62,501 research outputs found

    Sampling-based speech parameter generation using moment-matching networks

    Full text link
    This paper presents sampling-based speech parameter generation using moment-matching networks for Deep Neural Network (DNN)-based speech synthesis. Although people never produce exactly the same speech even if we try to express the same linguistic and para-linguistic information, typical statistical speech synthesis produces completely the same speech, i.e., there is no inter-utterance variation in synthetic speech. To give synthetic speech natural inter-utterance variation, this paper builds DNN acoustic models that make it possible to randomly sample speech parameters. The DNNs are trained so that they make the moments of generated speech parameters close to those of natural speech parameters. Since the variation of speech parameters is compressed into a low-dimensional simple prior noise vector, our algorithm has lower computation cost than direct sampling of speech parameters. As the first step towards generating synthetic speech that has natural inter-utterance variation, this paper investigates whether or not the proposed sampling-based generation deteriorates synthetic speech quality. In evaluation, we compare speech quality of conventional maximum likelihood-based generation and proposed sampling-based generation. The result demonstrates the proposed generation causes no degradation in speech quality.Comment: Submitted to INTERSPEECH 201

    Learning to Understand Child-directed and Adult-directed Speech

    Full text link
    Speech directed to children differs from adult-directed speech in linguistic aspects such as repetition, word choice, and sentence length, as well as in aspects of the speech signal itself, such as prosodic and phonemic variation. Human language acquisition research indicates that child-directed speech helps language learners. This study explores the effect of child-directed speech when learning to extract semantic information from speech directly. We compare the task performance of models trained on adult-directed speech (ADS) and child-directed speech (CDS). We find indications that CDS helps in the initial stages of learning, but eventually, models trained on ADS reach comparable task performance, and generalize better. The results suggest that this is at least partially due to linguistic rather than acoustic properties of the two registers, as we see the same pattern when looking at models trained on acoustically comparable synthetic speech.Comment: Authors found an error in preprocessing of transcriptions before they were fed to SBERT. After correction, the experiments were rerun. The updated results can be found in this version. Importantly, - Most scores were affected to a small degree (performance was slightly worse). - The effect was consistent across conditions. Therefore, the general patterns remain the sam

    Prosodic Prominence and Boundaries in Sequence-to-Sequence Speech Synthesis

    Get PDF
    Recent advances in deep learning methods have elevated synthetic speech quality to human level, and the field is now moving towards addressing prosodic variation in synthetic speech.Despite successes in this effort, the state-of-the-art systems fall short of faithfully reproducing local prosodic events that give rise to, e.g., word-level emphasis and phrasal structure. This type of prosodic variation often reflects long-distance semantic relationships that are not accessible for end-to-end systems with a single sentence as their synthesis domain. One of the possible solutions might be conditioning the synthesized speech by explicit prosodic labels, potentially generated using longer portions of text. In this work we evaluate whether augmenting the textual input with such prosodic labels capturing word-level prominence and phrasal boundary strength can result in more accurate realization of sentence prosody. We use an automatic wavelet-based technique to extract such labels from speech material, and use them as an input to a tacotron-like synthesis system alongside textual information. The results of objective evaluation of synthesized speech show that using the prosodic labels significantly improves the output in terms of faithfulness of f0 and energy contours, in comparison with state-of-the-art implementations.Peer reviewe

    Formant-frequency variation and informational masking of speech by extraneous formants:evidence against dynamic and speech-specific acoustical constraints

    Get PDF
    How speech is separated perceptually from other speech remains poorly understood. Recent research indicates that the ability of an extraneous formant to impair intelligibility depends on the variation of its frequency contour. This study explored the effects of manipulating the depth and pattern of that variation. Three formants (F1+F2+F3) constituting synthetic analogues of natural sentences were distributed across the 2 ears, together with a competitor for F2 (F2C) that listeners must reject to optimize recognition (left = F1+F2C; right = F2+F3). The frequency contours of F1 - F3 were each scaled to 50% of their natural depth, with little effect on intelligibility. Competitors were created either by inverting the frequency contour of F2 about its geometric mean (a plausibly speech-like pattern) or using a regular and arbitrary frequency contour (triangle wave, not plausibly speech-like) matched to the average rate and depth of variation for the inverted F2C. Adding a competitor typically reduced intelligibility; this reduction depended on the depth of F2C variation, being greatest for 100%-depth, intermediate for 50%-depth, and least for 0%-depth (constant) F2Cs. This suggests that competitor impact depends on overall depth of frequency variation, not depth relative to that for the target formants. The absence of tuning (i.e., no minimum in intelligibility for the 50% case) suggests that the ability to reject an extraneous formant does not depend on similarity in the depth of formant-frequency variation. Furthermore, triangle-wave competitors were as effective as their more speech-like counterparts, suggesting that the selection of formants from the ensemble also does not depend on speech-specific constraints

    Combining Statistical Parameteric Speech Synthesis and Unit-Selection for Automatic Voice Cloning

    Get PDF
    The ability to use the recorded audio of a subject's voice to produce an open-domain synthesis system has generated much interest both in academic research and in commercial speech technology. The ability to produce synthetic versions of a subjects voice has potential commercial applications, such as virtual celebrity actors, or potential clinical applications, such as offering a synthetic replacement voice in the case of a laryngectomy. Recent developments in HMM-based speech synthesis have shown it is possible to produce synthetic voices from quite small amounts of speech data. However, mimicking the depth and variation of a speaker's prosody as well as synthesising natural voice quality is still a challenging research problem. In contrast, unit-selection systems have shown it is possible to strongly retain the character of the voice but only with sufficient original source material. Often this runs into hours and may require significant manual checking and labelling. In this paper we will present two state of the art systems, an HMM based system HTS-2007, developed by CSTR and Nagoya Institute Technology, and a commercial unit-selection system CereVoice, developed by Cereproc. Both systems have been used to mimic the voice of George W. Bush (43rd president of the United States) using freely available audio from the web. In addition we will present a hybrid system which combines both technologies. We demonstrate examples of synthetic voices created from 10, 40 and 210 minutes of randomly selected speech. We will then discuss the underlying problems associated with voice cloning using found audio, and the scalability of our solution
    corecore