5,737 research outputs found

    A simple sequent calculus for nominal logic

    Full text link
    Nominal logic is a variant of first-order logic that provides support for reasoning about bound names in abstract syntax. A key feature of nominal logic is the new-quantifier, which quantifies over fresh names (names not appearing in any values considered so far). Previous attempts have been made to develop convenient rules for reasoning with the new-quantifier, but we argue that none of these attempts is completely satisfactory. In this article we develop a new sequent calculus for nominal logic in which the rules for the new- quantifier are much simpler than in previous attempts. We also prove several structural and metatheoretic properties, including cut-elimination, consistency, and equivalence to Pitts' axiomatization of nominal logic

    Formulating problems for real algebraic geometry

    Get PDF
    We discuss issues of problem formulation for algorithms in real algebraic geometry, focussing on quantifier elimination by cylindrical algebraic decomposition. We recall how the variable ordering used can have a profound effect on both performance and output and summarise what may be done to assist with this choice. We then survey other questions of problem formulation and algorithm optimisation that have become pertinent following advances in CAD theory, including both work that is already published and work that is currently underway. With implementations now in reach of real world applications and new theory meaning algorithms are far more sensitive to the input, our thesis is that intelligently formulating problems for algorithms, and indeed choosing the correct algorithm variant for a problem, is key to improving the practical use of both quantifier elimination and symbolic real algebraic geometry in general.Comment: To be presented at The "Encuentros de \'Algebra Computacional y Aplicaciones, EACA 2014" (Meetings on Computer Algebra and Applications) in Barcelon

    Choosing a variable ordering for truth-table invariant cylindrical algebraic decomposition by incremental triangular decomposition

    Get PDF
    Cylindrical algebraic decomposition (CAD) is a key tool for solving problems in real algebraic geometry and beyond. In recent years a new approach has been developed, where regular chains technology is used to first build a decomposition in complex space. We consider the latest variant of this which builds the complex decomposition incrementally by polynomial and produces CADs on whose cells a sequence of formulae are truth-invariant. Like all CAD algorithms the user must provide a variable ordering which can have a profound impact on the tractability of a problem. We evaluate existing heuristics to help with the choice for this algorithm, suggest improvements and then derive a new heuristic more closely aligned with the mechanics of the new algorithm

    DepQBF 6.0: A Search-Based QBF Solver Beyond Traditional QCDCL

    Full text link
    We present the latest major release version 6.0 of the quantified Boolean formula (QBF) solver DepQBF, which is based on QCDCL. QCDCL is an extension of the conflict-driven clause learning (CDCL) paradigm implemented in state of the art propositional satisfiability (SAT) solvers. The Q-resolution calculus (QRES) is a QBF proof system which underlies QCDCL. QCDCL solvers can produce QRES proofs of QBFs in prenex conjunctive normal form (PCNF) as a byproduct of the solving process. In contrast to traditional QCDCL based on QRES, DepQBF 6.0 implements a variant of QCDCL which is based on a generalization of QRES. This generalization is due to a set of additional axioms and leaves the original Q-resolution rules unchanged. The generalization of QRES enables QCDCL to potentially produce exponentially shorter proofs than the traditional variant. We present an overview of the features implemented in DepQBF and report on experimental results which demonstrate the effectiveness of generalized QRES in QCDCL.Comment: 12 pages + appendix; to appear in the proceedings of CADE-26, LNCS, Springer, 201

    A General Setting for Flexibly Combining and Augmenting Decision Procedures

    Get PDF

    Counterexample-Guided Polynomial Loop Invariant Generation by Lagrange Interpolation

    Full text link
    We apply multivariate Lagrange interpolation to synthesize polynomial quantitative loop invariants for probabilistic programs. We reduce the computation of an quantitative loop invariant to solving constraints over program variables and unknown coefficients. Lagrange interpolation allows us to find constraints with less unknown coefficients. Counterexample-guided refinement furthermore generates linear constraints that pinpoint the desired quantitative invariants. We evaluate our technique by several case studies with polynomial quantitative loop invariants in the experiments
    • …
    corecore