identified in the

profiling phase, present in the minimization loop:

 In the initialization phase, were generated the size vector and the displacement

vector, that is the memory space contiguous concerning the subvector to be sent

to each process and the displacements needed to manage the pointers to the

subvectors. At this point there has been a distribution of subvectors to each

processor belonging to the working group.

The MPI library provides collective communication functions such as Scatterv()

that involves all the processes of the communicator, in order to optimize the

communication times.

 In the minimization phase, parallelization involved the following modules:

o ComputeJ.c: For the purposes of the calculation of the functional J (v)

each process, at the end of its elaborations, adds a final contribution,

calculated using the knowledge of a value belonging to its "neighbour"

in the MPI environment to enforce coupling between the domains.

The employed communication protocol MPI uses the communication

style one-to-one through the use of non-blocking functions for the

sending and receiving of a message, MPI_Isend () and MPI_Irecv().

o Applyforwardmodel.c and Applybackwardmodel.c: recall, in turn, a new

module named filloverlap.c dedicated to the management of the "border"

segment that the various processes share with each other.

o filloverlap.c: the processes that fall under the category "West" with the

"East" ones and those classified as "North" with the "South" ones,

through MPI_Isend () and MPI_Irecv (), exchange the values belonging

to the " border " segment in common.

 Let us consider the following overlapping decomposition of the physical

domain Ω:

 𝛺 = ⋃ 𝛺𝑖
𝑁
𝑖=1

Universitat Politècnica de Catalunya Development of an oceanographic application in HPC

30

such that 𝛺𝑖 ∩ 𝛺𝑗 = 𝛺𝑖𝑗 ≠ 0 𝑖𝑓 𝛺𝑖 𝑎𝑛𝑑 𝛺𝑗 𝑎𝑟𝑒 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡.

Paragraph 3.3: Results

In order to estimate the goodness of parallelization used, have been carried out a series

of measurements that have affected before the HCA Server, having the characteristics

described previously, and with Intel technology, and then the Thunder cluster with ARM

technology.

The evaluation of the parallel algorithm performances, in its two functions of interest,

was made by comparing the processing times of the sequential version with those of the

parallel version, calculating the speedup and the efficiency by changing the number of

p processors.

Said:

 T(s) the execution time of the best sequential algorithm

 T(p) the execution time of the corresponding parallel algorithm

We fix:

 Speedup: Sp = Ts / Tp

 Efficiency: Ep = Sp / p

In order to obtain an assessment as close as possible to actual values of the proposed

algorithms, all executions are carried out:

Universitat Politècnica de Catalunya Development of an oceanographic application in HPC

31

- Changing the number of processors (parallel event) in the set p ε {1,2,4,8} in the

case of analysis on HCA and in the set p ε {1,2,4,8,16} in the case of analysis on

the Thunder.

- Repeating the same experiment at least ten times and considering the mean value

of the results, in order to minimize the possible variance of the data linked to

different system loading conditions.

It is important to underline that, according to Amdahl's law, time Ts should be calculated

using the best sequential algorithm available for the given problem, but it is often

difficult, if not impossible, to determine which is the best usable algorithm.

The choice made in this work consists in confusing Ts = Tp (1) that is, in considering

the processing time in the sequential case coincident with the parallel algorithm executed

on a single processor.

Although this choice presents potential intrinsic errors (related to the potential additional

operations performed by a parallel algorithm than its sequential equivalent), it is

extremely advantageous from an implementation point of view, producing at the same

time results not too many away from the real case (use of the best sequential algorithm).

Paragraph 3.3.1: Analysis in HCA

The following tables show the average time, the values of SpeedUp and Efficiency,

relating to the two functions under consideration, recorded in various executions by

changing the number of processes:

Universitat Politècnica de Catalunya Development of an oceanographic application in HPC

32

The following figure shows the trends of the execution time by changing the number p

of processes per node, in the case of Jfunction and ComputGradJ modules:

 Analisi del modulo ComputeGradJ

Process per node Execution Time SpeedUp Efficiency

1 ppn 17,1476 1 100

2 ppn 10,285 1,6672 84

4 ppn 5,2123 3,2976 82

8 ppn 2,6911 6,3745 79

 Analisi del modulo Jfunction

Process per node Execution Time SpeedUp Efficiency

1 ppn 13,0452 1 100

2 ppn 7,1545 1,8323 91

4 ppn 4,0565 3,2158 80

8 ppn 2,0661 6,3139 78

0

2

4

6

8

10

12

14

1 ppn 2 ppn 4 ppn 8 ppn

se
co

n
d

s

process per node

Execution time of module Jfunction in HCA server

Trend time of execution

Universitat Politècnica de Catalunya Development of an oceanographic application in HPC

33

As is possible to see, changing the number of processes per node, the execution time

decreases with an almost exponential trend.

The following figure shows the trends of the speedup values by changing the number p

of processes per node.

0

5

10

15

20

1 ppn 2 ppn 4 ppn 8 ppn

se
co

n
d

s

process per node

Execution time of module ComputeGradJ in HCA server

Trend time of execution

0

1

2

3

4

5

6

7

8

9

1 ppn 2 ppn 4 ppn 8 ppn

sp
e

e
d

u
p

 v
al

u
e

process per node

SpeedUp ComputeJ.c in HCA server

Trend of speedup Ideal SpeedUp

Universitat Politècnica de Catalunya Development of an oceanographic application in HPC

34

Considering the case of Jfunction module we can observe how in correspondence of the

process value per node equal to 2, the speedup presents an acceptable value equal to

1.8323. Value which gradually deteriorates moving away from the ideal speedup

coincident with the number of processes, because it is limited by the sequential part of

the algorithm.

The same situation is also in the case of ComputeGradJ function.

In the following graph we analyzed the efficiency values in each case of measuring:

0

20

40

60

80

100

120

1 ppn 2 ppn 4 ppn 8 ppn

p
e

rc
e

n
ta

ge

process per node

Efficiency Jfunction in HCA server

Trend efficiency Ideal Efficiency

0

1

2

3

4

5

6

7

8

9

1 ppn 2 ppn 4 ppn 8 ppn

sp
e

e
d

u
p

 v
al

u
e

process per node

SpeedUp ComputeGradJ.c in HCA server

Trend of speedup Ideal Speedup

Universitat Politècnica de Catalunya Development of an oceanographic application in HPC

35

As was expected, in both cases of study, the curve highlights how the algorithm shows

few efficiency in its implementation for any value of ppn considered, reaching its

maximum, that is, a threshold equal to 90% in correspondence of the values of ppn = 2

and the minimum of 63% with ppn = 8.

The reason of this low efficiency is easily identifiable in a constant initial dataset size

(the fraction of sequential time is constant) in the face of the increase in the number of

processes.

As part of a realistic study of the application, we can imagine how the size of the problem

is orders of magnitude far superior to the dataset object of study in this thesis, leading

to a more efficient use of the processor.

Paragraph 3.3.2: Analysis in Thunderx cluster

Before starting the discussion on the application's performance in the case of cluster

Thunder it is appropriate to make a short digression on some key concepts used in the

optimization path.

Thunderx is presented as the first ARM based SoC that scales up to 48 cores with up to

2.5 GHz core frequency but mainly as the first ARM based SoC to be fully cache

0

20

40

60

80

100

120

1 ppn 2 ppn 4 ppn 8 ppn

p
e

rc
e

n
ta

ge

process per node

Efficiency ComputeGradJ in HCA server

Trend efficiency Ideal Efficiency

Universitat Politècnica de Catalunya Development of an oceanographic application in HPC

36

coherent across dual sockets using Cavium Coherent Processor Interconnect (CCPI).

In fact, the Thunderx chips support NUMA clustering that allow for two processors to

be lashed together to create a shared memory space.

One aspect that has been observed is therefore how to handle NUMA mechanism in the

execution of the application.

In effect, when generally an application is executed for example with the command:

srun --ntasks=32 ./executable

this does not ensure that only one socket is used, this could lead to bad performance.

It is therefore necessary to ensure that only one socket is used if possible, this is

guaranteed with the use of numactl option that control NUMA policy among processes,

or by specifying the mask of the socket used with the option cpu_bind.

The following tables show the average time recorded in the various executions, the

values of SpeedUp and efficiency, by changing the number of processes.

The observations were carried out through the submission of the program to the Job

Scheduler SLURM of the platform:

 Analisi del modulo Jfunction

Process per node Execution Time SpeedUp Efficiency

1 ppn 65,4895 1 100

2 ppn 32,7198 2,0015 100,75

4 ppn 15,1514 4,3223 108

8 ppn 7,1697 9,1342 114

16 ppn 3,4112 19,1983 119

Universitat Politècnica de Catalunya Development of an oceanographic application in HPC

37

 Analisi del modulo ComputeGradJ

Process per node Execution Time SpeedUp Efficiency

1 ppn 117,1476 1 100

2 ppn 58,1285 2,0197 101

4 ppn 23,1569 5,0588 126

8 ppn 11,1864 10,5001 131

16 ppn 4,9217 23,8022 148

The following figure shows the trends of the execution time by changing the number p

of processes per node, in the case of Jfunction and ComputeGradJ module:

0

10

20

30

40

50

60

70

1 ppn 2 ppn 4 ppn 8 ppn 16 ppn

se
co

n
d

s

process per node

Execution time of module Jfunction in Thunder

Trend time of execution

0

20

40

60

80

100

120

140

1 ppn 2 ppn 4 ppn 8 ppn 16 ppn

se
co

n
d

s

process per node

Execution time of module ComputeGradJ in Thunder

Trend time of execution

Universitat Politècnica de Catalunya Development of an oceanographic application in HPC

38

As we can see, the execution times, in the case of the running on mini-cluster Thunder,

are higher than the observations in HCA.

The reason of this increase can be attributed to a greater number of memory accesses

from the program for the taking of data due to a smaller size of the cache.

The curves show how, with increasing number p of process per node, the speedup

measures take greater values then the ideal speedup.

This trend is labeled as "SuperLinear Speedup" and, in our case, it can be explained by

0

5

10

15

20

25

1 ppn 2 ppn 4 ppn 8 ppn 16 ppn

sp
e

e
d

u
p

 v
al

u
e

process per node

SpeedUp Jfunction in Thunder

Trend of speedup Ideal Speedup

0

5

10

15

20

25

1 ppn 2 ppn 4 ppn 8 ppn 16 ppn

sp
e

e
d

u
p

 v
al

u
e

process per node

SpeedUp ComputeGradJ in Thunder

Trend of speedup Ideal Speedup

Universitat Politècnica de Catalunya Development of an oceanographic application in HPC

39

a more efficient use of resources compared with the sequential case.

One example is the reduction of RAM access time, this happens when the working set

of a problem is greater than the cache size when executed sequentially, so the CPUs

have to access main memory, which takes hundreds of clock cycles; this situation can

fit nicely in each available cache when executed in parallel.

90

95

100

105

110

115

120

125

1 ppn 2 ppn 4 ppn 8 ppn 16 ppn

p
e

rc
e

n
ta

ge

process per node

Efficiency Jfunction in Thunder

Trend efficiency Ideal Efficiency

0

20

40

60

80

100

120

140

160

1 ppn 2 ppn 4 ppn 8 ppn 16 ppn

p
e

rc
e

n
ta

ge

process per node

Efficiency ComputeGradJ in Thunder

Trend efficiency Ideal Efficiency

Universitat Politècnica de Catalunya Development of an oceanographic application in HPC

40

Chapter 4: Power Efficiency

In a world with limited energy resources and a rising demand for more computational

power, energy consumption is limiting the scale of computers that can be deployed.

So, to build exascale systems, it is necessary to improve energy efficiency (EE)

(Flops/Watt) of current systems.

This chapter presents a review about High Power Consumption of High Performance

Computing systems, one of the major hurdles in the path to exascale system, before in

general terms and then specifically for the application.

It is organized as follow:

- The section 4.1 introduces the concepts of power consumption, power efficiency

and rank lists.

- The section 4.2 shows the problem to build exascale system

- The section 4.3 shows how was developed the study of the power efficiency in

the context of this thesis.

Paragraph 4.1: Supercomputer performances, Power Consumption and rank lists

In performance computing context,

- Flops (an acronym for floating-point operations per second) is a measure of

computer performance, useful in fields of scientific calculations that make heavy

use of floating-point calculations.

https://en.wikipedia.org/wiki/Computing
https://en.wikipedia.org/wiki/Computer_performance
https://en.wikipedia.org/wiki/Floating-point

Universitat Politècnica de Catalunya Development of an oceanographic application in HPC

41

- Flops/watt is a measure of the energy efficiency of a particular computer

architecture or computer hardware. Literally, it measures the rate of computation

that can be delivered by a computer for every watt of power consumed.

Since 1993, the Top500 list offers a ranking of the 500 fastest supercomputers. Running

the Linpack benchmark, the supercomputers are compared and ranked according to their

performance.

How is possible to see in the following graphic of this comunity:

The projections for exaflop-scale computing systems, assuming (non-realistic) linear

Scale, suggest how is necessary a system ~1000x larger of a current system in order to

reach one EFLOP.

This means ~1 GWatts for operating a supercomputer with this features, which is the

energy generated by Vandellòs Nuclear Power Plant in Catalunya.

Therefore, with today’s technology, exascale system would consume over a gigawatt of

power, making it economically and ecologically impracticable.

Universitat Politècnica de Catalunya Development of an oceanographic application in HPC

42

Given the current energy consumption of exaflop-scale systems, and considering the

limited supply of energy, interest in this area has increased and the analysis of power

efficiency has also been used to evaluate systems.

The green computing area is becoming increasingly important in a world with limited

energy resources. With this concern, the Green500 list was created to provide a ranking

of the most energy efficient supercomputers.

So, the Top500 List offers a ranking of the 500 fastest supercomputers (Flops) and the

Green500 List, ranks the top 500 supercomputers in the world by energy efficiency

(Flops/Watt).

The performance increase of HPC systems has been achieved with the increase of

processors/cores and, recently, by adding accelerators such as graphic processor units

(GPU) which guarantees a better efficiency energy.

Paragraph 4.2: Research in Exascale Systems

Today, to build exascale systems, it is necessary to analyze the problem of performance

from a different point of view.

As we know, the throughput of a system, ie the number of floating point operations per

second, it can be estimated in this way

𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 =
𝑁𝑖𝑛𝑠

𝑇𝑖𝑚𝑒
=

𝑁𝑖𝑛𝑠

𝑁𝑐𝑙𝑜𝑐𝑘
𝑋

𝑁𝑐𝑙𝑜𝑐𝑘

𝑇𝑖𝑚𝑒

The second factor indicates the frequency, an index of purely technological nature that

has reached a saturation situation due to the physical limitations of hardware.

In fact the chip power efficiency is no longer improving at historical rates. Up until now,

Moore’s Law improvements in photolithography techniques resulted in proportional

reductions in dynamic power consumption per transistor and consequent improvements

in clock frequency at the same level of power dissipation– a property referred to as

Universitat Politècnica de Catalunya Development of an oceanographic application in HPC

43

Dennard scaling. However, below 90 nm, the static power dissipation (power lost due

to current leakage through the silicon substrate) has overtaken dynamic power

dissipation. This leads to a stall in clock frequency improvements in order to stay within

practical thermal power dissipation limits. Thus, the free ride of clock frequency and

power efficiency improvements is over.

It is therefore necessary, in order to improve energy efficiency to focus the attention on

the study of the first factor of the product mentioned above, and that is the average

number of instructions executed per clock cycle (IPC). This latter represents, a measure,

not of how fast can go the circuit realization of our processor, but how well the

architecture is able to execute instructions.

This translates into a greater attention to aspects such as software scalability, memory,

IO, storage bandwidth and system resiliency to improve energy efficiency.

Paragraph 4.4: Power Trace of the application

In this context, it is inserted the following analysis, that is the study of the power

consumption characteristics of the application in question.

Regarding the energy consumption of cluster Cavium’s Thunderx, it presents the pretty

badly characteristics and one of the reason is that power management either did not

work, or at least did not work very well. Changing the power governor was not possible:

the cpufreq driver was not recognized. The difference between peak and idle (+/- 80W)

makes suspect that the chip is consuming between 40 and 50W at idle. Whether is just

a matter of software support or a real lack of good hardware power management is not

clear. It is quite possibly both.

The device used for the acquisition of energy consumption values and the evaluation of

the power efficiency is the Yokogawa Power Meter.

 It collects power data (V, W, A) from the 4 Thunder nodes since they only use one

power supply for all of them, and it provides a serial interface where you can connect

and, by sending specific information, receive the instant power data collected at the

moment you query the Yokogawa.

Universitat Politècnica de Catalunya Development of an oceanographic application in HPC

44

During the initial setup, some changes were made to the job script, that is:

- Before your application starts its execution, the HCA server must have time to

begin collecting data. This has been made possible by determining a phase of

start and stop of the program.

- Since all energy consumption data are collected instantly on all 4 nodes, is

required the allocation of 4 nodes for job, even in the case that serves only one

node.

- It is necessary to collect the information on power consumption in a time frame

from about 10 seconds before the application begins its execution at about 10

seconds after the execution ends, in order to compare the consumption during

the execution with the state of idle of the cluster.

Universitat Politècnica de Catalunya Development of an oceanographic application in HPC

45

The study conducted in this thesis work has focused mainly on an analysis of the energy

consumption of the application by changing the number of running processes.

It was then examined a configuration with ppn = 1, ppn= 16 and a configuration with

ppn = 32, mediated in order to minimize the uncertainty of the measurements, in order

to "quantify":

- Idle power: is defined as the power used by the system when it is not running a

workload, but it is in a state where it is ready to accept a workload.

The idle state is not a sleep or a hibernation state. The idle measurement need

not be made just before or after the workload is run.

Think of the idle power measurement as a constant of the system when no

workload is running.

- Power at execution time: Energy consumption of the application during the

execution time.

This choice of examining these specific cases is due to the need to mark a difference

graphically between the various power consumptions. The result is the following:

490,000

492,000

494,000

496,000

498,000

500,000

502,000

504,000

506,000

508,000

510,000

512,000

514,000

1
4

6
5

9
2

0
5

3
6

.6
2

4
0

8
6

1

1
4

6
5

9
2

0
5

3
9

.1
1

1
2

9
7

1
4

6
5

9
2

0
5

4
1

.5
9

9
9

9
8

5

1
4

6
5

9
2

0
5

4
4

.0
9

0
2

4
3

8

1
4

6
5

9
2

0
5

4
6

.5
8

9
3

5
1

1
4

6
5

9
2

0
5

4
9

.0
8

9
8

2
1

3

1
4

6
5

9
2

0
5

5
1

.5
8

9
5

5
6

5

1
4

6
5

9
2

0
5

5
4

.0
8

9
6

5
3

7

1
4

6
5

9
2

0
5

5
6

.5
8

9
8

8
9

3

1
4

6
5

9
2

0
5

5
9

.0
8

9
5

2
6

7

1
4

6
5

9
2

0
5

6
1

.5
8

9
6

1
5

1
4

6
5

9
2

0
5

6
4

.0
9

0
3

4
8

5

1
4

6
5

9
2

0
5

6
6

.5
9

0
0

8
5

5

1
4

6
5

9
2

0
5

6
9

.0
8

9
4

3
3

2

1
4

6
5

9
2

0
5

7
1

.5
8

9
4

1
0

3

1
4

6
5

9
2

0
5

7
4

.0
9

0
3

9
6

1
4

6
5

9
2

0
5

7
6

.5
9

0
2

6
4

3

1
4

6
5

9
2

0
5

7
9

.0
9

0
1

1
5

1
4

6
5

9
2

0
5

8
1

.5
8

8
6

5
8

8

1
4

6
5

9
2

0
5

8
4

.0
8

9
4

4
1

8

1
4

6
5

9
2

0
5

8
6

.5
8

9
4

4
5

1
4

6
5

9
2

0
5

8
9

.0
8

9
0

4
2

1
4

6
5

9
2

0
5

9
1

.5
8

9
1

7
2

1
4

6
5

9
2

0
5

9
4

.0
8

8
9

9
6

6

1
4

6
5

9
2

0
5

9
6

.5
8

8
4

8
7

4

1
4

6
5

9
2

0
5

9
9

.0
8

8
7

8
8

7

1
4

6
5

9
2

0
6

0
1

.5
8

9
3

2
1

1

1
4

6
5

9
2

0
6

0
4

.0
8

8
5

5
1

3

1
4

6
5

9
2

0
6

0
6

.5
8

9
6

5
8

7

1
4

6
5

9
2

0
6

0
9

.0
8

8
8

5
5

7

1
4

6
5

9
2

0
6

1
1

.5
8

9
3

6
8

6

1
4

6
5

9
2

0
6

1
4

.0
8

8
7

3
2

5

1
4

6
5

9
2

0
6

1
6

.5
8

8
8

3
4

1
4

6
5

9
2

0
6

1
9

.0
8

9
0

8
3

1
4

6
5

9
2

0
6

2
1

.5
8

9
4

3
3

7

1
4

6
5

9
2

0
6

2
4

.0
8

9
4

0
6

1
4

6
5

9
2

0
6

2
6

.5
8

9
3

9
4

P
O

W
ER

 (
K

w
)

TIMESTAMP

Comparing energy consumption ppn=1 , ppn=16 , ppn=32

energy consumption ppn=16 energy consumption ppn=32

Universitat Politècnica de Catalunya Development of an oceanographic application in HPC

46

Is possible to observe how the consumer with ppn=1 is very similar to the idle state,

explainable in part with a light use of cluster.

Another observation that can be done concerns the energy difference between the case

ppn=1 and the case ppn=16 estimable equal to about 5Kw as well as the energy

difference between the case ppn=16 and the case ppn=32.

 As can be noted, the power efficiency trends in cases ppn = 16 and ppn = 32, do not

return to an idle power consumption in clean way. This can be attributed to the fact that

the processes, inside one execution, are running a different number of iterations of the

minimization loop before ending.

These energy considerations represent an application baseline, a starting point from

which can then make a comparison with other programming styles such as OpenMP or

an hybrid approach MPI/OpenMP.

Universitat Politècnica de Catalunya Development of an oceanographic application in HPC

47

Chapter 5: Inside Paraver Tool

As it is known, to write parallel applications that make a good use of resources is not an

easy task.

A series of diagnostic tools support the developer in the evaluation phase and profiling,

and in the phases of tuning and optimization of the code.

The performance tools developed at BSC are an open-source project targeting not only

to detect performance problems but to understand the application’s behavior.

The key component that has allowed me to go into the details of my application is the

tool Paraver.

Paraver was developed to respond to the need to have a qualitative global perception of

the application behaviour by visual inspection and then to be able to focus on the detailed

quantitative analysis of the problems.

Performance information in Paraver is presented with two main displays that provide

qualitatively different types of information.

The timeline display represents the behaviour of the application along time and

processes, in a way that easily conveys to the user, a general understanding of the

application behaviour and simple identification of phases and patterns.

The statistics display provides numerical analysis of the data that can be applied to any

user selected region, helping to draw conclusions on where and how to focus the

optimization effort.

Universitat Politècnica de Catalunya Development of an oceanographic application in HPC

48

This chapter is structured in this way:

- In the first paragraph, it was described the process of extraction of a trace from

the application with the use of tool Extrae.

- In the second paragraph, it was introduced the analisys of the application with

the Paraver tool.

Paragraph 5.1: Extrae

Extrae is the package devoted to generate Paraver trace-files for a post-mortem analysis.

Extrae is a tool that uses different interposition mechanisms to inject probes into the

target application so as to gather information regarding the application performance.

Extrae takes advantage of multiple interposition mechanisms to add monitors into the

application

The interposition mechanism used in this case is Linker preload (LD_PRELOAD) to

intercept production binaries at loading time.

The instrumentation process can be summarized in this way:

The information collected by Extrae includes entry and exit to the programming model

runtime (MPI calls), hardware counters (PAPI), call stack reference, user functions,

periodic samples and user events (API).

Universitat Politècnica de Catalunya Development of an oceanographic application in HPC

49

In order to facilitate the configuration, Extrae can be configured through an XML file

that exemplifies all the options available to set up in the configuration file.

Most of the nodes present in the XML file have an enabled attribute that allows turning

on and off some parts of the instrumentation mechanism.

Paragraph 5.1.1: Extraction process of a trace

In order to extract a track from your application, is necessary to instrument the code with

the following changes:

- compile the application using the following flag: -funwind-tables –g

- copy in the current path the necessary files to the extraction process, that is the

configuration file extrae.xml and the file trace.sh

- customize the XML file extrae.xml according to your needs (for example to

activate MPI instrumentation). An example is the following:

Universitat Politècnica de Catalunya Development of an oceanographic application in HPC

50

Universitat Politècnica de Catalunya Development of an oceanographic application in HPC

51

- edit the trace wrapper trace.sh uncommenting the line related to the interposition

mechanism LD_PRELOAD for C apps

- add the new wrapper in the job submission script, in the line where there is the

srun command.

When the application ends, the trace generated consists of three files:

name_executable*.prv, name_executable*.pcf, name_executable*.row.

The file with extension .prv contains the trace records classified in these following

fields:

- Record Type: state, event, communication.

- Context: application : process : thread

- CPU

- Event: 𝑡𝑒𝑣𝑒𝑛𝑡: type: value

- State: 𝑡𝑠𝑡𝑎𝑟𝑡: 𝑡𝑒𝑛𝑑: 𝑠𝑡𝑎𝑡𝑒

- Comm Source/Comm Dest with size and tag

Paragraph 5.2: Analysis with Paraver

The analysis carried out with the Paraver tool allows to study in detail the style of

parallelization adopted in order to highlight any incorrect behavior, unbalancing of load

or any misalignment in the execution of the various MPI calls.

The tuning step has been focused, initially on the case of the parallel version with ppn =

4 and in the second place on the version with ppn = 16.

Paragraph 5.2.1: Parallel version with ppn=4

The first step was to load into the tool the track executable *.prv obtained.

The first configuration considered is the MPI_Call.cfg: it exhibits a temporal vision of

the various MPI calls, distinct because of a different color gradation, performed by the

various processes.

Universitat Politècnica de Catalunya Development of an oceanographic application in HPC

52

Pointing the mouse on a specific color we can determine the specific type of MPI call,

and we may notice also its duration in (us) in the Info panel.

At this granularity you can see that the threads 2 and 4 end before their parallel code

portion, and put themselves on hold in MPI_Finalize for about 14 seconds waiting for

the end of the other two threads.

This situation may be due, for example, to an imbalance of the load between the various

worker, which entails the need to perform an additional iteration of the minimization

loop to terminate execution of the workers 1 and 3.

To examine in detail this situation, the tool has an additional configurations:

- MPI Caller line, who shows on which line of code reside in all times the various

workers, thus highlighting how it is necessary for the workers 1 and 3 re-run the

various instructions of the loop.

In fact highlighting the MPI region of interest:

Universitat Politècnica de Catalunya Development of an oceanographic application in HPC

53

And by carring out a zoom into the selected area, the two workers are still performing

MPI communications in filloverlap.c module:

Other charatherstic is the MPI message size of point-to-point calls, exchanged between

the various workers in the Send and Receive operations.

This is computed by configuration file 3dh_msgsize_per_pt2pt_call.cfg.

A typical concern when an MPI program does not scale is that it may be using many

small messages.

For many reasons could be interested in finding which message sizes are used by the

Universitat Politècnica de Catalunya Development of an oceanographic application in HPC

54

application.

Instead, configuration file total_bw.cfg can be used to visualize the instantaneous

amount of communication bandwidth used by point to point calls in the application.

Some interpretation of this configurations could be:

- The metric total_bandwith quantifies the equivalent bandwidth a network should

have provided not to delay the execution. It is not the actual network bandwidth

of the real system (for example a load imbalance in the application may result in

a low bandwidth as there may be a lot of time available for the transfer, even if

the real system performs a very fast transfer between processors and then the

message has to wait for the reception to arrive). The metric is an indication of

what the application demands or is able to achieve in the real system. In regions

where the demand is very high the metric will saturate if the limit of the network

is reached

- Useful to identify regions where the network bandwidth may actually be limiting

the application performance

This type of analysis allows also me to quantify the transmission band of my application

and then the opportunity to draw a graph buffer size / execution time.

A way to determine the global efficiency of the application is to use the configuration

file General/analysis/avg_procs.cfg: a single entry 2D window reporting the average

number of processes performing useful computation out of the total number of

processes.

A plausible interpretation of this configuration may be to determine a number which

reflects the efficiency on the application in terms of its parallel execution.

Ideally, the value should be as close as possible to the total number of processors for

good performance, the higher number of CPUs kept active working on computational

parts of the problem.

In this case the configuration returns a value equal to 3.84.

The configuration efficiency.cfg shows a statistic about the percentage of efficiency of

each thread:

Universitat Politècnica de Catalunya Development of an oceanographic application in HPC

55

Another examined configuration is the useful_IPC.cfg: it shows a timeline with the IPC

parameter (instruction per cycle) = (instr / cycles)* useful obtained in certain

computational intervals.

Selecting the Info Panel by right clicking and selecting the Tab color is possible to

observe the representative scheme with various shades of colors with their associated

values of IPC.

The IPC function, in fact, for each process can have a gradation ranging from light green,

representing a low value of IPC, to a dark blue, representing a high IPC value.

The result obtained is the following:

The maximum level of the IPC reached in the application is equal to a value of 0.71

obtained by the processes 2 and 4.

Universitat Politècnica de Catalunya Development of an oceanographic application in HPC

56

The analysis previously performed is directly designed on a time scale, a less detailed

statistical perspective in some cases can often be enough to identify problems and give

an overview of the behavior of an application.

Paraver provides a mechanism, called 2D Analyzer, to obtain some profiles for specific

regions of a track, in the form of tables with the summary statistics.

An interesting configuration is the MPI_Stats: it builds a table that presents a row for

each thread and a column for each MPI call.

The first column corresponds to the time out of the MPI region. Each entry in the table

tells the percentage of time that the corresponding thread spent in the MPI function.

Clicking on the magnifying glass it is possible to see the following numerical values:

Changing metric with the Statistic Selector, for example:

- The option Burst that counts the number of occurrences of each MPI call,

- The option Burst Time Average: that is the average length of a MPI call,

It is possible to see a different statistic:

Universitat Politècnica de Catalunya Development of an oceanographic application in HPC

57

Finally, it focused attention on some metrics derived from the events based on Hardware

counter that are generated in the trace, at each input or output from MPI functions.

The views may be directly obtained from a single hardware counter or be derived metrics

combining several of them. Each view represents a time varying function typically color

encoded

Among the metrics counters, we have the Counters_PAPI configurations grouped into

4 main categories:

- Program: evaluation of application performance, and therefore not dependent on

the specific used platform,

- Architecture: related to execution on specific architectures (i.e. cache misses...),

- Performance: metrics reporting rates per time (i.e. MFLops, MIPS, IPC...)

- Models: This section contains configuration files where a simple model of what

the IPC (nstructions epr cycle) or elapsed time should be for each interval

between to samples as a function of the acquired hardware counts. In general

they could/should be compared to the measured IPC or elapsed time also

available from the trace.

About the performance metric, we obtain with the configurations MFlops.cfg and

MIPS.cfg the following graphs:

Universitat Politècnica de Catalunya Development of an oceanographic application in HPC

58

The first give the estimate of mega floating-point operations per second, MFLOPs,

equals to the maximum of 152,440, a common measure of the speed of computers used

to perform floating-point calculations.

The second graph, instead, returns the estimate of MIPS (million instructions per

second) in a maximum range from 1,266.55 to 1,271.68, another common measure of

computer speed and power.

Paragraph 5.2.2: Parallel version with ppn=16

The same path of analysis has concerned the case with ppn = 16, which presents a larger

misalignment between the operations of the various thread.

In fact, the configuration mpi_call.cfg returns the following display:

Universitat Politècnica de Catalunya Development of an oceanographic application in HPC

59

where, due to a load of different work among the various workers, some thread

terminate before their minimization process and wait in MPI_Finalize() state.

When talking about different workload between the worker, it is not intended a different

amount of data but a different range of values within those data.

This difference in values is reflected on a different number of iterations required to stop

the minimization algorithm

Is possible to see, in effect, with the configuration MPI_stats.cfg how the worker 10

spends more time than others in the various MPI_Send() and MPI_Recv():

The following display should help an analyst to properly identify to what extent is the

communication a real bottleneck for the application performance.

Some interpretation capabilities can be:

- Large values in one MPI call may draw our attention to it. Before thinking of

modifying the structure of the source code it might be interesting to further

investigate the performance of the MPI calls

- Variations across processes in column 0 probably indicate computational load

imbalances.

Waits for message reception due to imbalances or externally caused delays (i.e.

preemptions) that propagate through the communication dependence chain.

Universitat Politècnica de Catalunya Development of an oceanographic application in HPC

60

An other configuration file General/views/instantaneous_parallelism.cfg displays the

total number of processes performing some useful computation at each point in time.

This view will point out to regions of poor performance. Ideally a user would like its

application to have a constant number of active processors equal to the allocated number

of processors. Regions of low value of this metric should probably be analysed as occurs

in this case:

Regarding the global efficiency of the application, the configuration file

General/analysis/avg_procs.cfg reports the average number of processes performing

useful computation out of the total number of processes, a value equal to 10.65.

This result is mainly due to the waiting time of specific thread in the state of

MPI_Finalize() and then to a little their synchronous termination.

Paragraph 5.2.3: Vertical deepening of the cache management

Other very interesting perspective of analysis that allows to also explain the reasons for

the super linear speedup mentioned above, is the configuration named L1_missratio.cfg,

and L2d_miss_ratio.cfg related to Architecture metrics, and obtained with the following

Universitat Politècnica de Catalunya Development of an oceanographic application in HPC

61

path:

Before examining the graph result from the following configuration is appropriate to

describe a small overview of Thunder chip: the Cavium uses a custom ARM core, which

has 78 KB of instruction cache and 32 KB of data cache per core and 16 MB of L2 cache

that is shared across all of the cores on the die.

The 37-way 78 KB L1 cache is certainly odd, but it might be more than just "network

processor heritage". Few academic studies have shown that scale-out workloads such as

memcached have a higher than normal cache miss rate.

A reason why we believe Cavium has done its homework, is the fact that more die area

is spent on cores (up to 48) than on large caches; an L3 cache is nowhere to be found.

The Thunder-X has only one centralized relatively low latency 16MB L2 cache running

at full core speed. A lot of academic studies have confirmed that a large L3 cache is a

waste of transistors for scale-out workloads.

In other words, an L3 cache just adds more latency to requests that missed the L1 cache

and that will end up in the DRAM anyway. That is also the reason why Cavium made

sure that a beefy memory controller is available: the Thunder-X comes with four

DDR3/4 72-bit memory controllers and it currently supports the fastest DRAM available

Universitat Politècnica de Catalunya Development of an oceanographic application in HPC

62

for servers.

The study was conducted by analyzing the maximum amount of cache misses ratio (L2

cache misses per 1000 instructions) in various cases on mini-cluster Thunder, with the

purpose to valorize the results obtained in the field of performance.

How is possible to see from the following table:

Process per node Maximum cache miss ratio value Cache miss / process per node

1 97,234 97,234

2 54,588 27,294

4 33,244 8,311

8 63,781 7,9761

16 74,201 4,637

The case with a single process exhibits a very large value of cache miss, value that is

gradually decreasing if mediated by the number of processes by emphasizing a more

effective use of resources hardaware.

Given this context, the configuration files mentioned above, show a timeline with the

L1 cache miss and L2 cache miss ratio (L2 cache misses per 1000 instructions) in each

interval between MPI events.

In the case ppn = 4, were obtained the following graph:

Universitat Politècnica de Catalunya Development of an oceanographic application in HPC

63

Displaying according to the gradation of color can be observed as the case of the L1

cache is much more “unstable” than in the case of the L2 cache.

As can be seen the two graphs refer to traces of two different executions of the case

ppn=4, for the impossibility of being able to use more than 8 hardware counter in the

configuration file extrae.xml.

The same configurations were applied to the case with 16 processes:

Viewing the graph of the percentage of L2 cache misses and clicking on the Function

line mode can be identified, through an overlap with the graph MPI_Caller_Line, as

peaks can be attributed to the calls of MPI_Recv and MPI_Send contained in

filloverlap.c module.

Universitat Politècnica de Catalunya Development of an oceanographic application in HPC

64

Universitat Politècnica de Catalunya Development of an oceanographic application in HPC

65

Conclusioni e sviluppi futuri

The study of the application in this work of thesis has shown, in terms of execution

times, as a parallelism of multiprocessor type goes well with the problem in question

given the gains on the time scale.

On the other hand, it has also emerged that, in the case of the running on HCA server,

the efficiency graphics do not return the expected values because of an unchanged size

of the initial dataset. While, in the case of running on Thunder server, it has been showed

how the phenomenon of super linear speedup can be explained by a more efficient use

of the cache management.

In addition, the use of Paraver tool has enabled a thorough inspection of the code

highlighting, as necessary, its revision in an effort to improve the parallelization

performed.

The intent will be to make some improvements to the MPI version to try to obtain

increased indices of performance and efficiency (IPC) value, though, for example, an

excellent decomposition of the initial datasets between the various processes, on the

basis of knowledge of the range of examined values.

In this way the processes would terminate at the same instant the loop of minimization

avoiding situations of idle due to waiting and then increasing the processor usage

percentage.

At the same time, using the present version as a baseline, an idea would be to develop a

Universitat Politècnica de Catalunya Development of an oceanographic application in HPC

66

OpenMP version of the application in order to introduce a form of multicore

parallelization so as to make a comparison both in terms of performance both in terms

of power efficiency on the mini-cluster Thunder.

Another future development that may bring benefits in terms of performance is the use

of optimized mathematical libraries like ATLAS or math libraries for HPC applications

on ARM platforms.

The last stage of this path may provide a porting of the application on the Mont-Blanc

prototype in order to obtain a more accurate and detailed energy vision of the

application, being able to have a set of finer granularity.

67

Bibliografia

[1] Arcucci Rossella, “Tecniche numeriche per la risoluzione in ambiente parallelo

del problema "Data Assimilation": un problema inverso mal posto”

[2] http://www.montblanc-project.eu/.

[3] Valgrind, http://valgrind.org/

[4] Mantovani Filippo, “High Performance Computing based on mobile embedded

processor”, EMiT 2015

[5] Jing Shan, “Superlinear Speedup in Parallel Computation”

[6] http://www.top500.org/

[7] E. L. Padoin, P. O. A. Navaux, “High Performance Computing vs High Power

Consumption”

[8] https://www.bsc.es/computer-sciences/performance-tools/paraver

[9] https://www.bsc.es/computer-sciences/extrae

[10] http://www.anandtech.com/show/10353/investigating-cavium-thunderx-48-

arm-cores/

[11] R. Arcucci, L. D’Amore, Luisa Carracciuolo, “DD-OceanVar: A Domain

Decomposition Fully Parallel Data Assimilation Software for the Mediterranean

Forecasting System”, December 2013

[12] http://www.anandtech.com/show/8776/arm-challinging-intel-in-the-server

market-an-overview/4

[13] https://www.bsc.es/computer-sciences/performance-tools/documentation/

mpiopenmp-performance-analysis-tips

http://www.top500.org/
https://www.bsc.es/computer-sciences/performance-tools/paraver
https://www.bsc.es/computer-sciences/extrae
http://www.anandtech.com/show/10353/investigating-cavium-thunderx-48-arm-cores/
http://www.anandtech.com/show/10353/investigating-cavium-thunderx-48-arm-cores/
http://www.anandtech.com/show/8776/arm-challinging-intel-in-the-server%20market-an-overview/4
http://www.anandtech.com/show/8776/arm-challinging-intel-in-the-server%20market-an-overview/4
https://www.bsc.es/computer-sciences/

68

[14] R. S. Rejitha, “Energy consumption analysis and energy optimization

techniques of HPC applications

[15] https://www.bsc.es/sites/default/files/public/computer_science/extreme

 _computing/paraverpatc-oct.pdf

	Abstract
	Indice
	Introduction
	State of the art
	Chapter 1: Model OceanVar
	Paragraph 1.1: Linearizzation and Preconditioning

	Chapter 2: Software DD-4DVAR
	Paragraph 2.1: Description DD-4DVAR sequential application
	Paragraph 2.2: Profiling DD-4DVAR sequential

	Chapter 3: Parallel version DD4DVAR
	Paragraph 3.1: Mont-Blanc Project
	Paragraph 3.1.1: Environment of application’s development
	Paragraph 3.2: MPI Implementation
	Paragraph 3.3: Results
	Paragraph 3.3.1: Analysis in HCA
	Paragraph 3.3.2: Analysis in Thunderx cluster

	Chapter 4: Power Efficiency
	Paragraph 4.1: Supercomputer performances, Power Consumption and rank lists
	Paragraph 4.2: Research in Exascale Systems
	Paragraph 4.4: Power Trace of the application

	Chapter 5: Inside Paraver Tool
	Paragraph 5.1: Extrae
	Paragraph 5.1.1: Extraction process of a trace
	Paragraph 5.2: Analysis with Paraver
	Paragraph 5.2.1: Parallel version with ppn=4
	Paragraph 5.2.2: Parallel version with ppn=16
	Paragraph 5.2.3: Vertical deepening of the cache management

	Conclusioni e sviluppi futuri
	Bibliografia

