Nominal logic is a variant of first-order logic that provides support for
reasoning about bound names in abstract syntax. A key feature of nominal logic
is the new-quantifier, which quantifies over fresh names (names not appearing
in any values considered so far). Previous attempts have been made to develop
convenient rules for reasoning with the new-quantifier, but we argue that none
of these attempts is completely satisfactory.
In this article we develop a new sequent calculus for nominal logic in which
the rules for the new- quantifier are much simpler than in previous attempts.
We also prove several structural and metatheoretic properties, including
cut-elimination, consistency, and equivalence to Pitts' axiomatization of
nominal logic