
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A General Setting for Flexibly Combining and Augmenting
Decision Procedures

Citation for published version:
Janicic, P & Bundy, A 2002, 'A General Setting for Flexibly Combining and Augmenting Decision
Procedures' Journal of Automated Reasoning, vol 28, no. 3, pp. 257-305., 10.1023/A:1015707001763

Digital Object Identifier (DOI):
10.1023/A:1015707001763

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Preprint (usually an early version)

Published In:
Journal of Automated Reasoning

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 20. Feb. 2015

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Edinburgh Research Explorer

https://core.ac.uk/display/28961393?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1023/A:1015707001763
http://www.research.ed.ac.uk/portal/en/publications/a-general-setting-for-flexibly-combining-and-augmenting-decision-procedures(fdc14219-0fb4-4eb7-b864-3a9455aec2cb).html


T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Division of Informatics, University of Edinburgh

Centre for Intelligent Systems and their Applications

A General Setting for Flexibly Combining and Augmenting Decision
Procedures

by

Predrag Janicic, Alan Bundy

Informatics Research Report EDI-INF-RR-0095

Division of Informatics January 2002
http://www.informatics.ed.ac.uk/



A General Setting for Flexibly Combining and
Augmenting Decision Procedures

Predrag Janicic, Alan Bundy

Informatics Research Report EDI-INF-RR-0095

DIVISION of INFORMATICS
Centre for Intelligent Systems and their Applications

January 2002

accepted - JAR 2002

Abstract :
The efficient combining and augmenting of decision procedures are often very important for a successful use of

theorem provers. There are several schemes for combining and augmenting decision procedures; some of them support
handling uninterpreted functions, use of available lemmas, and the like. In this paper we introduce a general setting
for describing different schemes for both combining and augmenting decision procedures. This setting is based on
the macro inference rules used in different approaches. Some of these rules are abstraction, entailment, congruence
closure and lemma invoking. The general setting gives a simple description and the key ideas of one scheme and makes
different schemes comparable. Also, it makes easier combining ideas from different schemes. In this paper we describe
several schemes via introduced macro inference rules and report on our prototype implementation.

Keywords : theorem proving, decision procedures, combining decision procedures, augmenting decision procedures

Copyright c 2002 by The University of Edinburgh. All Rights Reserved

The authors and the University of Edinburgh retain the right to reproduce and publish this paper for non-commercial
purposes.

Permission is granted for this report to be reproduced by others for non-commercial purposes as long as this copy-
right notice is reprinted in full in any reproduction. Applications to make other use of the material should be addressed
in the first instance to Copyright Permissions, Division of Informatics, The University of Edinburgh, 80 South Bridge,
Edinburgh EH1 1HN, Scotland.



A General Setting for Flexibly Combining and

Augmenting Decision Procedures

Predrag Janičić (janicic@matf.bg.ac.yu)
Faculty of Mathematics, University of Belgrade,
Studentski trg 16, 11000 Belgrade, Yugoslavia

Alan Bundy∗ (a.bundy@ed.ac.uk)
Division of Informatics, University of Edinburgh,
80 South Bridge, Edinburgh EH1 1HN, Scotland

Abstract. The efficient combining and augmenting of decision procedures are often
very important for a successful use of theorem provers. There are several schemes
for combining and augmenting decision procedures; some of them support handling
uninterpreted functions, use of available lemmas, and the like. In this paper we
introduce a general setting for describing different schemes for both combining and
augmenting decision procedures. This setting is based on the macro inference rules
used in different approaches. Some of these rules are abstraction, entailment, con-
gruence closure and lemma invoking. The general setting gives a simple description
and the key ideas of one scheme and makes different schemes comparable. Also,
it makes easier combining ideas from different schemes. In this paper we describe
several schemes via introduced macro inference rules and report on our prototype
implementation.

Keywords: Theorem proving, decision procedures, combining decision procedures,
augmentation of decision procedures

1. Introduction

The role of decision procedures is often very important in theorem
proving. Decision procedures can reduce the search space of heuristic
components of a prover and increase its abilities. However, in some
applications only a small number of conjectures fall within the scope
of one decision procedure. Some of these conjectures could, in an in-
formal sense, fall “just outside” that scope. In these situations some
additional knowledge is needed, lemmas have to be invoked, and/or
decision procedures have to communicate with each other or with the
heuristic component of a theorem prover.

In theorem proving, the role of decision procedures for fragments
of arithmetic is significant because of its importance in software and
hardware verification. The whole of arithmetic is undecidable, but it has
decidable fragments such as Presburger arithmetic and strictly multi-
plication arithmetic [41, 44, 36]. As said, however, a decision procedure

∗ Supported in part by EPSRC grant GR/M45030.

c© 2002 Kluwer Academic Publishers. Printed in the Netherlands.

gs.tex; 20/03/2002; 18:59; p.1



2

for Presburger arithmetic itself has limited power: for instance, the
formula

∀x∀y x ≤ y ∧ y ≤ x+ car(cons(0, x)) ∧ p(h(x)− h(y)) → p(0)

is not a Presburger arithmetic formula. Besides, the formula

∀x∀y x ≤ y ∧ y ≤ x+ c ∧ p(h(x)− h(y)) → p(0)

obtained by generalizing car(cons(0, x)) to c is a Presburger arithmetic
formula (extended by the theory of equality with uninterpreted function
and predicate symbols, i.e., by the pure theory of equality), but is not
a theorem. However, if there are decision procedures for the theory
of lists and for the pure theory of equality available, it is possible to
combine them with a decision procedure for Presburger arithmetic and
to prove the above conjecture. This example illustrates situations when
several decision procedures have to cooperate and to be combined into
one decision procedure. As another example, consider the formula

∀l ∀α ∀k (l ≤ minl(α) ∧ 0 < k → l < maxl(α) + k) .

It is not a Presburger arithmetic formula, and, besides, the formula

∀maxl ∀minl ∀l ∀k (l ≤ minl ∧ 0 < k → l < maxl + k)

obtained by generalizing minl(α) to minl and maxl(α) to maxl is a
Presburger arithmetic formula but is not a theorem. However, if the
lemma ∀ξ (minl(ξ) ≤ maxl(ξ)) is available, it can be used (with the
right instantiation) and lead to

∀l∀α∀k (minl(α) ≤ maxl(α) → (l ≤ minl(α)∧ 0 < k → l < maxl(α)+k)) .

After the generalization, we get the formula

∀maxl∀minl∀l∀k (minl ≤ maxl→ (l ≤ minl∧ 0 < k → l < maxl+k)) ,

which can be proved by a decision procedure for Presburger arithmetic.
This example illustrates how the realm of the decision procedure for
Presburger arithmetic can be extended by the use of available lemmas.
In situations like this one, a decision procedure has to communicate
with other components of a prover, such as a lemma-invoking mech-
anism, a rewriting mechanism, or simplification techniques. Then we
say we deal with augmenting a decision procedure (or we say we deal
with integrating or incorporating a decision procedure into a theorem
prover).

Several influential approaches are used in handling the problem of
efficiently combining and augmenting decision procedures. The research

gs.tex; 20/03/2002; 18:59; p.2



3

concerning these issues has gone mostly along different two lines: one
concerning combining decision procedures and one concerning aug-
menting decision procedures. Combination schemes typically rely on
some local, specific data structures [38, 43, 19, 7, 9, 42, 8] and are
focused on combining decision procedures, but some of them also use
additional techniques (such as the use of additional rules and lemmas).
Augmentation schemes use different functionalities of heuristic theorem
provers such as rewriting techniques, lemma-invoking mechanisms, or a
variety of simplifications [11, 27, 29, 1, 25, 3]. Combination schemes are
typically aimed at decidable combinations of theories, while augmen-
tation schemes are primarily intended for use in (often undecidable)
extensions of decidable theories. The research on combination of de-
cision procedures is rich in theoretical and practical results, while the
research on the augmentation of decision procedures is still less well
developed theoretically.

Nelson and Oppen’s scheme for combination of theories [37] is used
in several systems, including the Stanford Pascal Verifier [32], esc [21],
and eves [18]. In this approach, decision procedures for disjoint theories
are combined by abstracting terms that fall outside a certain theory
and by propagating deduced equalities from one theory to another.
Shostak’s scheme for combination of theories [43] is used in several
other systems, including Ehdm [22], pvs [40], STeP [33, 9], and svc [7].
In this approach, solvers for specific theories (for instance, solvers for
equational real arithmetic or theory of lists) are tightly combined by an
efficient underlying congruence closure algorithm for ground equalities.

One of the most influential methods in the incorporation of decision
procedures into theorem provers is a procedure for linear arithmetic
integrated within Boyer and Moore’s Nqthm [11]. This system involves
a lot of special data structures, and the description of the procedure
is given in terms of these special data structures rather than in terms
of their logical meaning. There is also an important work on incor-
porating an arithmetic decision procedure into a rewrite-based prover
Tecton [27].

In this paper we intend to capture the key ideas shared by these
systems, and we formulate a general setting (gs) for both the combin-
ing and the augmenting decision procedures. As all of the mentioned
systems, the setting we present in this paper addresses quantifier-free
(that is, universal) background theories and only quantifier-free (that
is, universally quantified) conjectures.

We won’t go into much detailed discussion about the efficiency of
some modules of a system, but we will focus on modularity and gen-
erality enough to cover different variants of the mentioned systems.
The presented general setting also provides the possibility for easily

gs.tex; 20/03/2002; 18:59; p.3



4

combining ideas from different approaches (e.g., for combining Nelson
and Oppen’s scheme with a lemma-invoking mechanism) and hence for
easy definition of new combination/augmentation schemes.

Overview of the Paper. In §2 we give some basic background and
notation information. In §3 we describe several schemes from the lit-
erature for combining and augmenting decision procedures. In §4 we
introduce macro inference rules that constitute a general setting (gs)
for combination and augmentation of decision procedures; they are
based on schemes known from the literature. In §5 we give a case study
showing how six known schemes can be described via the introduced
macro inference rules. In §6 we describe an extension of the general
setting by an ordering on the macro inference rules. In §7 we report
on a prototype implementation of the described general setting and
on some results obtained by different schemes implemented within the
setting. In §8 we discuss related work. In §9 we discuss future work,
and in §10 we draw some conclusions.

2. Background and Notation

A signature (or a language) Λ is a pair (Σ,Π), where Σ and Π are
disjoint sets of function and predicate symbols, each with an associated
arity (or degree), an integer greater than or equal to 0. If a function
symbol has an arity 0, then we call it a constant. If a predicate symbol
has an arity 0, then we call that it a logical constant or a truth constant.
There are two truth constants: > and ⊥. Given a set V of variables
(disjoint with Σ and with Π), we define the notion of a Λ-term in
the usual way. We also adopt standard definitions for free variable, Λ-
atomic formula, Λ-literal, and first-order Λ-formula. A Λ-formula with
no free variables we call a closed Λ-formula or a Λ-sentence. A formula
F is ground if it has no variables. A formula F is in prenex normal form
if it is of the form Q1x1 Q2x2 . . . Qkxk F

′, where Qi ∈ {∀,∃}, xi ∈ V
and there are no quantifiers in F ′. If {x1, x2, . . . , xk} is a set of free
variables in F , we say that ∀x1 ∀x2 . . . ∀xk F is the universal closure
of F (and that ∀x1 ∀x2 . . . ∀xk F is a universally closed formula). We
abbreviate the universal closure of a formula F by ∀∗ F . By analogy
we define the existential closure of formula F , and we abbreviate it by
∃∗ F .

Given a signature Λ, a Λ-structure A is a pair (A, IΛ), where A, the
universe of A, is a set, while IΛ is a function mapping each constant
c ∈ Σ to an element, or individual, cA of A, each n-ary function symbol
f ∈ Σ (n > 0) to a total function fA from An to A, and each n-ary

gs.tex; 20/03/2002; 18:59; p.4



5

predicate symbol p ∈ Π to a relation pA over An. If A is a Λ-structure,
and X is a subset of V , a valuation of X is a mapping α of X into
A. The pair (A, α) defines a formula interpretation, that is, a mapping
into {true, false} of the set of all Λ-formulae F such that the set of
free variables in F is a subset of X (> is always mapped to true and
⊥ is always mapped to false). The interpretation (A, α) satisfies a Λ-
formula F (or also, α satisfies F in A) if (A, α) maps F to true, and
we denote this by (A, α) |= F . We write A |= F and say that A models
F if every valuation of free variables in F into A satisfies F .

A first-order theory (or an axiom system) T is a set of first-order
sentences. A Λ-theory is a theory whose all sentences are Λ-sentences.
A first-order theory with equality includes the predicate symbol =
and reflexivity, symmetry, transitivity, and substitutivity axioms for
equality. In the rest of this paper we will assume that we work only
with first-order theories with equality. If T is a theory over a signature
Λ, by T -term, T -formula, and so forth, we mean Λ-term, Λ-formula,
and the like. A Λ-structure A is a model of a Λ-theory T if A models
every sentence in T . We denote by Mod(T ) the set of all models of T .
For a theory T we say that is consistent if it has at least one model. For
Λ-theory T and a Λ-formula F , we say that F is a logical consequence
of T , and we write T |= F , if A |= F (or, equivalently, if A |= ∀∗F ) for
every memberA ofMod(T ). For Λ-theory T and a Λ-formula F , we say
that F is satisfiable in T if there is a valuation of free variables of F that
satisfies F in some member A of Mod(T ) (or, equivalently, A |= ∃∗F ).
If a formula F can be derived from T by using the usual classical first-
order logic inference system [35], we denote that by T ` F , and we
call the formula F a T -theorem (and we say that F is valid in T ).
Otherwise, we write T 6` F , and we say that F is invalid in T . For a
given signature Λ, a Λ-theory T and a Λ-sentence F , T |= F if and
only if T ` F .

If for two signatures Λe = (Σe,Πe) and Λ = (Σ,Π) it holds that
Σ ⊆ Σe, Π ⊆ Πe, we say that the signature Λe is an extension of the
signature Λ. If T is a theory over Λ, T e is a theory over Λe, and if it
holds that T ⊆ T e, we say that the theory T e is an extension of the
theory T (and that T is a subtheory of T e). We say that the theory T e is
a conservative extension of the theory T if the set of T e-theorems that
are Λ-formulae is equal to the set of T -theorems. Given two theories
T1 and T2 over signatures Λ1 and Λ2, we call a theory T1 ∪T2 (over the
signature Λ1 ∪ Λ2) a combination (or a union) of T1 and T2.

A theory is quantifier-free (or universal) iff all of its axioms are
quantifier-free (that is, implicitly universally quantified) formulae. In
the rest of this paper, we will consider only quantifier-free theories,
unless stated otherwise.

gs.tex; 20/03/2002; 18:59; p.5



6

A theory T is decidable if there is an algorithm (which we call a
decision procedure) such that for an input T -sentence F , it returns
true if and only if T ` F (and returns false otherwise).

In the rest of the paper, special attention will be given to Presburger
arithmetic (according to its significance in verification problems). In
Presburger natural arithmetic (pna), function symbols are 0 (with
arity 0), s (with arity 1) and + (with arity 2); predicate symbols are
<,>,≤,≥ (all with arity 2). We write 1 instead of s(0), and so on. Mul-
tiplication by a constant can also be considered as in pna: nx is treated
as x+ · · ·+x, where x appears n times. The axioms of pna are those of
Peano arithmetic without axioms concerning multiplication. Similarly
we introduce Presburger arithmetic over integers — Presburger integer
arithmetic (pia) and Presburger arithmetic over rationals — and Pres-
burger rational arithmetic (pra).1 It was Presburger who first showed
that pia is decidable [41]. The decidability of pna can be proved in an
analogous way. pra is also decidable [30].

We denote by E the pure theory of equality, that is, the theory with
“uninterpreted” function and predicate symbols (that is, functions and
predicates with no information about them), and only with equality
axioms.

A rewrite rule is an oriented equality of the form l −→ r. The rule
l −→ r rewrites a term t to another term s if there is a subterm t′

of t and a substitution φ such that lφ is equal to t′ and s is t with
the subterm t′ replaced by rφ. A rewrite system R is a finite set of
rewrite rules. A rewrite system R is terminating if it does not enable
infinite rewrite sequences. A rewrite system is terminating if there is
a reduction ordering ≺ such that for each rule l −→ r it holds r ≺
l. When a precedence relation on function and predicate symbols is
given, Dershowitz’s recursive path ordering [20] extends that relation
to reduction ordering ≺ on terms. A conditional rewrite rule is a rule of
the form l −→ r if p1 ∧ p2∧ . . .∧ pk, where the conditions p1, p2, . . . , pk

are literals. The rule l −→ r if p1 ∧ p2 ∧ . . . ∧ pk rewrites a term t to
another term s if there is a subterm t′ of t and a substitution φ such
that lφ is equal to t′, s is t with the subterm t′ replaced by rφ, and
each of the conditions piφ reduces to > (also by using rewrite rules). A
system of conditional rewrite rules is terminating if there is a reduction
ordering ≺ such that for each rule l −→ r if p1 ∧ p2 ∧ . . . ∧ pk, it holds
r ≺ l and pi ≺ l (1 ≤ i ≤ k).

1 For identical and related theories a number of different terms are used. For
instance, Boyer and Moore [11] describe a universally quantified fragment of Pres-
burger rational arithmetic as linear arithmetic (although in fact they work over the
integers).

gs.tex; 20/03/2002; 18:59; p.6



7

For a given reduction ordering ≺, a term t is a maximal in a set if
there is no term t′ in that set such that t ≺ t′. A term t is called an
alien term w.r.t. T if it is not a term of this theory. A literal l is a
maximal in a set of literals if there is no literal l ′ in that set such that
l ≺ l′. A literal l is called an alien literal w.r.t. T if it is not a literal of
this theory.

3. Schemes for Combination and Augmentation of Decision

Procedures

In the late 1970s and early 1980s, interest in decision procedures for
simple theories and for their use in theorem proving was revived. This
interest was supported by influential schemes for combinations of de-
cision procedures reported by Nelson and Oppen and by Shostak. One
of the most influential approaches to incorporating decision procedures
into heuristic theorem provers was reported in the late 1980s by Boyer
and Moore and successfully applied in their Nqthm. In this section we
briefly describe these and three other schemes that will be discussed in
the rest of the paper.2 The macro inference rules presented in Section
4 are motivated by these approaches.

Nelson and Oppen’s Algorithm for Combination of Theories: This
approach [37] gives a decision procedure for a combination of (decid-
able) quantifier-free stably infinite theories3 that do not share logical
symbols other than equality (given the decision procedures for these
theories). Alien terms in literals are abstracted, and literals (which
make the conjunction being refuted) are then divided into groups ac-
cording to which theories they belong to; after that, each decision
procedure tries to deduce some new equality and to propagate it to
other theories. In this approach, deduction of a new equality E in some
theory can be based on the decision procedure for that theory (i.e., on
checking the unsatisfiability of the conjunction of literals augmented
by ¬E), but more efficient algorithms for specific theories can also be
used for that purpose. An analysis of Nelson and Oppen’s procedure
and its theoretical background can be found in [46].

Shostak’s algorithm for combination of theories: Shostak gives a
procedure for a combination of algebraically solvable quantifier-free

2 This overview is by no means intended to give a detailed account of research on
combining and augmenting decision procedures, but to briefly present some of the
most influential schemes and schemes that served as a basis for the setting described
in this paper.

3 A consistent, quantifier-free theory T with signature L is called stably infinite
if and only if any quantifier-free L-formula is satisfiable in T if and only if it is
satisfiable in an infinite model of T .

gs.tex; 20/03/2002; 18:59; p.7



8

equational σ-theories4 [43]. It is based on solvers for specific theories
that are tightly combined by an efficient underlying congruence clo-
sure algorithm for ground equalities. This algorithm deals merely with
equational theories and, for instance, cannot deal with linear arithmetic
inequalities. (In Shostak’s original implementation linear arithmetic
inequalities were treated by an external decision procedure, in the
Nelson and Oppen style.) An analysis of Shostak’s algorithm can be
found in [19]. Recently, Rueß and Shankar [42] showed that Shostak’s
procedure and all its published variants [19, 7, 9] are incomplete and can
even be nonterminating; they also present one new variant of Shostak’s
procedure and prove its termination, soundness, and completeness.
There is also another recent variant of Shostak’s algorithm reported
by Barrett, Dill, and Stump [8].

Like the Nelson and Oppen’s algorithm, Shostak’s algorithm in its
basic form does not address the problem of using additional rewrite
rules, lemmas, and the like.

Boyer and Moore’s linear arithmetic procedure: The algorithm of
Boyer and Moore [11] extends the realm of one decision procedure
rather than combining decision procedures for different theories. In
their approach, a decision procedure for Presburger arithmetic (based
on Hodes’ algorithm [23]) is combined with a heuristic augmentation
that provides information about alien functions (i.e., provides lemmas)
and with a technique for using the remaining literals in the clause being
proved as the context to simplify one literal. In this approach, an un-
derlying decision procedure for Presburger arithmetic can’t be changed
for another one, which makes the system highly inflexible. Despite the
successful use of this algorithm in Nqthm and its general influence (not
only on the integration of decision procedures into heuristic provers),
it hasn’t gained wider popularity, and very few systems use it. One
of the reasons is probably the complicated original description, which
is often given in terms of special data structures rather than in terms
of their logical meaning and is often given intermixed with different
optimizations. All that also makes any theoretical analysis of Boyer
and Moore’s algorithm a very difficult task.

Reasoning About Numbers in Tecton: Kapur and Nie’s algorithm
for reasoning about numbers [27] is based on Boyer and Moore’s ap-
proach but improves it in several ways. It is designed so that the
underlying reasoning about Presburger formulae can be handled by
different procedures. It makes the system much more flexible than
Boyer and Moore’s procedure. The original description is based on a
form of Fourier’s algorithm for Presburger arithmetic; as a decision

4 Definitions of algebraically solvable and σ-theories are given in Example 2.

gs.tex; 20/03/2002; 18:59; p.8



9

procedure it is essentially the same as one due to Hodes [23] used
by Boyer and Moore, but in its extended form [31], it also provides
a mechanism for deducing implicit Presburger equalities (which are
efficiently used for further rewriting of the remaining parts of a formula
being proved). This scheme uses literals in the formula being proved
as the context to simplify one literal, similar to Boyer and Moore’s
procedure, but described more precisely via congruence closure and
contextual rewriting [47]. This approach uses rewriting techniques and
is used in the rewrite-based prover Tecton.

Constraint Contextual Rewriting: Armando and Ranise’s constraint
contextual rewriting [1, 3] is a formal system motivated by the ideas
from Boyer and Moore’s system. Constraint contextual rewriting is
an extended form of contextual rewriting [47] that incorporates the
functionalities provided by a decision procedure. It provides a flexible
framework that can be instantiated by a specific decision procedure X
for some theory, and it can formally cover approaches used by Boyer
and Moore and by Kapur and Nie (or, at least, their essential parts).
The soundness and termination of the constraint contextual rewriting
are proved formally for the abstract scheme when certain requirements
on the rewriting mechanism and the decision procedure are satisfied [3].

Extended Proof Method: The extended proof method (epm) [25] is in
spirit similar to constraint contextual rewriting — it provides a flexible
framework for extending the realm of one decision procedure A for a
theory T (say, for Presburger arithmetic) by the use of available lem-
mas. The framework can be used for different theories and for different
decision procedures. A new procedure can be “plugged in” to the system
only if it provides a limited set of functionalities such as checking satis-
fiability and elimination of quantifiers. The soundness and termination
of the extended proof method are proved for the abstract framework,
given a decision procedure that provides needed functionalities.

As with the previous three approaches, the extended proof method
does not address the problem of combining decision procedures, but
only the problem of extending the realm of one decision procedure by
available lemmas.

4. Macro Inference Rules

There are several key steps in the different systems for combining and
augmenting decision procedures, including abstraction, entailment, and
congruence closure. Instead of focusing on specific instances of these
steps (which is the case in most of the system descriptions), we will

gs.tex; 20/03/2002; 18:59; p.9



10

give a general setting for combining different instances of these steps.
We will describe them in a form of macro inference rules.

The macro inference rules are applied with respect to a background
theory T and a corresponding signature Λ. The background theory is
a combination of theories T1, T2, . . ., Tk (and possibly extended by
an extension L). In each combination/augmentation scheme based on
the proposed macro inference rules, the background theory is fixed for
all macro inference rules used. Some schemes can be parameterized by
choosing a background theory. We deal only with quantifier-free back-
ground theories. Usually, it is sensible to consider decidable theories
Ti (1 ≤ i ≤ k). If T is decidable, it is an interesting problem to build
a decision procedure for it, on the basis of decision procedures for T1,
T2, . . ., Tk. On the other hand, an interesting case is also when T is
undecidable extension of a decidable theory.

We use proof by refutation, so if F is a quantifier-free formula to be
proved, we need to show that ¬F is unsatisfiable in T ; that is, we need
to show that T ∪ ¬F is inconsistent. More precisely, in order to prove
a quantifier-free formula F in a theory T , that is, to show T |= ∀∗F ,
we need to show that T ,∃∗(¬F ) |= ⊥. For now on, we will assume that
for one conjecture and for one combination/augmentation procedure,
the background theory T is fixed, and by “¬F is unsatisfiable” we will
mean “¬F is unsatisfiable in T ”, and so forth.

We denote macro inference rules by ⇒X , where X is the name of
the specific rule. If a rule X is parameterized by parameters P , then
we denote it by X(P ). The soundness of each macro inference rule has
to be ensured: for each rule ⇒X , if it holds f1 ⇒X f2, then it has to
be ensured that if f2 is unsatisfiable (in the background theory T ),
then f1 is unsatisfiable (in T ), too (in other words, each rule ⇒X has
to preserve satisfiability). If the inference rule X is both satisfiability
and unsatisfiability preserving, we denote it by ⇔X . We abbreviate by
f1 ⇒

∗ fn the sequence f1 ⇒Xi1
f2 ⇒Xi2

f3 . . . fn−1 ⇒Xin−1
fn, and by

f1 ⇔
∗ fn the sequence f1 ⇔Xi1

f2 ⇔Xi2
f3 . . . fn−1 ⇔Xin−1

fn.

If ¬F ⇒∗ ⊥, then ¬F is unsatisfiable, so the original formula F is
valid. If ¬F ⇔∗ > and the background theory T is consistent, then F
is invalid. In a heuristic theorem prover, negative results can also be
important and useful (for example, in controlling generalization, and
other non satisfiability-preserving heuristics). Additionally, after each
macro inference step is applied, if f ⇔∗ f ′, a formula f ′ can be passed
to any other component of a prover, and some other technique (e.g.,
induction) can be tried.

We assume that there is an ordering on Λ function and predicate
symbols available that induces a reduction ordering≺ on terms. We also

gs.tex; 20/03/2002; 18:59; p.10



11

assume that there may be some additional rewrite rules, definitional
equalities, and lemmas available.

The rest of this section describes in details the various macro in-
ference rules. Some of them are defined with respect to theories T1,
T2, . . ., Tk (and possibly an extension L) that are combined into the
background theory.

4.1. Disjunctive Normal Form

If f is the negation of a formula F to be proved, we can transform it
into disjunctive normal form and then try to refute each of its disjuncts.
We denote this transformation5 in the following way:

f ⇒dnf (f1 ∨ f2 ∨ . . . ∨ fn)

Since transformation into disjunctive normal form is (un)satisfiability
preserving, we also denote it by

f ⇔dnf (f1 ∨ f2 ∨ . . . ∨ fn) .

4.2. Proving Disjuncts (case split)

If a formula f is of the form (f1 ∨ f2 ∨ . . . ∨ fn) (where each fi is a
conjunction of literals), in order to refute f , we have to refute each fi.
Hence,

f ⇔split ⊥ if fi ⇒
∗ ⊥ for all i, 1 ≤ i ≤ n .

Additionally,

f ⇔split > if fi ⇔
∗ > for some i, 1 ≤ i ≤ n .

We will further deal mostly with conjunctions of literals (i.e., con-
junctions of atomic formulae and negations of atomic formulae). We
won’t distinguish between a conjunction l1 ∧ l2∧ . . .∧ ln and a multiset
{l1, l2, . . . , ln}.

5 Transformation into disjunctive normal form can be performed via a terminat-
ing set of rewrite rules. However, there is no canonical rewriting system for doing
this.

gs.tex; 20/03/2002; 18:59; p.11



12

4.3. Simplification

Simplification is based on the following simple rules:

{ } −→ >
f ∪ {l} ∪ {l} −→ f ∪ {l}
f ∪ {l} ∪ {¬l} −→ ⊥

f ∪ {⊥} −→ ⊥
f ∪ {>} −→ f

f ∪ {¬(a = a)} −→ ⊥
f ∪ {a = a} −→ f
f ∪ {x = y} −→ f

where x is a variable that does not occur in y and f , or y is a variable
that does not occur in x and f .

The inference rule that exhaustively applies the above rules (on a
formula f and yields a formula f ′) we denote by

f ⇔simpl f
′ .

In addition, there are simplifications specific to each theory. For
instance, a literal x ≤ (y + z) − (y − x) can be simplified to 0 ≤ z
by a simplifier for pra. Also, a simplifier for a theory Ti should detect
valid and unsatisfiable ground Ti literals and rewrite them to > and ⊥,
respectively. Simplification for a specific theory Ti is performed only on
Ti literals. Dealing with a combination of theories Ti (i = 1, 2, . . . , k),
we iteratively use simplifications for theories Ti (i = 1, 2, . . . , k), and
we denote this simplification (the extended form of ⇔simpl) by

f ⇔simpl(T1,T2,...,Tk) f
′ .

We assume that ⇔simpl(T1,T2,...,Tk) does not introduce new variables
and that can replace a Ti-literal only by a Ti-literal. We also assume that
f ⇔simpl(T1,T2,...,Tk) f

′ and f ′ ⇔simpl(T1,T2,...,Tk) f
′′ implies that f ′ and

f ′′ are identical formulae. Moreover, in order to ensure (un)satisfiability
preservation in the background theory T , the rule ⇔simpl(T1,T2,...,Tk)

must fulfill some conditions. If this rule replaces a Ti-literal l by a Ti-
literal l′, then the following must hold: for every model M of Ti, every
valuation of the variables of l that satisfies l in M can be extended to
a valuation that satisfy l′ in M , and vice versa. With this condition
met, it is not difficult to show that ⇔simpl(T1,T2,...,Tk) preserves both
satisfiability and unsatisfiability in T .

gs.tex; 20/03/2002; 18:59; p.12



13

4.4. Abstraction

Depending on the dominating functional and predicate symbols, we can
conditionally consider that an atomic formula belongs to a theory Ti

and abstract its alien subterms (with respect to Ti by new, abstraction
variables in order to obtain an atomic formula of a theory Ti. For in-
stance, x ≤ y+g(x+y) can be abstracted into a Presburger arithmetic
atomic formula x ≤ y + t, where t = g(x+ y).

We can perform abstraction for several theories T1, T2, . . ., Tk in
one step (in such a way that each abstracted literal belongs to one of
T1, T2, . . ., Tk). We can replace all original literals by their abstracted
versions (which is not (un)satisfiability preserving):

f ⇒abs(T1,T2,...,Tk) f
′

We can also add the set C of equalities defining newly introduced
variables ({t = g(x + y)} in the above example), which we denote
by

f ⇒abs+(T1,T2,...,Tk) f
′ ∪ C

or, alternatively (as it preserves unsatisfiability), by

f ⇔abs+(T1,T2,...,Tk) f
′ ∪C .

Abstraction can be propagated if a literal defining an abstracted
variable does not belong to one of the theories T1, T2, . . ., Tk. For
instance, after propagated abstraction (with respect to pna and the
pure theory of equality) x ≤ y + g(x + y) becomes x ≤ y + t1 ∧ t1 =
g(t2) ∧ t2 = x + y. This form of abstraction (propagated abstraction)
we denote by absp, and it always adds equalities C defining newly
introduced variables.6 We denote the corresponding inference by

f ⇒absp+(T1,T2,...,Tk) f
′ ∪ C .

or, alternatively (as it preserves unsatisfiability), by

f ⇔absp+(T1,T2,...,Tk) f
′ ∪ C .

4.5. Replacement

If a current formula f is a conjunction of literals and if there is a
literal x = t, where x is a variable and t is a term that does not include
occurrences of x, then we can replace all occurrences of x in all formulae
by t and delete the literal x = t. We can perform this operation for all

6 Some authors call this rule (or equivalent rules) purification.

gs.tex; 20/03/2002; 18:59; p.13



14

variables x fulfilling the given condition (one after another7) obtaining
a formula f ′, and we denote this inference by

f ⇒repl f
′

or, alternatively (as it preserves unsatisfiability), by

f ⇔repl f
′ .

Assuming that f does not include literals fulfilling the given conditions,
we note that

f ⇔absp+(T1,T2,...,Tk) f
′ ⇔repl f .

This illustrates the fact that one has to be cautious with the use of the
replacement rule, since it can annul the effect of the abstraction rule.

Another version of the replacement is restricted only to replacement
of variables by variables (i.e., in the case where there are equalities of
the form x = y). We denote it by

f ⇒repl= f ′

or, alternatively (as it preserves unsatisfiability), by

f ⇔repl= f ′ .

4.6. Unsatisfiability

Let us suppose that there is a procedure that can detect if a conjunction
of some literals {li1 , li2 , . . . , lik} (ik < n) from a formula f is unsatis-
fiable in a theory Ti, where f is a conjunction of literals l1, l2, . . . , ln.
If the conjunction {li1 , li2 , . . . , lik} (ik < n) is unsatisfiable, then f is
unsatisfiable, too. We denote this inference in the following way:

f ⇔unsat(Ti) ⊥ .

It is obvious that this rule preserves both satisfiability and unsatisfia-
bility in the background theory T (since Ti is a subtheory of T ).

4.7. Entailment

Let f be a disjoint union of two sets of literals: A and B. Let us
suppose that literals B = {li1 , li2 , . . . , lik} entail (in a theory Ti) some
conjunction or disjunction of literals C (which do not occur in A∪B).

7 Generally, the effect of the replacement might depend on the order of variables.
For simplicity, we won’t discuss this issue.

gs.tex; 20/03/2002; 18:59; p.14



15

We assume that soundness is guaranteed by the specification (which is
denoted by P for Ti) of this entailment. If we keep the literals from B,
we denote it by

A ∪B ⇒entail+(P,Ti) A ∪B ∪C

or, alternatively (as it preserves unsatisfiability), by

A ∪B ⇔entail+(P,Ti) A ∪B ∪ C .

If we don’t keep the literals from B, we denote it by

A ∪B ⇒entail(P,Ti) A ∪C ,

while in some cases it also holds

A ∪B ⇔entail(P,Ti) A ∪C .

In order to ensure (un)satisfiability preservation in the background
theory, entailment rules must fulfill some conditions. If for every model
M of Ti, every valuation of the variables of B that satisfies B in M
can be extended to a valuation that satisfy B ∪ C in M , then A ∪
B ⇒entail+(P,Ti) A∪B ∪C preserves satisfiability in T . Similarly, if for
every model M of Ti it holds that every valuation of the variables of
B that satisfies B in M can be extended to a valuation that satisfy C
in M , and vice versa, then A ∪ B ⇔entail(P,Ti) A ∪ C preserves both
satisfiability and unsatisfiability in T .

If the entailment rule is applicable and changes the input formula,
we say that it is successful.

The entailment rule, typically, has an essential role in combina-
tion/augmentation schemes. The rules⇔simpl(T1,T2,...,Tk),⇔unsat(Ti) and
⇔entail(P,Ti) are the only inference rules in our general setting that use
domain specific knowledge (i.e., knowledge specific to the theories Ti).
Some other rules (such as ‘abstraction’) use information about these
theories, but only information about their signatures.

EXAMPLE 1. Nelson and Oppen’s procedure for combinations of quantifier-
free theories8 is based on propagation of entailed equalities between
different theories.

A formula F is nonconvex if F entails x1 = y1∨x2 = y2∨. . . xn = yn,
but for no i between 1 and n does F entail xi = yi. Otherwise, F is
convex. A theory is convex if every conjunction of its literals is convex.
For instance, Presburger rational arithmetic, the theory of lists with

8 The description of Nelson and Oppen’s procedure and its scope is based on the
original paper [37] and on [46].

gs.tex; 20/03/2002; 18:59; p.15



16

car, cdr, cons, and atom and the pure theory of equality are all convex
theories, while the theory of arrays with store and select, Presburger
integer arithmetic and strict multiplication arithmetic are nonconvex
theories.

For entailing equalities, it is sufficient to have a procedure for a given
theory that can detect the unsatisfiability of a set of given literals. So, in
the Nelson and Oppen’s algorithm, procedures for specific theories can
be treated as external functions. If there are n variables, we can try all
possible disequalities between them9 and detect as entailed an equality
x = y if the current set of literals is unsatisfiable with ¬(x = y) (in
other words, the inference f ⇔entail+(NO,Ti) f ∪ {x = y} is equivalent
to: f ∪ {¬(x = y)} ⇔unsat(Ti) ⊥). If a theory is nonconvex, we have
to consider not only disequalities but also conjunctions of disequalities.
When a conjunction of disequalities is detected as unsatisfiable, then
its negation (a disjunction of equalities) is entailed, leading to a case
split.

For some theories there are efficient algorithms for detecting entailed
equalities and Nelson and Oppen cited some of them in their original
paper (e.g., the simplex algorithm for Presburger rational arithmetic).

We denote by NO entailment for a theory Ti, such that it entails an
equality E (or a disjunctions of equalities if Ti is nonconvex) from a set
B of (all) Ti-literals. The entailed equality (or disjunction or equalities)
E is added to a current set of literals, and we denote this entailment
by

A ∪B ⇒entail+(NO,Ti) A ∪B ∪E

or, alternatively (as it preserves unsatisfiability), by

A ∪B ⇔entail+(NO,Ti) A ∪B ∪E .

EXAMPLE 2. Shostak’s procedure10 for a combination of quantifier-
free theories deals with algebraically solvable σ-theories. A theory T is a
σ-theory if there is a computable canonizer σ from terms to terms such
that the following conditions hold (≡ denotes syntactical identity):

1. An equality t = u in the theory is valid iff σ(t) ≡ σ(u).

2. σ(x) ≡ x, for any variable x.

3. σ(σ(t)) ≡ σ(t), for any term t.

9 As said in [46], variables can be considered restricted only to variables shared
by some of component theories. However, in this paper we won’t discuss this
optimization of the original Nelson and Oppen’s procedure.

10 The description of Shostak’s procedure and its scope is based on [43, 42, 19].

gs.tex; 20/03/2002; 18:59; p.16



17

4. If σ(t) ≡ f(t1, . . . , tn) (f is any function symbol), then σ(ti) ≡ ti
for 1 ≤ i ≤ n.

5. σ(t) does not contain any variables that are not already in t.

For instance, each term in real linear arithmetic can be reduced to
a canonized form a1x1 + a2x2 + . . .+ anxn + c (n ≥ 0), where there is
imposed some ordering on symbols xi (0 ≤ i ≤ n).

A model M is a σ-model if M |= t = σ(t) for any term t, and
M 6|= a = b for distinct canonical, variable free terms a and b. A
σ-theory T is algebraically solvable if there is a computable function,
solve, that takes an equality e and returns >, ⊥, or a conjunction of
equalities and has the following properties (let solve(e) ≡ E):

1. E and e are σ-equivalent; that is, for all σ-models M and valuations
α over the variables in e, (M,α) |= e iff there is a valuation α′

extending α, over the variables in e and E (recall that E can contain
new variables not appearing in e), such that (M,α′) |= E;

2. E ∈ {>,⊥} or E ≡
∧k

i=1(xi = ti);

3. if e is unsatisfiable in any σ-model of T , then E = ⊥;

4. if e contains no variables, then E ∈ {>,⊥};

5. if E ≡
∧k

i=1(xi = ti), then the following hold:

(a) for all i (1 ≤ i ≤ k), xi occurs in e;

(b) for all i and j (1 ≤ i, j ≤ k), xi does not occur in tj;

(c) for all i and j (1 ≤ i, j ≤ k), i 6= j implies xi 6≡ xj;

(d) σ(ti) ≡ ti.

Note that solve can detect unsatisfiability of an equality and, hence,
unsatisfiability of a formula being proved. Moreover, whenever an equal-
ity is equivalent to ⊥, solve can detect it.

Among algebraically solvable σ theories are equational real linear
arithmetic, equational integer linear arithmetic, the convex theory of
lists, monadic set theory, and the like. For instance, a solver for real
linear arithmetic takes an equality of the form a1x1 + . . .+ anxn + c =
b1x1 + . . .+ bnxn + d and returns x1 = ((b2 − a2)/(a1 − b1))x2 + . . .+
((bn − an)/(a1 − b1))xn + (d − c); a solver for integer linear arith-
metic takes an equality 17x − 49y = 30 and returns x = 49z − 4,
y = 17z − 2, where z is a new variable; a solver for the theory of
lists takes cons(car(x)), cdr(car(y))) = cdr(cons(y, x)) and returns y =
cons(cons(a, cdr(x)), d), where a and d are new variables.

gs.tex; 20/03/2002; 18:59; p.17



18

If solve(e) is E, then we denote this kind of entailment by

A ∪ {e} ⇒entail(solve,T ) A ∪ {E}

or, alternatively (as it preserves unsatisfiability), by

A ∪ {e} ⇔entail(solve,T ) A ∪ {E} .

This rule solves just one equality in turn (i.e., it does not exhaustively
solve all (unsolved) equalities from the given formula). In the above rule
e can also be a disequality, that is, of the form ¬d, where d is equality;
in that case, E is ¬D, where solve(d) is equal to D. We say that an
equality (or a disequality) e is solved if e is equal to solve(e). If all
equalities and disequalities in a formula being proved are solved, the
rule ⇔entail(solve,T ) is not applicable.

EXAMPLE 3. In [27] there is a description of a procedure (inspired by
Fourier’s method11 [31]) for entailing implicit equalities E from Pres-
burger rational arithmetic (pra) inequalities B (see the same paper for
limitations in entailing implicit equalities in pia and pna). We denote
it by

A ∪B ⇒entail+(impl−eqs,pra) A ∪B ∪E

or, alternatively (as it preserves unsatisfiability), by

A ∪B ⇔entail+(impl−eqs,pra) A ∪B ∪E .

EXAMPLE 4. Variable elimination is a special case of entailment. Let
us assume that there is a quantifier elimination procedure P for a theory
T available (which can serve as a basis for a decision procedure for T ),
that is, a procedure that transforms a formula f (of a theory T ) into
an equivalent formula f ′ with fewer variables.

If there is a subset B of given literals L (L = A ∪B) such that

− all literals from B belong to T ,

− there is a variable x such that it does not occur in A

then we can perform a variable elimination procedure P on the literals
B and on the variable x, yielding a formula C (note that C may contain
disjunctions).

Variable elimination procedures are usually aimed at the elimination
of existentially quantified variables, and the elimination of universally
quantified variables is easily reduced to it. However, typically, more

11 More precisely, it is the Fourier and Motzkin’s algorithm for linear inequalities.
As in [27] we will refer to this algorithm briefly as Fourier’s algorithm.

gs.tex; 20/03/2002; 18:59; p.18



19

efficient versions of procedures of this kind can be obtained by making
optimized eliminations for both existentially and universally quantified
variables. Note that, in our setting, all variables are (implicitly) ex-
istentially quantified and, thus, it is sufficient to have available only
elimination of existentially quantified variables.

We denote elimination of all variables fulfilling given conditions by

A ∪B ⇒entail(P,T ) A ∪ C

or, for some procedures and theories, by

A ∪B ⇔entail(P,T ) A ∪ C .

Some instances of variable elimination entailment are ⇔entail(Cooper,pia),
⇔entail(Hodes,pra), ⇔entail(Fourier,pra), and ⇒entail(Hodes,pia). Fourier’s
method for variable elimination is used in system Tecton [27] and is
essentially the same as Hodes’ procedure used in Nqthm (for quantifier-
free formulae). Note that Hodes’ [23] procedure is an (un)satisfiability
preserving procedure for Presburger rational arithmetic (pra), but not
for Presburger integer arithmetic (pia). Cooper’s [17] procedure is (un)-
satisfiability-preserving for Presburger integer arithmetic and can be
adapted for Presburger natural arithmetic (pna), too.

We also consider one relaxed form of entailment based on variable
elimination: in this variant of entailment, a variable x might occur (at
most once) in B within an equality of the form x = f(t), where f is
an uninterpreted function symbol. This rule we denote by ⇒entail−(P,T ).
For instance, v0 = f(x)∧b < v0∧v0 < a⇒entail−(Hodes,pra) b < a. This
rule is primarily intended for the elimination of abstraction variables
(variables introduced by the abstraction rules).

For a number of decidable theories there are decision procedures that
work by using the idea of successive elimination of quantifiers from
formula being proved [30].

Some of the variable elimination procedures can be flexibly imple-
mented via rewrite rules [14, 16].

4.8. Constant Congruence Closure/Ground Completion

A constant congruence closure rule ccc is based on a relation 'C (which
we define below) and on an algorithm for computing it. It can also serve
as a decision procedure for the pure theory of equality. Equivalence
classes given by constant congruence closure are then interreduced
(giving a ground canonical system) and all literals in a formula being
proved are normalized.

gs.tex; 20/03/2002; 18:59; p.19



20

DEFINITION 1. Given a signature Λ = (Σ, ∅) and a set of variables
V , the constant congruence closure 'C generated by a set C of equal-
ities over Λ-terms is the smallest equivalence relation satisfying the
following properties:

− for any equality t1 = t2 of C, it holds t1 'C t2;

− if t1 'C t2 and f is a function symbol from Σ of arity n, then
f(u1, . . . , ui−1, t1, ui+1, . . . , un) 'C f(u1, . . . , ui−1, t2, ui+1, . . . , un).

As said in [47], this relation is different from the equational congru-
ence relation because in the constant congruence closure, a variable is
treated as constant. That is, no instantiation for variables is allowed in
the constant congruence closure.12

Constant congruence closure can be computed by using a congru-
ence closure algorithm such as described in [43, 38], using a variant
of the congruence closure algorithm interpreted as completion [26] or
using Knuth-Bendix’s completion algorithm for ground terms (each
ground equality system admits a canonical rewrite system; for con-
nections between congruence closure and ground completion and for
deriving ground canonical system from congruence closure graphs, see
also [9, 6]). As discussed in [47], we can also use only equality axioms,
but the above methods are much more efficient.

In our general setting, we perform a constant congruence closure on
a set of all equalities in a set of literals being refuted. This returns a
set of equivalence classes; from each class we choose a minimal element
(according to an ordering ≺) and introduce equalities for all remaining
terms in that class. The equalities are then oriented as rewrite rules
(according to the ordering ≺) and interreduced (while trivial equalities
are eliminated). These oriented equalities make a ground canonical
system (note that we treat variables as constants). They replace the
initial set of equalities and are further used to normalize other literals
in a formula being proved (literals other than equalities).13 In addition,
if in an obtained formula there is a literal ¬(t = t) or literals l and
¬l, the current formula is replaced by ⊥. This transformation we call
constant congruence closure and denote it by ⇒ccc. It is unsatisfiability
preserving, so we can also write ⇔ccc.

12 In this paper, we deal only with quantifier-free theories, and we use the proof
by refutation — thus, we can treat all variables in a negated conjecture as constants.

13 We can also, within this rule only, treat all literals in a uniform way as equalities
(and apply the ground completion procedures on all literals): If a literal ρ is not
equality, we can represent it as ρ = >, and if a literal ρ is not disequality, we can
represent ¬ρ as ρ = ⊥.

gs.tex; 20/03/2002; 18:59; p.20



21

EXAMPLE 5. Let us suppose that the background theory includes the
pure theory of equality with a function symbol f of arity 1. Let us
suppose that a formula being proved is

{f(f(f(x))) = x, f(f(f(f(f(x)))))) = x} .

All subterms appearing in the given formula are partitioned into equiv-
alence classes by a constant congruence closure algorithm, and, in this
case, we get only one equivalence class:

{x, f(x), f(f(x)), f(f(f(x))), f(f(f(f(x)))), f(f(f(f(f(x)))))} .

This class gives the following set of equalities (oriented left to right):

{f(x) = x, f(f(x)) = x, f(f(f(x))) = x, f(f(f(f(x)))) = x,

f(f(f(f(f(x))))) = x} ,

which, after interreducing and eliminating trivial equalities, gives

{f(x) = x} .

Thus it holds that:

{f(f(f(x))) = x, f(f(f(f(f(x)))))) = x} ⇔ccc {f(x) = x}

EXAMPLE 6. Let us suppose that the background theory includes the
pure theory of equality with a function symbol f of arity 1. The set
of literals {¬(f(a) = f(b)), a = b} yields only one equivalence class
{a, b}, and gives the following set of equalities (oriented left to right,
assuming a ≺ b): {b = a}. After normalizing, ¬(f(a) = f(b)) becomes
¬(f(a) = f(a)) and, hence, it holds that:

{¬(f(a) = f(b)), a = b} ⇔ccc ⊥ .

4.9. Superposing

If R is a canonical rewrite system such that for any finite set of ground
equalities E (expressed by using symbols in R and constants) comple-
tion terminates producing a finite canonical rewrite system R′, then R
can be used to decide whether the conclusion of a conditional equality,
whose conditions constitute E, follows from R or not. We call a canoni-
cal system R with this property an admissible rewrite system.14 For an

14 The definition of the admissible rewrite system and the examples given in this
subsection are from [27]. This macro inference rule is inspired by and based on this
work.

gs.tex; 20/03/2002; 18:59; p.21



22

admissible R, its quantifier-free theory is decidable using completion. If
a rule l −→ r from R can be superposed with some equality e from the
formula f being proved (and we treat variables in f as constants), the
obtained equality e′ can replace the equality e. In addition, all literals
have to be normalized by the rules from R. We denote this inference
by ⇒superpose(R) or, alternatively (as it preserves unsatisfiability), by
⇔superpose(R).

EXAMPLE 7. It can be shown that the rewrite system {f(f(x)) −→ x}
is admissible. Let f(a) = f(b) ∧ a 6= b is the formula being refuted.
Then f(a) superposes with {f(f(x)) −→ x} yielding the new equality
a = f(f(b)) with a normalized form a = b. Then it is trivially shown
that the formula a = b ∧ a 6= b is unsatisfiable.

The above example illustrates the fact that normalization with rules
from the admissible system is not enough by itself but that superposing
with equalities in a formula being refuted is needed.

EXAMPLE 8. The theory of lists with car, cdr, cons, and atom is
given by the following axioms.

1. cons(car(x), cdr(x)) = x,

2. car(cons(x, y)) = x,

3. cdr(cons(x, y)) = y.

The following rewrite system

1. cons(car(x), cdr(x)) −→ x,

2. car(cons(x, y)) −→ x,

3. cdr(cons(x, y)) −→ y

is an admissible rewrite system.

4.10. Lemma Invoking

We assume that there may be some additional rewrite rules, defini-
tional equalities, additional theorems, and lemmas15 available (we do

15 For instance, let us assume that we deal with a theory T that includes Peano
arithmetic. Peano arithmetic is undecidable, so we can’t have a decision proce-
dure for it, but there are some decidable subtheories of Peano arithmetic (such
as Presburger arithmetic) that are decidable. So, for example, we can have a
decision procedure for Presburger arithmetic and some of the axioms concerning
multiplications as additional rewrite rules.

gs.tex; 20/03/2002; 18:59; p.22



23

not address the problem of discovering or speculating lemmas — see, for
instance, [29, 28, 2]). We will consider only (quantifier-free) definitional
equalities, theorems, and lemmas of the form p1 ∧ p2 ∧ . . . ∧ pk →
l = r and p1 ∧ p2 ∧ . . . ∧ pk → ρ. We will also consider conditional
rewrite rules (i.e., rules of the form l −→ r if p1, p2, . . . , pk and ρ −→
> if p1, p2, . . . , pk). Thus, we will treat all of them in a similar manner
as lemmas of corresponding forms.16 We assume (in order to ensure
termination) that there is a reduction ordering ≺ available, such that
for each lemma p1 ∧ p2 ∧ . . . ∧ pk → l = r it holds r ≺ l and pi ≺ l (for
i = 1, 2, . . . , k) and for each lemma p1∧p2∧ . . .∧pk → ρ it holds pi ≺ ρ
(for i = 1, 2, . . . , k).

If our proving strategy is based on decision procedures for some
theories T1, T2, . . . , Tj we assume that available lemmas (i.e., available
additional rules) make a conservative extension to each of them. Then
it is only sensible to search for lemmas that are not formulae of this
theories; indeed, no lemma that belongs to some of these theories can
contain information that could not be derived by decision procedures
for T1, T2, . . . , Tj. Thus, we formulate the lemma invoking inference with
respect to theories T1, T2, . . . , Tj .

Let t be a maximal alien term (with respect to the combination of T1,
T2, . . ., Tj) in the formula f being refuted (and there is no alien literal
l such that t ≺ l). Let c be a new abstraction variable for the term t
(if there is no equality t = c in the formula already). Let us assume
that there is a (quantifier-free) lemma p1 ∧ p2 ∧ . . . ∧ pk → ρ available
in the set L such that a maximal alien term in ρ (w.r.t. T1, T2, . . . , Tj)
is a term t′ and there is a most general substitution φ such that t′φ is
equal to t. Also, let us assume that all variables occurring in the lemma
are instantiated by φ. The formula f is transformed into f ∧ (p1 ∧ p2 ∧
. . .∧ pk → ρ)φ, and in this formula all occurrences of t are replaced by
c, yielding a resulting formula f ′ (and leading to a case split if k > 0).
If there is no such lemma,17 then all occurrences of t are replaced by c

16 Note that these additional rewrite rules do not necessarily need to be lemmas
(i.e., theorems of the background theory); within our system we don’t examine
the status of these rules, and therefore it would be more appropriate to consider
these rules as additional hypotheses. Hence, if this macro inference rule (with the
set L of additional rules) is used in proving a formula F , then we have to write
T ,L ` F (rather than T ` F ). However, because additional rules are sometimes
indeed lemmas (in a strict sense) of the background theory and for tradition reasons,
we use the name “lemma-invoking” for this rule and for dealing with all additional
rewrite rules.

17 For some conjectures with alien terms to be proved, no lemmas are required: for
instance, ∀α ∀k (max(α) ≤ k ∨max(α) > k) can be proved without any lemma. It
makes this relaxed condition of lemma rule sensible. In interactive theorem provers,
in these situations the user should be informed that the refutation attempt is being

gs.tex; 20/03/2002; 18:59; p.23



24

yielding a resulting formula f ′. This inference we denote by

f ⇒lemma+(L,T1,T2,...,Tj) f
′ .

EXAMPLE 9. Let the background theory be pra extended by L =
{max(x, y) = x→ min(x, y) = y}. Let us suppose that it holds max ≺
min. Let the formula being refuted be

{1 ≤ v, b ≤ 0, max(a, b) = a, min(a, b) = v}.

The maximal alien term (w.r.t. pra) in the given formula is min(a, b),
the maximal alien term in min(x, y) = y is min(x, y). The substitution
φ = {x 7→ a, y 7→ b} fulfills the required conditions, and the given
formula is rewritten to

{1 ≤ v, b ≤ 0, max(a, b) = a, min(a, b) = v,¬(max(a, b) = a)∨min(a, b) = b}.

All occurrences of min(a, b) are replaced by v, yielding

{1 ≤ v, b ≤ 0, max(a, b) = a, v = v,¬(max(a, b) = a) ∨ v = b}.

Now, there is a case split giving two conjunctions of literals:

{1 ≤ v, b ≤ 0, max(a, b) = a, v = v,¬(max(a, b) = a)}

and
{1 ≤ v, b ≤ 0, max(a, b) = a, v = v, v = b},

both leading to contradiction.

Let ¬% be a maximal alien literal (% is an atomic formula, alien with
respect to the combination of T1, T2, . . . , Tj) in the formula f being
refuted (and there is no alien term t in f such that % ≺ t). Let us assume
that there is a (quantifier-free) lemma p1 ∧ p2 ∧ . . . ∧ pk → ρ available
in the set L such that there is a most general substitution φ such that
ρφ is equal to %. Also, let us assume that all variables occurring in
the lemma are instantiated by φ. The formula f is transformed into
f ∧ (p1 ∧ p2 ∧ . . . ∧ pk → ρ)φ and in this formula all occurrences of %
are replaced by ⊥, yielding a formula f ′ (and leading to a case split if
k > 0). If there is no such lemma, then all occurrences of % are replaced
by ⊥ yielding a resulting formula f ′. This inference we (also) denote
by

f ⇒lemma+(L,T1,T2,...,Tj) f
′ .

The rule is dual if % is a maximal alien literal in the formula f being
refuted such that there is no an alien term t in f such that % ≺ t: we
look for a lemma p1 ∧ p2 ∧ . . . ∧ pk → ¬ρ, and all occurrences of % are
replaced by >.

tried without any lemma and that he/she should consider adding some lemma in
the case of the final failure of the procedure.

gs.tex; 20/03/2002; 18:59; p.24



25

EXAMPLE 10. Let the background theory be pra, extended by L =
{g(x) < h(x) → p(x)}, and let us suppose that g ≺ p and h ≺ p. Let
the formula being refuted be

{¬p(a), g(a) < h(a)}.

The maximal alien literal (w.r.t. pra) in the formula f is ¬p(a). The
substitution φ = {x 7→ a} fulfills the required conditions, and the
formula f is rewritten to

{¬p(a), g(a) < h(a), ¬(g(a) < h(a)) ∨ p(a)}.

All occurrences of p(a) are replaced by ⊥, yielding

{¬⊥, g(a) < h(a), ¬(g(a) < h(a)) ∨ ⊥}.

Now, there is a case split giving two conjunctions of literals:

{¬⊥, g(a) < h(a), ¬(g(a) < h(a))}

and
{¬⊥, g(a) < h(a), ⊥}

both leading to contradiction.

The above lemma-invoking mechanism is a relaxed form of the one
used in [27]. Using the above approach, the refutation process contin-
ues even if there is no lemma available for the current maximal alien
term/literal. Thus, the rule ⇒lemma+(L,T1,T2,...,Tj) is applicable even if
L is the empty set. Note that ⇒entail−(P,T ) has similar effects as the
combination of the rules ⇒lemma+(∅,T ) and ⇔entail(P,T ) (where P is a
variable elimination procedure for the theory T ).

If there is more than one lemma fulfilling the required conditions,
then in the case of failing to prove the unsatisfiability, one can backtrack
and try then another lemma. As previously said, even if all lemmas are
unsuccessfully tried, one can try to continue the refuting process with
no help from any lemma.

In [27, 29, 1], when using conditional rules, for each condition there is
one subproof, and this leads to tree-structured proofs. It is analogous to
the lemma-invoking mechanism proposed here, since for the conclusion
and for each condition from the used conditional rule, there is one
disjunction (after ⇔dnf and ⇔split) that has to be refuted.

In cases when the background theory is the combination of theories
T1, T2, . . ., Tk and k > 1, it is sensible to apply the described mechanism
not only to alien terms and literals, but to all terms and literals. There
are also some other variants of the above rule for lemma invoking [47,

gs.tex; 20/03/2002; 18:59; p.25



26

27, 29, 1, 25] (e.g., the use of some lemmas can be restricted according
to a dominating function symbol), but we won’t discuss them in this
paper.18

Note that the combination of the rules ⇔ccc and ⇒lemma+(L,T ) (to-
gether with ⇔dnf and ⇔split) is equivalent to contextual rewriting [47],
up to duality (contextual rewriting is used for simplification of clauses)
and to restrictions in the lemma mechanism.

Note that we usually leave the realm of completeness when we start
to rely on lemmas [27, 29, 25]. Moreover, even when T ,L, f ` ⊥, it
might be impossible to prove the unsatisfiability of f using the above
lemma mechanisms (or using the lemma mechanism discussed in [11,
27, 1]). This is illustrated by the following example (taken from [47]):

EXAMPLE 11. Let L be the set of the following two rules/lemmas

q → ¬p(a, x) ,

¬q → ¬p(x, b) .

Then ¬p(a, b) is a logical consequence of L, but the unsatisfiability of
p(a, b) cannot be proved by using either the first or the second rule.

For handling this problem, a relaxed variant of contextual rewriting
might be used [49], which does not require the conditions of a rewrite
rule to be proved in order to apply a rule. For keeping completeness
when applying additional rewrite rules, a notion of well-coveredness is
proposed in [49] and some variants of it in [10].

The lemma-invoking mechanism presented here can be adjusted in
order to handle this problem in some situations. Specifically, instead
of using just one lemma that meets given conditions, we can use all
such available lemmas. Then, in the above example, the conjecture
p(a, b) by the lemma rule would be transformed into p(a, b) ∧ (q →
¬p(a, b)) ∧ (¬q → ¬p(a, b)), and by the rules ⇔dnf and ⇔split it is
further transformed into four subgoals: p(a, b) ∧ q ∧ ¬q, p(a, b) ∧ q ∧
¬p(a, b), p(a, b) ∧ ¬p(a, b) ∧ ¬q, and p(a, b) ∧ ¬p(a, b) ∧ ¬p(a, b), each
of which easily leads to contradiction. This version of the lemma rule
extends the realm of the basic lemma-invoking mechanism and of the
general setting itself.

18 Some authors refer to lemma invoking as an augmentation step or an augmen-
tation heuristic.

gs.tex; 20/03/2002; 18:59; p.26



27

4.11. Properties of Macro Inference Rules

It is not difficult to prove that all the presented macro inference rules
(in Section 4) are sound and that all ⇔X rules preserve unsatisfiability.

The properties of ⇔entail(solve,T ) are implied by the properties of the
solve function. Proofs of the properties of the rules⇔entail+(impl−eqs,pra),
⇔entail(Fourier,pra), ⇔entail(Cooper,pia) and ⇔entail(Hodes,pra) are based
on the proofs from [31], [27], [23], and [17], respectively. Soundness
of ⇒entail(Hodes,pia) can be proved on the basis of soundness of the rule
⇔entail(Hodes,pra) and by a simple model-theoretic argument. The proofs
of the properties of ⇔ccc are based on the properties of ground comple-
tion (see, for instance, [6]). The proofs of the properties of ⇔superpose(R)

are based on [27]. Satisfiability and unsatisfiability preservation of the
remaining rules can be easily proved on the basis of the properties of
first-order theories with equality. Thus, the following theorem holds (f
is a quantifier-free formula):

THEOREM 1. For a given background theory T , if f ⇒∗ f ′ and if f ′

is unsatisfiable in T , then f is unsatisfiable in T , too. If f ⇔∗ f ′ and
if f is unsatisfiable in T , then f ′ is unsatisfiable in T , too.

The immediate consequence of the above theorem is the following:
if it holds that f ⇒∗ ⊥ (or f ⇔∗ ⊥), then f is unsatisfiable and ¬f
is valid; if it holds that the background theory T is consistent and
f ⇔∗ >, then f is satisfiable and ¬f is invalid. If it holds that f ⇒∗ >
(and does not hold that f ⇔∗ >), then it is unknown whether ¬f is
valid or invalid.

The termination of each inference rule can be proved in a simple
manner (with the exception of ⇔ccc for which the termination can
be ensured by the termination argument for the constant congruence
closure algorithm or by the termination argument for ground comple-
tion). However, termination of a scheme built from several rules must
be proved separately.

In this paper, we won’t discuss the complexity of the macro infer-
ence rules and the schemes built from them. The computational cost
of the macro inference rules ranges from linear to superexponential
(for Cooper’s elimination of variables from Presburger formulae [39]).
The overall computational cost of combination/augmentation schemes
depends on the complexity of inference rules used.

gs.tex; 20/03/2002; 18:59; p.27



28

5. Case Studies

In this section we describe several methods for combining and aug-
menting decision procedures in the framework of the macro inference
rules introduced in Section 4. We point out that these descriptions do
not represent fully the original methods19 but give their key ideas. In
a number of aspects the given descriptions can be optimized (as in
the corresponding systems). However, the point of the given general
setting is in gathering some shared ideas that can serve as a basis for a
new, powerful, and flexible framework for combining and augmenting
decision procedures. We believe that the potential losses in efficiency
are dominated by these advantages.

Instead of a description of Boyer and Moore’s procedure within gs,
we give descriptions of the Tecton-style and epm-style schemes, which
are generalizations of Boyer and Moore’s approach.

In the given descriptions we use the phrase “apply [an inference
rule]”, while it would be more precisely to say “try to apply [an infer-
ence rule]”. Some inference rules are always applicable, though possibly
without any effect (for instance, the ccc rule).

In the following schemes, when used, the rule ⇔simpl(Ti) can be
replaced by ⇔simpl, but the versions with ⇔simpl(Ti) are typically more
efficient.

5.1. Nelson and Oppen’s Combination of Theories

Let a quantifier-free theory T be a combination of theories Ti (1 ≤
i ≤ k) that do not share nonlogical symbols other than equality. Let
T be a background theory, and let F be a formula to be proved. The
procedure is as follows (¬F is its input):

1. Apply ⇔dnf .

2. Apply ⇔split.

3. Apply ⇔absp+(T1,T2,...,Tk).

4. Apply ⇔dnf .

5. Apply ⇔split.

6. Apply ⇔unsat(Ti), for some i, 1 ≤ i ≤ k.

7. Apply ⇔entail+(NO,Ti), for some 1 ≤ i ≤ k; if not successful, return
>.

19 This is especially the case with the implementation of Shostak’s scheme, whose
original version is very compact and optimized.

gs.tex; 20/03/2002; 18:59; p.28



29

8. Apply ⇔repl=.

9. Go to Step 4.

Note that if the theories Ti are convex, then in Step 9 we can jump
to Step 6, instead of to Step 4. The replacement carried by the rule
⇔repl= was not used in the original procedure. This rule is useful as it
reduces the number of considered variables in the search for implicit
equalities.

EXAMPLE 12. Let

x ≤ y ∧ y ≤ x+ car(cons(0, x)) ∧ p(h(x)− h(y)) → p(0)

be the formula we need to prove [37]. It belongs to the combination of
pra, the theory of lists (with elements rational numbers), and the pure
theory of equality over the signature ({h}, {p}) (denoted E). Its negation
is x ≤ y∧y ≤ x+car(cons(0, x))∧p(h(x)+(−1) ·h(y))∧¬p(0), and we
need to show that it is unsatisfiable. To save space, we omit applications
of rules that are unsuccessful or don’t have any effect:
{x ≤ y, y ≤ x+ car(cons(0, x)), p(h(x) + (−1) · h(y)),¬p(0)}
⇔absp+(pra,lists,E)

{x ≤ y, y ≤ x+v0, car(cons(v1, x)) = v0, 0 = v1, p(v2), v4+(−1)·v3 =
v2, h(y) = v3, h(x) = v4,¬p(v1)}
⇔entail+(NO,lists)

{x ≤ y, y ≤ x+v0, car(cons(v1, x)) = v0, 0 = v1, p(v2), v4+(−1)·v3 =
v2, h(y) = v3, h(x) = v4,¬p(v1), v1 = v0}
⇔repl=

{x ≤ y, y ≤ x+v0, car(cons(v0, x)) = v0, 0 = v0, p(v2), v4+(−1)·v3 =
v2, h(y) = v3, h(x) = v4,¬p(v0)}
⇔entail+(NO,pra)

{x ≤ y, y ≤ x+v0, car(cons(v0, x)) = v0, 0 = v0, p(v2), v4+(−1)·v3 =
v2, h(y) = v3, h(x) = v4,¬p(v0), x = y}
⇔repl=

{x ≤ x, x ≤ x + v0, car(cons(v0, x)) = v0, 0 = v0, p(v2), v4 + (−1) ·
v3 = v2, h(x) = v3, h(x) = v4,¬p(v0)}
⇔entail+(NO,E)

{x ≤ x, x ≤ x + v0, car(cons(v0, x)) = v0, 0 = v0, p(v2), v4 + (−1) ·
v3 = v2, h(x) = v3, h(x) = v4,¬p(v0), v3 = v4}
⇔repl=

{x ≤ x, x ≤ x + v0, car(cons(v0, x)) = v0, 0 = v0, p(v2), v4 + (−1) ·
v4 = v2, h(x) = v4, h(x) = v4,¬p(v0)}
⇔entail+(NO,pra)

{x ≤ x, x ≤ x + v0, car(cons(v0, x)) = v0, 0 = v0, p(v2), v4 + (−1) ·
v4 = v2, h(x) = v4, h(x) = v4,¬p(v0), v0 = v2}

gs.tex; 20/03/2002; 18:59; p.29



30

⇔repl=

{x ≤ x, x ≤ x + v2, car(cons(v2, x)) = v2, 0 = v2, p(v2), v4 + (−1) ·
v4 = v2, h(x) = v4, h(x) = v4,¬p(v2)}
⇔unsat(E)

⊥

In order to prove that the above procedure terminates and is correct,
we need the following theorem [46] (the theorem is used in [46] for
proving the correctness of the nondeterministic version of Nelson and
Oppen’s procedure).

THEOREM 2. Let T1 and T2 be two stably infinite, signature-disjoint,
quantifier-free theories, and let φ1 and φ2 be conjunctions of literals
from T1 and T2, respectively. Let V be the set of variables shared by φ1

and φ2, and let ψ be the conjunctions of all disequalities xi 6= xj such
that xi, xj ∈ V and i 6= j. If φ1 ∧ ψ is satisfiable in T1 and φ2 ∧ ψ is
satisfiable in T2, then φ1 ∧ φ2 is satisfiable in T1 ∪ T2.

We will prove the correctness of the given, the Nelson-Oppen-style
procedure for the case of two component theories; the proof in the
general case is a simple generalization.

THEOREM 3. If Ti (1 ≤ i ≤ k) are stably infinite, signature-disjoint,
quantifier-free theories, then the above Nelson-Oppen-style procedure
terminates and is correct (complete and sound); that is, it returns ⊥ if
¬F is unsatisfiable (i.e., F is valid) and returns > if ¬F is satisfiable
(i.e., F is invalid).

Proof. There is only one application of the rule ⇔absp+ , and after that
there is no introduction of new variables. On the other hand, after
each successful application of ⇔entail+ , the rule ⇔repl= is applied that
eliminates at least one variable. In the case of nonconvex theories, there
are a finite number of branches, and in each of them there is at least
one variable eliminated by the rule ⇔repl=. Therefore, in each branch
the number of variables strictly decreases (in iterations), and the rule
⇔entail+ cannot be applied an infinite number of times. Hence, the
procedure terminates.

The procedure can return only ⊥ or >. All macro inference rules
in the setting are sound, so if the procedure returns ⊥, the formula
¬F is unsatisfiable. If the procedure returns >, it means that at some
stage ⇔entail+ failed to entail a new equality (or a new disjunction
of equalities). At that stage, the restrictions φ1 and φ2 of the current
formula φ only to T1 or T2 literals are satisfiable formulae (otherwise
⇔unsat would have detected unsatisfiability). Since ⇔entail+ failed to

gs.tex; 20/03/2002; 18:59; p.30



31

entail any equality, it means that the formulae φ1 and φ2 are satisfiable
with conjunction ψ′ of all disequalities between all variables. Then,
trivially, the formulae φ1 and φ2 are satisfiable with conjunction ψ of
all disequalities between only shared variables (we can consider only
shared variables anyway). By Theorem 2, it means that the formula φ
is also satisfiable. All other used macro inference rules are known to be
satisfiability preserving, and by the properties of ⇔split, it follows that
the original formula is satisfiable. Thus, the procedure returns ⊥ if and
only if the input formula ¬F is unsatisfiable.

5.2. Shostak’s Combination of Theories

Let a quantifier-free theory T be a combination of algebraically solvable
σ-theories Ti (1 ≤ i ≤ k) and the pure theory of equality (E). Let T
be a background theory, and let F be a quantifier-free formula to be
proved. The (variant of the) procedure is as follows (¬F is its input):

1. Apply ⇔dnf .

2. Apply ⇔split.

3. Apply ⇔ccc.

4. Apply ⇔simpl.

5. Apply ⇔absp+(T1,T2,...,Tk,E).

6. Apply⇔entail(solve,Ti), for some i, 1 ≤ i ≤ k; if not successful, return
>.

7. Apply ⇔repl.

8. Go to Step 1.

Note that we use solvers for specific theories aided by abstraction in-
stead of a combined solver for the theory T . In the rule ⇔entail(solve,Ti),
abstraction variables are solved first, and in the rule ⇔repl, abstraction
variables are replaced first; in this way, after each iteration there are
no abstraction variables in a formula being proved. If some variable is
solved in one equality, then we don’t try to solve it in another equality.

In the original Shostak algorithm (and in its variants) solvers for
specific theories are tightly combined by specific data structures and
functions such as find and σ [19]. In the case of the theory of equality
with uninterpreted function symbols find gives the canonical represen-
tative of a term with respect to the equality already processed. In the

gs.tex; 20/03/2002; 18:59; p.31



32

case of the combination of algebraically solvable theories (and without
uninterpreted functions), σ returns the canonical representative of a
term in the terms of the theories used. As said in [19], Shostak’s proce-
dure is a method for efficiently combining these two canonical forms. In
the above Shostak-style procedure, we use solvers for specific theories
and combine their results by congruence closure, but this combination
is not so tight (and not so efficient) as in the original Shostak procedure.

In the original Shostak algorithm, disequalities are not processed as
equalities but have the following role: after all equalities are processed,
for both sides of each disequality “normal” forms (w.r.t. processed
equalities and the current state of the main corresponding data struc-
tures) are computed and checked for syntactical identity; if in some
disequality two sides have the same “normal” form, the given formula
is unsatisfiable. In our variant of Shostak’s algorithm, it is sufficient to
have disequalities canonized and rewritten by ground canonical systems
induced by equalities. However, for simplicity, we can also treat them
(i.e., solve them) in the same manner as equalities. Since a solved equal-
ity can be replaced by a conjunction of equalities, a solved disequality
can be replaced by a disjunction of disequalities. Thus we have to iterate
the procedure from Step 1.

EXAMPLE 13. Let

z = f(x+ (−1) · y) ∧ x = y + z → y + f(f(z)) = x

be the formula we need to prove [43]. It belongs to the combination of
equational real linear arithmetic and the pure theory of equality over the
signature ({f}, ∅) (denoted E). Its negation is z = f(x+(−1) · y)∧x =
y+ z∧¬(y+f(f(z)) = x), and we need to show that it is unsatisfiable.
For simplicity, we omit applications of rules that are unsuccessful or
don’t have any effect:
{z = f(x+ (−1) · y), x = y + z,¬(y + f(f(z)) = x)}
⇔ccc

{f(x+ (−1) · y) = z, y + z = x,¬(y + f(f(z))) = x)}
⇔absp+(pra,E)

{f(v1) = z, x+(−1) · y = v1, z+ y = x,¬(y+ v0 = x), f(f(z)) = v0}
⇔entail(solve,pra)

{f(v1) = z, x+(−1)·y = v1, z+y = x,¬(v0 = x+(−1)·y), f(f(z)) =
v0}
⇔repl

{f((z + y) + (−1) · y) = z,¬(f(f(z)) = (z + y) + (−1) · y)}
⇔absp+(pra,E)

{f(v1) = z, (z + y) + (−1) · y = v1,¬(f(f(z)) = v0), v0 = (z + y) +
(−1) · y}

gs.tex; 20/03/2002; 18:59; p.32



33

⇔entail(solve,pra)

{f(v1) = z, (z + y) + (−1) · y = v1,¬(f(f(z)) = v0), v0 = z}
⇔repl

{f((z + y) + (−1) · y) = z,¬(f(f(z)) = z)}
⇔absp+(pra,E)

{f(v0) = z, (z + y) + (−1) · y = v0,¬(f(f(z)) = z)}
⇔entail(solve,pra)

{f(v0) = z, z = v0,¬(f(f(z)) = z)}
⇔repl

{f(z) = z,¬(f(f(z)) = z)}
⇔ccc

⊥

In Shostak’s original paper [43] and in some of the papers on it [19]
there were proofs that Shostak’s procedure terminates and that it re-
turns ⊥ if and only if the input formula is unsatisfiable. However, Rueß
and Shankar recently showed [42] that all those proofs were flawed
and that Shostak’s procedure and all its published variants [19, 7, 9]
are incomplete and can even be nonterminating.20 The above Shostak-
style procedure terminates for the conjecture for which the original
procedure loops. However, termination of the above procedure is yet to
be formally explored or proved. The above procedure is sound (because
all macro inference rules are sound), and, like the original Shostak
algorithm, it is incomplete.21

THEOREM 4. If Ti (1 ≤ i ≤ k) are algebraically solvable quantifier-
free σ-theories, the above Shostak-style procedure is sound; that is, it
returns ⊥ only if ¬F is unsatisfiable (i.e., if F is valid).

In this paper we won’t try to mimic the recent variants of Shostak’s
procedure proposed in [42, 8].

5.3. Reasoning about Numbers in Tecton

There is a description of the reasoning about numbers in Tecton [27,
29] with three procedures based on Presburger arithmetic. Theories
pna and pia are also considered, but we will discuss only the variant

20 Rueß and Shankar in [42] give a simple example for incompleteness of Shostak’s
algorithm: The conjunction f(v − 1) − 1 = v + 1, f(u) + 1 = u − 1, u + 1 = v is
unsatisfiable, but it cannot be established by Shostak’s algorithm. Moreover, it loops
for the following input conjunction: f(v) = v, f(u) = u− 1, u = v.

21 The Shostak-style procedure presented here also cannot prove the unsatisfiabil-
ity of the conjunction f(v − 1) − 1 = v + 1, f(u) + 1 = u − 1, u + 1 = v (and with
the analogous explanation as for the original procedure).

gs.tex; 20/03/2002; 18:59; p.33



34

for Presburger rational arithmetic (pra). The pure theory of equality
is denoted by E . As in the original paper, only quantifier-free formulae
are considered. Simplification of pra terms is used, and it is similar
to the simplification based on Shostak’s canonizers (the corresponding
simplification is not described explicitly in the original papers). We
discuss all three procedures for pra proposed in [27], but we focus on
the third procedure, which uses lemmas as additional rules.

5.3.1. Presburger Rational Arithmetic with Uninterpreted Symbols
Let F be a formula of quantifier-free Presburger rational arithmetic
with uninterpreted symbols. The procedure is as follows (¬F is its
input):

1. Apply ⇔dnf .

2. Apply ⇔split.

3. Apply ⇔simpl(pra).

4. Apply ⇔ccc.

5. Apply ⇔absp+(pra,E).

6. Apply ⇔unsat(pra).

7. Apply ⇔entail+(impl−eqs,pra); if successful, go to Step 1.

8. Apply ⇒entail−(Fourier,pra).

9. Go to Step 1.

The original procedure is a decision procedure for pra with the
pure theory of equality [27]. Note that in Step 9 we have to jump to
Step 1 (instead to Step 3) because variable elimination may introduce
disjunctions. In the case of the theory pra, disjunctions may be intro-
duced by a variable elimination if there are disequalities in a formula
being proved. In the original procedure [27] all disequalities are removed
in the beginning (before transforming into disjunctive normal form).
We made this slight modification of the original procedure because
we intend to formulate the procedures from [27] in such a way that
they can be easily formulated for some other theory and some other
underlying decision procedure (and in some cases introduction of dis-
junctions by a variable elimination might not be avoidable). Similarly,
the rule ⇔entail+(impl−eqs,T ), when applied to a nonconvex theory T ,
may introduce disjunctions of equalities, so after Step 7, in a general
case, we have to jump to Step 1 (instead to Step 3). The theory pra

gs.tex; 20/03/2002; 18:59; p.34



35

is convex, the rule ⇔entail+(impl−eqs,T ) does not introduce disjunctions,
and in this special case we can jump to step 3 after step 7. The same
explanation applies to the following procedures as well.

5.3.2. Presburger Rational Arithmetic and Admissible Rewrite
Systems

LetR be an admissible rewrite system. Let F be a formula of quantifier-
free Presburger rational arithmetic with uninterpreted symbols and
with the quantifier-free theory of R. The procedure is as follows (¬F
is its input):

1. Apply ⇔dnf .

2. Apply ⇔split.

3. Apply ⇔simpl(pra).

4. Apply ⇔ccc.

5. Apply ⇔absp+(pra,E).

6. Apply ⇔unsat(pra).

7. Apply ⇔superpose(R); if successful, go to Step 3.

8. Apply ⇔entail+(impl−eqs,pra); if successful, go to Step 1.

9. Apply ⇒entail−(Fourier,pra).

10. Go to Step 1.

The original procedure is a decision procedure for pra with the pure
theory of equality and with interpreted functional symbols axiomatized
by an admissible rewrite system [27].

5.3.3. Presburger Rational Arithmetic with Conditional Rewrite Rules
Let T be the combination of pra and the pure theory of equality
E , extended by L (while the signature of E includes all function and
predicate symbols from pra and L). Let F be a quantifier-free formula
of the theory T . The procedure is as follows (¬F is its input):

1. Apply ⇔dnf .

2. Apply ⇔split.

3. Apply ⇔absp+(pra,L).

4. Apply ⇔simpl(pra).

gs.tex; 20/03/2002; 18:59; p.35



36

5. Apply ⇔ccc.

6. Apply ⇔unsat(pra).

7. Apply ⇔entail(Fourier,pra); if successful, go to Step 1.

8. Apply ⇔entail+(impl−eqs,pra); if successful, go to Step 1.

9. Apply ⇒lemma+(L,pra).

10. Go to Step 1.

If the above procedure returns ⊥, the formula ¬F is unsatisfiable
and F is valid [27]. However, the above procedure is not complete
and it can also return > even if the formula ¬F is unsatisfiable (it
might be the case when ¬F ⇒∗ > and not ¬F ⇔∗ >; recall that in
these situations it is unknown whether ¬F is valid or invalid). This
is typical for augmentation schemes, and these schemes typically are
not decision procedures themselves. However, it is not considered as a
severe weakness, since these schemes are intended for use in undecidable
theories; they try to extend the realm of a decision procedure. The
above procedure slightly differs from the original one in the lemma-
invoking mechanism: even if there is no lemma that involves a maximal
term, the above procedure still goes on and does not declare failure
(see Section 4.10).

Note that the orderings used in ⇔ccc and in ⇒lemma+(L,T1,T2,...,Tj)

rules do not necessarily need to be the same.
Assuming that in the ordering ≺ used in ⇔ccc that t ≺ x does not

hold, where x is any variable and t is any compound term (for instance,
the total ordering for ground terms can be based on size of terms and
their alphabetical ordering), the rule ⇔ccc (applied after ⇔absp+(pra,L))
does not introduce alien terms (with respect to pra).

EXAMPLE 14. Let L is {p(x) → f(x) ≤ g(x), max(x, y) = x →
min(x, y) = y}, and let the signature of E is ({f, g,min,max}, {p}).
Let

p(a)∧l ≤ f(max(a, b))∧0 < min(a, b)∧a ≤ max(a, b)∧max(a, b) ≤ a→

l < g(a) + b

is a formula we want to prove [27]. We have to show that its negation
is unsatisfiable. For simplicity, we omit applications of rules that are
unsuccessful or don’t have any effect:
p(a)∧l ≤ f(max(a, b))∧0 < min(a, b)∧a ≤ max(a, b)∧max(a, b) ≤

a ∧ ¬(l < g(a) + b)

gs.tex; 20/03/2002; 18:59; p.36



37

⇔absp+(pra,L)

{p(a), l ≤ v0, f(max(a, b)) = v0, 0 < v1,min(a, b) = v1, a ≤ v2,max(a, b) =
v2, v2 ≤ a,¬(l < v4 + b), g(a) = v4}
⇔simpl(pra)

{p(a), l ≤ v0, f(max(a, b)) = v0, 1 ≤ v1,min(a, b) = v1, a ≤ v2,max(a, b) =
v2, v2 ≤ a,¬(((−1) · v4 + 1) + l ≤ b), g(a) = v4}
⇔ccc

{p(a), l ≤ v0, f(v2) = v0, 1 ≤ v1,min(a, b) = v1, a ≤ v2,max(a, b) =
v2, v2 ≤ a,¬(((−1) · v4 + 1) + l ≤ b), g(a) = v4}
⇔entail(Fourier,pra) (eliminated: l)
{p(a), f(v2) = v0, 0 ≤ v1 + (−1),min(a, b) = v1, 0 ≤ a + (−1) ·

v2,max(a, b) = v2, 0 ≤ v2 + (−1) · a, g(a) = v4, v4 + b ≤ v0}
⇔simpl(pra)

{p(a), f(v2) = v0, 1 ≤ v1,min(a, b) = v1, v2 ≤ a,max(a, b) = v2, a ≤
v2, g(a) = v4, b ≤ v0 + (−1) · v4}
⇔entail+(impl−eqs,pra)

{p(a), f(v2) = v0, 1 ≤ v1,min(a, b) = v1, v2 ≤ a,max(a, b) = v2, a ≤
v2, g(a) = v4, b ≤ v0 + (−1) · v4, v2 = a}
⇔ccc

{p(a), f(a) = v0, 1 ≤ v1,min(a, b) = v1, a ≤ a,max(a, b) = a, a ≤
a, g(a) = v4, b ≤ v0 + (−1) · v4, v2 = a}
⇔entail(Fourier,pra) (eliminated: v2)
{p(a), f(a) = v0, 0 ≤ v1+(−1),min(a, b) = v1,max(a, b) = a, g(a) =

v4, 0 ≤ v0 + (−1) · v4) + (−1) · b, a = a}
⇔simpl(pra)

{p(a), f(a) = v0, 1 ≤ v1,min(a, b) = v1,max(a, b) = a, g(a) =
v4, b ≤ v0 + (−1) · v4)}
⇒lemma+(L,pra) (lemma: p(x) → f(x) ≤ g(x))
{p(a), v0 = v0, 1 ≤ v1,min(a, b) = v1,max(a, b) = a, g(a) = v4, b ≤

v0 + (−1) · v4), p(a) → v0 ≤ g(a)}

case 1: {p(a), v0 = v0, 1 ≤ v1,min(a, b) = v1,max(a, b) = a, g(a) =
v4, b ≤ v0 + (−1) · v4),¬p(a)}

⇔simpl(pra)

⊥

case 2: {p(a), v0 = v0, 1 ≤ v1,min(a, b) = v1,max(a, b) = a, g(a) =
v4, b ≤ v0 + (−1) · v4), v0 ≤ g(a)}

⇔absp+(pra,L)

{p(a), v0 = v0, 1 ≤ v1,min(a, b) = v1,max(a, b) = a, g(a) =
v4, b ≤ v0 + (−1) · v4), v0 ≤ v5, g(a) = v5}

⇔simpl(pra)

gs.tex; 20/03/2002; 18:59; p.37



38

{p(a), 1 ≤ v1,min(a, b) = v1,max(a, b) = a, g(a) = v4, b ≤ v0 +
(−1) · v4), v0 ≤ v5, g(a) = v5}

⇔ccc

{p(a), 1 ≤ v1,min(a, b) = v1,max(a, b) = a, g(a) = v4, b ≤ v0 +
(−1) · v4), v0 ≤ v5, v5 = v4}

⇔entail(Fourier,pra) (eliminated: v0)

{p(a), 0 ≤ v1 + (−1),min(a, b) = v1,max(a, b) = a, g(a) = v4, b ≤
0, 0 = v4 + (−1) · v5}

⇔simpl(pra)

{p(a), 1 ≤ v1,min(a, b) = v1,max(a, b) = a, b ≤ 0}

⇒lemma+(L,pra) (eliminated: p(a))

{>, 1 ≤ v1,min(a, b) = v1,max(a, b) = a, b ≤ 0}

⇔simpl(pra)

{1 ≤ v1,min(a, b) = v1,max(a, b) = a, b ≤ 0}

⇒lemma+(L,pra) (lemma: max(x, y) = x→ min(x, y) = y)

{1 ≤ v1, v1 = v1,max(a, b) = a, b ≤ 0,max(a, b) = a→ v1 = b}

case 2.1: {1 ≤ v1, v1 = v1,max(a, b) = a, b ≤ 0,¬max(a, b) = a}

⇔simpl(pra)

⊥

case 2.2: {1 ≤ v1, v1 = v1,max(a, b) = a, b ≤ 0, v1 = b}

⇔simpl(pra)

{1 ≤ v1,max(a, b) = a, b ≤ 0, v1 = b}

⇔ccc

{1 ≤ b,max(a, b) = a, b ≤ 0, v1 = b, }

⇔unsat(pra)

⊥

⇔split

⊥

⇔split

⊥

THEOREM 5. The above Tecton-style procedure is terminating and
sound.

gs.tex; 20/03/2002; 18:59; p.38



39

Proof. We assume that in the ordering ≺ used in ⇔ccc it does not hold
t ≺ x, where x is any variable and t is any compound term. In that
case, the rule ⇔ccc does not introduce new alien terms. Moreover, none
of the rules from Steps 1 to 8 introduce new alien terms or introduce
new variables (except the rule ⇔absp+(pra,L), when first applied within
the block of steps from 1 to 8). Each of these rules always terminates.
In addition, the rule ⇔entail(Fourier,pra), when applicable, eliminates at
least one variable, so it cannot be applied an infinite number of times.
A similar argument holds for the rule ⇔entail+(impl−eqs,pra) so it cannot
be applied an infinite number of times either. Therefore, the block of
steps from 1 to 8 always terminates (either by returning the result of
the procedure or by moving to Step 9). If the lemma rule is successfully
applied, it eliminates the maximal alien term (w.r.t. pra) according to
the used reduction ordering ≺ (and all newly introduced alien terms
are less then it w.r.t. ≺). Since ≺ is a well-founded relation, there does
not exist an infinite chain of such formulae, and therefore the procedure
terminates.

All macro inference rules used in the above Tecton-style procedure
are sound, and so the procedure is sound. Therefore, if it returns⊥, then
¬F is unsatisfiable, and the original formula F is valid. Additionally,
if it returns > by ⇔∗ (i.e., if the lemma rule is not used), then the
original formula F is invalid (as pra is consistent).

In addition, the above procedure is complete for the formulae be-
longing to pra extended with the pure theory of equality.

Note that Presburger arithmetic in the above scheme can be re-
placed by any other decidable theory (given needed primitive proce-
dures for detecting unsatisfiability, and the like), for instance, by strict
multiplication arithmetic.

The above scheme corresponds to constraint contextual rewriting
instantiated by combination of linear arithmetic and theory of ground
equalities (denoted CCR(DPlacc) in [1]).

5.4. Extended Proof Method

In [25] there is a description of the framework for the flexible augmen-
tation of decision procedures. This framework can be used for different
theories and for different decision procedures. It is based on quantifier
elimination decision procedures, and new decision procedures can be
simply “plugged in” to the system. Let T1 be a theory that admits a
quantifier elimination, and let T be its conservative extension,22 deter-

22 We require that T be a conservative extension of T1. If T1 is complete, then this
condition is trivially fulfilled.

gs.tex; 20/03/2002; 18:59; p.39



40

mined by a set L. Let A be an algorithm for quantifier elimination for
T1. Let F be a formula of the background theory T to be proved. The
extended proof method style scheme is as follows (¬F is its input):

1. Apply ⇔dnf .

2. Apply ⇔split.

3. Apply ⇔simpl(pra).

4. Apply ⇔unsat(T1); if not successful (i.e., if the rule ⇔unsat(T1) fails
to prove the unsatisfiability), then if a current formula belongs to
the theory T1, return >; otherwise go to next step.

5. Apply⇔absp+(T1,L), then⇔entail(A,T1), and then ⇔repl; if successful,
go to Step 1.

6. Apply ⇒lemma+(L,T1).

7. Go to Step 1.

In the rule ⇔repl, abstraction variables are replaced first. Note that
the rule ⇔entail(A,T1) may introduce disjunctions (for instance, for A =
Cooper), so we (generally) need to jump to Step 1 (instead of to Step 3)
after Step 5.

If the above procedure returns ⊥, the original formula F is valid; if
T1 is consistent, if the procedure returns > and Step 6 has not been
applied, then the original formula F is invalid [25]. However, the proce-
dure is not complete, and it can also return > if the original formula F
is valid, failing to prove it. These situations arise when ¬F ⇒∗ >, but
not ¬F ⇔∗ >, that is, in situations when the above procedure returns
> and the lemma rule has not been applied. In these situations, the
procedure can return unknown as a result.

The above procedure (or, rather, scheme) is different from the origi-
nal version [25] in several points, including in the restrictions on lemma
invoking. Additionally, in the original version of the procedure, equal-
ity reasoning is performed on the basis of using substitutivity axions
as additional rewrite rules/lemmas. In the above scheme, the weak
point is the reasoning about equalities (which can be easily improved
within our general setting by adding the rule ⇔ccc). However, the weak
reasoning about equalities makes the above procedure more efficient
than, say, the one described in Section 5.3.3 on problems in which
equality reasoning is not needed or not helpful. The above procedure
also slightly differs from the original one as in the original procedure
the maximal term is eliminated within the lemma invoking mechanism

gs.tex; 20/03/2002; 18:59; p.40



41

(which is introduced there) by a variable elimination procedure. The
original procedure deals with quantifier-free formulae with arbitrary
structure and does not transforms it into disjunctive normal form.

EXAMPLE 15. Let T be pra extended by L = {minl(x) ≤ maxl(x)}.
Let

l ≤ minl(α)) ∧ 0 < k → ¬(maxl(α) + k ≤ l)

is a formula we want to prove [11, 25]. We have to show that its
negation is unsatisfiable. In the instanced extended proof method for
pra we use Hodes’ algorithm as algorithm A. We omit applications of
rules that are unsuccessful or don’t have any effect:
{l ≤ minl(α)), 0 < k,maxl(α) + k ≤ l}
⇔simpl(pra)

{l ≤ minl(α), 1 ≤ k,maxl(α) + k ≤ l}
⇔absp+(pra,L), ⇔entail(Hodes,pra) (eliminated: k), ⇔repl

{0 ≤ minl(α) + (−1) · l, 1 ≤ l + (−1) ·maxl(α)}
⇔absp+(pra,L), ⇔entail(Hodes,pra) (eliminated: l), ⇔repl

{maxl(α) + 1 ≤ minl(α)}
⇒lemma+(L,pra) (lemma: minl(x) ≤ maxl(x))
{v1 + 1 ≤ minl(α),minl(α) ≤ v1, v1 = v1}
⇔absp+(pra,L), ⇔entail(Hodes,pra) (eliminated: v1), ⇔repl

{minl(α) ≤ minl(α) + (−1)}
⇒lemma+(L,pra) (eliminated: minl(α))
{v0 ≤ v0 + (−1)}
⇔unsat(pra)

⊥

THEOREM 6. The above epm-style procedure is terminating and sound.

Proof. In the above procedure, if Step 5 is successfully applied, it leaves
no abstraction variables introduced by ⇔absp+(T1,L) (as abstraction
variables are replaced first) and at least one other variable is eliminated;
hence, the formula passed to Step 1 has fewer variables than one in the
previous iteration. If Step 6 is successfully applied, it eliminates the
maximal alien term (w.r.t. T1) according to the used reduction ordering
≺. Thus, in each iteration, the current formula is transformed into a
formula (or, by an intermediate rules ⇔dnf and ⇔split, into a set of
formulae) either with the maximal term no greater (with respect to ≺)
than in the original formula or with fewer variables. Since ≺ is a well-
founded relation, there does not exist an infinite chain of such formulae,
and therefore the procedure terminates.

All macro inference rules used in the above epm-style procedure are
sound, and so the procedure is sound. Additionally, if T1 is consistent, if

gs.tex; 20/03/2002; 18:59; p.41



42

the procedure returns > and if the rule ⇒lemma+(L,T1) was not used, it
means that ¬F ⇔∗ > (as all other rules are unsatisfiability preserving),
that is, F is invalid.

In addition, the above procedure is complete for the formulae be-
longing to the theory T1. If the equality axioms are also used as lemmas,
then the above procedure is a decision procedure for formulae belonging
to theory T1 extended with the pure theory of equality.

6. Strict General Setting

Merged with each other, different schemes implemented within the
proposed general setting have similar structures. Moreover, some slight
changes can be made in order to have these structures clearly compara-
ble in the sense that similar rules are in the same or similar positions.
For this reason, we impose a fixed ordering on the macro inference rules.
This ordering leads to a strict general setting (sgs) for building deci-
sion procedures into theorem provers.23 A combination/augmentation
scheme is, within the sgs framework, simply created by choosing and
(de)activating certain rules at their fixed positions. The ordering on
the rules is as given in Table I (we also include “Go to start” into the
set of the rules). All schemes within the sgs framework are represented
uniformly, by sequences of the macro inference rules used (i.e., by a
corresponding sequence of 0s and 1s). In addition, some rules (entail-
ment rules) have to be instantiated by specific underlying algorithms.
For some schemes and some rules, if the rule fails, the scheme has to
return >; for some schemes and some rules, if the rule is successful,
a control has to go to the start of the scheme. For instance, if we
use the Nelson-Oppen-style entailment (⇔entail+(NO,Ti)), if the rule
has to return > when unsuccessful, and if the rule does not lead to
a start of a scheme when successful, then we denote these additional
parameters in the following way: (NO; 1; 0). We omit these additional
parameters if they have default values (the default values are (/; 0; 0)).
For instance, the Shostak-style scheme is represented in the following
way: 11101000100001(solve; 1; 0)0000101. Table I gives representations
of several combination/augmentation schemes: schemes made in the
style of Nelson and Oppen, Shostak, Tecton (we discuss only one
procedure from [27], one concerning pra) and epm procedures (note
that these representations differs lightly from the schemes described in
the preceding section). Note that it is sensible to use only one variant of

23 This extension to the general setting has been presented as a short paper at
IJCAR-2001 [24].

gs.tex; 20/03/2002; 18:59; p.42



43

Table I. Descriptions of some combination/augmentation schemes within the sgs framework. Background
theories are combinations of T1, T2, . . . , Tk (extended by L for the Tecton style and the epm style
procedure).

# Rule N-O Style Shostak Style Tecton Style epm Style

1. ⇔dnf

√ √ √ √

2. ⇔split

√ √ √ √

3a. ⇔simpl

√

3b. ⇔simpl(T1 ,T2,...,Tk)

√ √

4. ⇔ccc

√ √

5a. ⇒abs(T1,T2,...,Tk)

5b. ⇔abs+(T1,T2,...,Tk)

5c. ⇔absp+(T1,T2,...,Tk)

√

5d. ⇔absp+(T1,T2,...,Tk ,E)

√

5e. ⇔absp+(T1,T2,...,Tk ,L)

√

5f. ⇔absp+(T1,T2,...,Tk ,L,E)

√

6. ⇔unsat(Ti) (i = 1, . . . , k)
√ √ √

7. ⇔superpose(R)

8a. ⇔entail(A,Ti) (i = 1, . . . , k)
√

(solve; 1; 0)
√

(Fourier; 0; 1)
√

(A; 0; 0)

8b. ⇒entail(A,Ti) (i = 1, . . . , k)

8c. ⇔entail+(A,Ti)
(i = 1, . . . , k)

√
(NO; 1; 0)

√
(impl−eqs; 0; 1)

8d. ⇒entail−(A,Ti)
(i = 1, . . . , k)

9a. ⇔repl=
√

9b. ⇔repl

√ √

10. ⇔lemma+(L,T1,T2,...,Tk)

√ √

11. Go to start
√ √ √ √

the abstraction rule, only one variant of the simplification and only one
variant of the replacement in one scheme. However, it may be sensible
to use more variants of the entailment rule (as in Tecton).

A combination/augmentation scheme is additionally specified by a
set {T1, T2, . . . , Tk} of underlying theories. In the Nelson-Oppen-style
scheme, the background theory is a combination of the underlying
theories. In the Shostak-style schemes, the background theory is the
combination of the underlying theories and the pure theory of equality
(E). In the Tecton style scheme, k = 1, and the background theory
is a conservative extension (given by L) of the combination of T1 (that
is, pra) and E . In the epm-style scheme, k = 1, and the background
theory is a conservative extension (given by L) of T1, where T1 is a
theory that admits quantifier elimination (e.g., pra, pia) and A is
a quantifier elimination procedure for T1 (e.g., Hodes’ procedure for

gs.tex; 20/03/2002; 18:59; p.43



44

pra). If in the epm-style scheme a procedure that does not preserve
unsatisfiability is used (e.g., Hodes’ procedure for pia), then we choose
the rule ⇒entail(A,Ti) (8b) instead of ⇔entail(A,Ti) (8a).

Instead of a number of implemented combination/augmentation sche-
mes, within the sgs framework there is only one metascheme. It is
parameterized by a specification for a scheme and by a set of underlying
theories. There are no scheme-specific parts built-in or invoked from the
metascheme. It is easy to create or modify one scheme and to combine
ideas from two schemes.

The set of theories can be determined for each conjecture by a sig-
natures library mechanism. This mechanism, for instance, could try to
find a (small) set of available theories such that a conjecture belongs
to their combination; if for each of them there is the Nelson-Oppen-
style entailment available, then the Nelson-Oppen-style scheme can be
applied. Similarly, this mechanism could try to find if a conjecture be-
longs to an extension of some theory that admits quantifier elimination,
while there is a corresponding quantifier elimination procedure avail-
able, and the extension is given by some additional rules and lemmas;
if so, the epm-style procedure can be applied. The ordering of schemes
can be adjusted according to different criteria (for certain theories, the
Nelson/Oppen style scheme is complete, but, for instance, the Tecton
style scheme is often more efficient).

7. Prototype Implementation and Results

We have implemented the macro inference rules described in the pre-
ceding sections. We implemented the ⇔ccc rule on the basis of Nelson-
Oppen congruence closure algorithm24 [38] and in the way described
in Section 4.8. We implemented the required instances of inference
rules for the pure theory of equality, the theory of lists with car,
cdr, cons, and theories pra, pia, pna. Checking unsatisfiability for
the pure theory of equality is based on the constant congruence al-
gorithm. Checking unsatisfiability for the theory of lists is based on
the rewrite system described in Example 8. Checking unsatisfiability
for pra, pia, and pna is based on Hodes’ and Cooper’s procedures.
Nelson and Oppen’s entailment is implemented on the basis of the
connection: f ⇔entail+(NO,Ti) f ∪ {x = y} if and only if f ∪ {¬(x =
y)} ⇔unsat(Ti) ⊥. There is a implementation of a solver for equational

24 The first, preliminary tests show that a constant congruence algorithm does not
take much of the overall cpu time taken by specific schemes, so we preliminarily use
Nelson and Oppen’s algorithm, which is simpler than the (more efficient) one due
to Shostak.

gs.tex; 20/03/2002; 18:59; p.44



45

real linear arithmetic. For the elimination of variables, we have im-
plemented Hodes’ procedure for pra (and we use it for pia and pna
as sound, but incomplete procedure) and Cooper’s procedure for pia
(and we also adapted in for pna); thus, we have implemented the
following rules: ⇔entail(Hodes,pra), ⇒entail(Hodes,pia), ⇒entail(Hodes,pna),
⇔entail(Cooper,pia),⇔entail(Cooper,pna). For simplicity, we use⇒entail+(NO,Ti)

instead of ⇒entail+(impl−eqs,pra) and we use ⇔entail(Hodes,pra) instead of

⇔entail(Fourier,pra).
25

We have implemented the proposed general setting in swi Prolog
and within the Clam proof-planning system [15] (we used its built-
in recursive path ordering with status). For the sake of efficiency, we
have implemented all macro inference rules as new predicates in the
method language (instead of as methods). Within this setting, it was
easy to implement the schemes for combining and augmenting decision
procedures discussed in Section 5. Some results (obtained on examples
from the literature) are given in Table II and Table III (by “Scheme:
Tecton” we mean the scheme described in Section 5.3.3).26 Table II
shows experimental results on examples worked in Section 5. We have
also implemented the sgs system and the experimental results were
virtually the same as results given in Table III.

Table III presents some experimental comparisons between different
schemes implemented within our setting. Although the Shostak-style
procedure is not implemented by the special data structures and op-
timized as the original procedure was, our experimental results sup-
port previous results on comparison between Nelson and Oppen’s and
Shostak’s schemes; namely, it is observed that Shostak’s scheme is
generally more efficient than the one due to Nelson and Oppen (see
also [19]). Also, it is typically more efficient than the Tecton-style
procedure (when both of them are applicable). Example 6 illustrates
the incompleteness of the original Shostak’s procedure and its variant
implemented within the general setting. Example 7 shows that the
Shostak-style procedure terminates for the conjecture for which the
original procedure loops. In Examples 8, 9, 10, and 11, most of cpu
time spent by the Tecton and epm-style procedures was spent by
the reduction ordering mechanism. The weak point of the epm-style
scheme is equality reasoning (similarly to Boyer and Moore’s linear
arithmetic procedure), and it is shown by the obtained results. Without
the substitutivity axiom used as an additional rewrite rule, it can han-

25 This also demonstrates that the procedures implemented within the presented
general setting can have the scope (although not always their efficiency) of several
different schemes only on the basis of very few underlying procedures.

26 Tests were made on a 433 MHz 64 MB, PC running under Linux. cpu time is
given in seconds. Programs are available upon request to the first author.

gs.tex; 20/03/2002; 18:59; p.45



46

Table II. Results of the schemes for combining/augmenting decision procedures
implemented within the general setting.

1 Scheme: Nelson/Oppen’s

Conjecture: x ≤ y ∧ y ≤ x + car(cons(0, x)) ∧ p(h(x)− h(y)) ∧ ¬p(0)

Theories used: pra, lists, equality with uninterpreted functions

cpu time: 0.58s

2 Scheme: Shostak’s

Conjecture: z = f(x− y) ∧ x = y + z ∧ ¬(y + f(f(z)) = x)

Theories used: equational real linear arithmetic

cpu time: 0.17s

3 Scheme: Tecton

Conjecture: p(a) ∧ l ≤ f(max(a, b)) ∧ 0 < min(a, b) ∧ a ≤ max(a, b)∧
max(a, b) ≤ a ∧ ¬(l < g(a) + b)

Lemma used: p(x)→ f(x) ≤ g(x)

Lemma used: max(x, y) = x→ min(x, y) = y

cpu time: 2.39s

4 Scheme: Extended proof method

Conjecture: l ≤ minl(α) ∧ 0 < k ∧maxl(α) + k ≤ l

Theory used: pra

Procedure A: Hodes’

Lemma used: minl(ξ) ≤ maxl(ξ)

cpu time: 0.14s

dle only very simple conjectures with uninterpreted function symbols
that need equality reasoning (Example 7). In addition, this procedure
failed on Example 8 which needs use of lemmas but also needs stronger
equality reasoning. On the other hand, this procedure was more efficient
on examples in which equality reasoning is not needed or not very
helpful (Examples 9, 10, 11). Table III also illustrates the fact that
for each scheme there are some conjectures for which that scheme is
most successful. In other words, the table illustrates the fact that it
is sensible to have many combination/augmentation schemes available
in one theorem prover and to choose between them on the basis of
some heuristic scores that can be dynamically adjusted according to
theorems already successfully proved (see, for instance, [34]).

All given results serve just as a rough illustration of efficiency of the
combination/augmentation schemes implemented within our general
setting, while further tests on larger corpora are needed.

gs.tex; 20/03/2002; 18:59; p.46



47

Table III. Comparison among the schemes for combining/augmenting decision procedures im-
plemented within the general setting (n/i means “not implemented”; ? means that the scheme
terminated on the conjecture but failed to prove or disprove it; cpu time is given in seconds).

# Conjecture N-O Shostak Tecton epm

1. x ≤ y, y ≤ x + car(cons(0, x)), p(h(x)− h(y)),¬p(0) [37] 0.58 n/i ? ?

2. z = f(x− y), x = y + z,¬(y + f(f(z)) = x) [43] 0.18 0.17 0.40 ?

3. x = y, f(f(f(x))) = f(x),¬(f(f(f(f(f(y))))) = f(x)) [19] 0.01 0.01 0.03 ?

4. y = f(z), x− 2 · y = 0,¬(f(x− y) = f(f(z))) [19] 0.16 0.10 0.14 ?

5. f(x) = 4, f(2 · y − x) = 3, x = f(2 · x− y),

4 · x = 2 · x + 2 · y [19] 0.62 0.17 0.48 ?

6. f(a − 1)− 1 = a + 1, f(b) + 1 = b− 1, b + 1 = a [42] 0.85 ? 0.76 ?

7. f(a) = a, f(b) = b− 1, a = b [42] 0.03 0.02 0.06 0.03

8. p(a), l ≤ f(max(a, b)), 0 < min(a, b), a ≤ max(a, b)

max(a, b) ≤ a,¬(l < g(a) + b) [27]

lemma: p(x) → f(x) ≤ g(x)

lemma: max(x, y) = x → min(x, y) = y ? ? 2.39 ?

9. l ≤ minl(α), 0 < k,maxl(α) + k ≤ l [11]

lemma: minl(ξ) ≤ maxl(ξ) ? ? 0.26 0.14

10. lp + lt ≤ maxint, i ≤ lt,¬(i + δ(pat, lp, c) ≤ maxint) [11]

lemma: δ(x, y, z) ≤ y ? ? 0.34 0.23

11. (ms(c) + (ms(a) ·ms(a)) + ms(b) ·ms(b) <

((ms(c) + (ms(b) ·ms(b))) + (2 · (ms(a) · (ms(a) ·ms(b))))

+(ms(a) · (ms(a) · (ms(a) ·ms(a)))))) [11]

lemma: 0 < i → j < i · j

lemma: 0 < ms(x) ? ? 6.71 5.73

We have also made a prototype implementation of the proposed
general setting within the LambdaClam proof-planning system that is
being developed at the Mathematical Reasoning Group, Division of
Informatics, University of Edinburgh. LambdaClam is a higher-order
version of the Clam system, and it is being implemented in Teyjus
LambdaProlog. We have implemented all macro inference rules and
combination/augmentation scheme as methods but in the backward
reasoning manner (and not in the proof by refutation manner, as pre-
sented in this paper). In this implementation, we use underlying theory-
specific procedures implemented in Prolog as external procedures. This
implementation is less efficient than the implementation within the
Clam system and is still not fully functional (for instance, reduction
ordering is still not available in LambdaClam).

gs.tex; 20/03/2002; 18:59; p.47



48

8. Related Work

The long line of research concerning combining and augmenting deci-
sion procedures is related to the setting described in this paper. Several
systems described in the literature and used in practice were the basis
for introducing the given macro inference rules and/or for the case
study [37, 43, 11, 27, 1]. All mentioned systems introduce specific, new
approaches to the problem and do not give a general, uniform view to
different approaches.

By the setting given in this paper we further develop the idea of
the flexible integration of decision procedures described in [25]. This
work is in spirit also closely related to the work of Armando and
Ranise [1] in the sense that it is based on the idea of describing a
general framework for using decision procedures that can be instan-
tiated by specific theory and specific underlying procedures for that
theory. For instance, constraint contextual rewriting can be instan-
tiated to Boyer-Moore’s integration procedure and to the procedure
used in Tecton. Soundness and termination for constraint contextual
rewriting are proved formally for the abstract scheme when certain
requirements on the rewriting mechanism and the decision procedure
are satisfied [3]. On the other hand, our setting is in spirit related to the
work of Barrett, Dill, and Stump [8], which gives a flexible framework
for cooperating decision procedures.27 In this framework (built on few
abstract primitive methods), the Nelson/Oppen and the Shostak-style
procedures can be implemented, and their correctness (termination,
soundness, and completeness) can be formally proved. The general set-
ting proposed in this paper is more general than approaches proposed
in [1, 25, 8] as it addresses both the problem of combining decision
procedures and the problem of augmenting decision procedures. The
relationship between combination/augmentation schemes discussed in
this paper is illustrated in Figure 1 (contextual rewriting is not a
combination/augmentation scheme but is closely related to them).

Within our general setting we proposed one new lemma-invoking
mechanism and some slight variations. It enables extensions (discussed
in Section 4.10) that enlarge the scope of similar methods [11, 27, 29, 1]
by providing both the possibility of keeping the proving process going
without lemmas and the possibility of using several lemmas at the same
point.

27 The papers [25] and [8], with analogous names (presented at two subsequent
CADEs) and similar in spirit, are parallel in two research lines – in cooperating and
augmenting decision procedures.

gs.tex; 20/03/2002; 18:59; p.48



49

schemes for combining and augmenting decision procedures

combination schemes augmentation schemes

schemes based on deduc-
ing implicit equalities

schemes based on
congruence closure

Nelson/Oppen,
1979. [37]

Nelson/Oppen,
1980. [38]

Shostak,
1984. [43]

Boyer/Moore,
1988. [11]

contextual
rewriting [47]

Kapur/Nie,
1994. [27]

Armando/Ranise,
1998. [1]

Barrett/Dill/Stump,
2000. [8]

GS

SGS

Janičić/Bundy/Green,
1999. [25]

Figure 1. Schemes for combining and augmenting decision procedures and their
relationship.

9. Future Work

In future work we are planning to further investigate different ap-
proaches (and their variants) for combining and augmenting decision
procedures and their properties. We will investigate possibilities for
generic proving of termination of different schemes implemented within
the (s)gs framework. Such an extension of the framework would be
based on some further properties imposed on all rules; it would serve
as a basis for some well-founded ordering of formulae and, we hope,
lead to a generic termination proof for a class of schemes. Proving
completeness for several schemes at the same time also seems to be a
very interesting and a very difficult problem. We will try to investigate
whether each gs scheme can be represented as an sgs scheme and
whether each gs proof can be normalized into some sgs proof (that

gs.tex; 20/03/2002; 18:59; p.49



50

is, whether the sgs framework has the same expressiveness as the gs
framework).

We will look at possibilities for fully formally describing the proposed
macro inference rules and for precise relationships between them and
some calculi (such as the calculi discussed in [48, 4, 5]) or some other
specific inference rules (such as discussed in [49, 10, 47]). We will try
to modularize the entail rule, the rule that has an essential role in all
combination/augmentation schemes.

We will investigate possibilities for making (s)gs schemes that com-
bine scopes of some other schemes; that is, we will investigate pos-
sibilities for combining the scopes of the schemes described in this
paper. There might be difficulties in achieving this as those schemes
are defined for different classes of theories. We will also investigate
possibilities for automatic generation of different instantiations of the
specific macro inference rules. We will try to make a mechanism that for
a new theory, recognizes relevant available rewrite rules and uses them
in implementing specific macro inference rules for that theory, such
as simplification and quantifier elimination. That approach follows the
ideas from [14].

We will try to extend the proposed setting to many-sorted logic
and over the quantifier-free fragment. Also, we will try to refine the
lemma-invoking mechanism in situations in which there is no reduction
ordering available or additional rules cannot be oriented.

We are planning to investigate and use more efficient versions of
specific macro inference rules (such as congruence closure procedure or
procedures for Presburger arithmetic). More efficient versions of macro
inference rule would lead to much improved performances of schemes
implemented within the proposed general setting.

We are planning to use and further improve the prototype imple-
mentation. We believe that the proof-planning paradigm [13, 12] is a
convenient environment for such a flexible implementation and each
macro inference rule can correspond to a method (while in the prelim-
inary implementations in the Clam system the macro inference rules
are represented as new predicates in the method language). The macro
inference rules implemented as methods would serve as a basis for
building different supermethods for combining and augmenting deci-
sion procedures. Theories would be represented by their signatures, by
their properties (e.g., convex, σ-theory, admits quantifier elimination),
and by available primitive procedures (e.g., checking unsatisfiability,
solve, variable elimination); applicability of some supermethod (some
combination/augmentation scheme) would be interpreted in terms of
available theories and would be handled by a supersupermethod respon-
sible for the use of decision procedures. Grammar library mechanisms

gs.tex; 20/03/2002; 18:59; p.50



51

would check the applicability of each scheme by checking the available
theories and would determine the set of combined theories (as a pa-
rameter for the scheme). If more than one scheme or supermethod is
applicable, they would be ordered by some heuristic scores that would
be dynamically adjusted according to theorems already proved.

10. Conclusions

In this paper we presented a general setting for describing and imple-
menting different schemes for both combining and augmenting decision
procedures. This setting is based on the macro inference rules used
in approaches known from the literature. Some of them are abstrac-
tion, entailment, congruence closure, and lemma invoking. Some of
the rules are generic (for instance, ⇔ccc and ⇔repl), while some are
theory-specific. Some of the theory-specific rules use only information
about signatures of combined theories (like the abstraction rules), while
some rules use deeper theory-specific knowledge (like ⇔simpl(T1,T2,...,Tk),
⇔unsat(Ti), and the entailment rules). Only the rule ⇔unsat(Ti) uses
decision procedures as black boxes, while ⇔simpl(T1,T2,...,Tk) and the
entailment rules use some functionalities of decision procedures, such
as simplification of terms, deducing implicit equalities, and elimination
of variables.

Using the proposed setting, we described several procedures for both
combining and augmenting decision procedures, including Shostak’s,
Nelson and Oppen’s, and the approach used in the Tecton system.
These descriptions do not fully reflect all aspects of these approaches
but have their scopes (although not always their efficiency). The general
setting gives key ideas of one combination/augmentation scheme and
makes different schemes comparable. The strict general setting (sgs)
provides a way of implementing and using a number of schemes in
a uniform way. All macro inference rules are sound, and, therefore,
all schemes implemented within our general setting are sound. All
macro inference rules are terminating, but termination of different
combination/augmentation schemes has to be proved separately. For
some of these schemes it can be proved they are complete (e.g., for the
Nelson-Oppen-style scheme).

Concerning efficiency, procedures obtained in this way (in this set-
ting) would be less efficient than some tightly integrated procedures,
but we believe that gains from the flexibility would overcome the po-
tential losses in efficiency. In some schemes, ground completion is per-
formed in each iteration, and there is no store for rewriting rules in-
duced by current equalities; on the one side this makes these schemes

gs.tex; 20/03/2002; 18:59; p.51



52

flexible, but on the other side it decreases their efficiency. However,
ground completion can be performed in O(n2) or in O(n log n) time
[26, 9], and this computational time is dominated by, say, variable
elimination or similar steps (which may be of the exponential or of
the superexponential complexity). The situation is similar for other
rules that are performed less restrictively than in the original schemes,
and we believe that these losses in efficiency in the schemes imple-
mented within the proposed setting are not significant. We believe that
the proposed setting provides a good balance between flexibility and
efficiency.

The key features of the proposed approach are the following:

− Proofs represented in terms of applications of introduced macro
inference rules are relatively simple and easy to understand.

− Precise descriptions of only a few macro inference rules leads to
precise descriptions of a number of combination/augmentation sche-
mes. This enables formal reasoning about different combination/-
augmentation schemes.

− Within the described setting, different combination/augmentation
schemes share a lot of code (which makes them easier to imple-
ment); at the same time the whole of the setting is built fully
flexible, from independent modules.

− It provides the possibility of having available different schemes
both for combination and augmentation of decision procedures in
a uniform way. If more than one scheme is applicable, they could be
ordered by some heuristic scores that can be dynamically adjusted
according to theorems already successfully proved.

− The setting yields the ability to make experimental comparisons
between different combination/augmentation schemes and the re-
sults would not be contaminated by differences due to program-
ming languages, operating systems, machines, programming skills,
and the like.

− A flexible structure of the schemes implemented within the pro-
posed setting makes possible and easy communication with other
components and strategies of the prover (e.g., induction); the sche-
mes implemented within the setting don’t use or maintain any
special data structures, data bases, constraint stores, and the like,
and the only external device used is a reduction ordering on terms;
after each step of these schemes, a current (sub)goal itself can be
passed to some other proving strategy.

gs.tex; 20/03/2002; 18:59; p.52



53

− Ideas from different schemes for combining and augmenting de-
cision procedures can be easily combined (for instance, Nelson
and Oppen’s algorithm can be easily augmented by the lemma-
invoking mechanism, and the extended proof method can be easily
augmented by the procedure for congruence closure).

− Any scheme implemented within the setting can be based on dif-
ferent underlying procedures for a specific theory (e.g., it can
choose between Hodes’ and Cooper’s procedure for Presburger
arithmetic).

− Any module that corresponds to an inference rule can be improved
or completely changed only if it meets its specification (for in-
stance, congruence closure can be based on Shostak’s instead on
Nelson and Oppen’s algorithm); this can be done without any
consequences to other components of the setting or for some of
its instances. This makes the system fully flexible and, at the
same time, provides an opportunity for improving its efficiency
incrementally.

We have made a prototype implementation of the (s)gs system in
the Clam and LambdaClam systems and successfully proved a number
of conjectures. We are planning to further improve and extend these
implementations.

Acknowledgments

We are grateful to Ian Green, Cesare Tinelli, Silvio Ranise, Žarko
Mijajlović, and Alessandro Armando for inspiring discussions and for
a number of valuable comments on the draft version of this paper.

References

1. Armando, A. and S. Ranise: 1998, ‘Constraint Contextual Rewriting’. In:
Proceedings of the International Workshop on First order Theorem Proving
(FTP’98). Vienna, Austria, pp. 65–75.

2. Armando, A. and S. Ranise: 2000a, ‘A Practical Extension Mechanism
for Decision Procedures’. In: Proceedings of Formal Methods Tools 2000
(FMT’2000).

3. Armando, A. and S. Ranise: 2000b, ‘Termination of Constraint Contextual
Rewriting’. In: Proceedings of 3rd International Workshop on Frontiers of
Combining Systems (FroCoS’2000). Nancy, France, pp. 47–61.

4. Bachmair, L. and H. Ganzinger: 1990, ‘On Restrictions of Ordered Paramodula-
tion with Simplification’. In: Proceedings of the 10th Conference on Automated
Deduction. pp. 427—441.

gs.tex; 20/03/2002; 18:59; p.53



54

5. Bachmair, L. and H. Ganzinger: 1998, ‘Strict Basic Superposition’. In:
C. Kirchner and H. Kirchner (eds.): Proceedings of the 15th Conference on
Automated Deduction.

6. Bachmair, L. and A. Tiwari: 2000, ‘Abstract Congruence Closure and Special-
izations’. In: D. A. MacAllester (ed.): Proceedings of the 17th Conference on
Automated Deduction (CADE-17).

7. Barrett, C., D. Dill, and J. Levitt: 1996, ‘Validity Checking for Combinations
of Theories with Equality’. In: International Conference on Formal Methods
in Computer-Aided Design. pp. 187–201.

8. Barrett, C. W., D. L. Dill, and A. Stump: 2000, ‘A Framework for Cooperating
Decision Procedures’. In: D. A. MacAllester (ed.): Proceedings of the 17th
Conference on Automated Deduction (CADE–17).

9. Bjørner, N. S.: 1998, ‘Integrating decision procedures for temporal verification’.
Ph.D. thesis, Stanford University.

10. Bouhoula, A. and M. Rusinowitch: 1993, ‘Automated Case Analysis in Proof
by Induction’. In: R. Bajcsy (ed.): Proc. 13th Intern. Joint Conference on
Artificial Intelligence (IJCAI ’93). San Mateo, CA.

11. Boyer, R. S. and J. S. Moore: 1988, ‘Integrating Decision Procedures into
Heuristic Theorem Provers: A Case Study of Linear Arithmetic’. In: J. E.
Hayes, J. Richards, and D. Michie (eds.): Machine Intelligence 11. pp. 83–124.

12. Bundy, A.: 1988, ‘The Use of Explicit Plans to Guide Inductive Proofs’. In:
R. Lusk and R. Overbeek (eds.): 9th Conference on Automated Deduction. pp.
111–120. Longer version available from Edinburgh as DAI Research Paper No.
349.

13. Bundy, A.: 1991a, ‘A Science of Reasoning’. In: J.-L. Lassez and G. Plotkin
(eds.): Computational Logic: Essays in Honor of Alan Robinson. pp. 178–198.
Also available from Edinburgh as DAI Research Paper 445.

14. Bundy, A.: 1991b, ‘The Use of Proof Plans for Normalization’. In: R. S. Boyer
(ed.): Essays in Honor of Woody Bledsoe. pp. 149–166. Also available from
Edinburgh as DAI Research Paper No. 513.

15. Bundy, A., F. van Harmelen, C. Horn, and A. Smaill: 1990, ‘The Oyster-
Clam system’. In: M. E. Stickel (ed.): Proceedings of the 10th Conference
on Automated Deduction. pp. 647–648. Also available from Edinburgh as DAI
Research Paper 507.

16. Busatto, R.: 1995, ‘The use of proof planning in normalisation’. Ph.D. thesis,
University of Edinburgh.

17. Cooper, D. C.: 1972, ‘Theorem Proving in Arithmetic Without Multiplication’.
In: B. Meltzer and D. Michie (eds.): Machine Intelligence 7. pp. 91–99.

18. Craigen, D., S. Kromodimoeljo, I. Meisels, B. Pase, and M. Saaltink: 1991,
‘EVES: An Overview’. In: Proceedings of Formal Software Development
Methods (VDM ’91). pp. 389–405.

19. Cyrluk, D., P. Lincoln, and N. Shankar: 1996, ‘On Shostak’s Decision Procedure
for Combinations of Theories’. In: M. A. McRobbie and J. K. Slaney (eds.):
Proceedings of the 13th Conference on Automated Deduction.

20. Dershowitz, N.: 1982, ‘Ordering for term–rewriting systems’. Theoretical
Computer Science 17(3), 279–301.

21. Detlefs, D.: 1996, ‘An Overview of the Extended Static Checking System’. In:
Proceedings of the First Workshop on Formal Methods in Software Practice.
pp. 1–9.

gs.tex; 20/03/2002; 18:59; p.54



55

22. Ehdm: 1993, ‘User Guide for the EHDM Specification Language and Verifi-
cation System, Version 6.1.’. Technical report, Computer Science Laboratory,
SRI International, Menlo Park, CA.

23. Hodes, L.: 1971, ‘Solving Problems by Formula Manipulation in Logic and
Linear Inequalities’. In: Proceedings of the 2nd International Joint Conference
on Artificial Intelligence. Imperial College, London, England.

24. Janičić, P. and A. Bundy: 2001, ‘Strict General Setting for Building Decision
Procedures into Theorem Provers’. In: R. Goré, A. Leitsch, and T. Nip-
kow (eds.): The 1st International Joint Conference on Automated Reasoning
(IJCAR-2001) — Short Papers. pp. 86–95.

25. Janičić, P., A. Bundy, and I. Green: 1999, ‘A Framework for the Flexible
Integration of a Class of Decision Procedures into Theorem Provers’. In: H.
Ganzinger (ed.): Proceedings of the 16th Conference on Automated Deduction
(CADE-16). pp. 127–141.

26. Kapur, D.: 1997, ‘Shostak’s Congruence Closure as Completion’. In: In-
ternational Conference on Rewriting Techniques and Applications, RTA ‘97.
Barcelona, Spain.

27. Kapur, D. and X. Nie: 1994, ‘Reasoning about Numbers in Tecton’. In: Proceed-
ings of 8th International Symposium on Methodologies for Intelligent Systems,
(ISMIS’94). Charlotte, NC, pp. 57–70.

28. Kapur, D. and M. Subramaniam: 1996, ‘Lemma Discovery in Automating
Induction’. In: M. A. McRobbie and J. K. Slaney (eds.): 13th International
Conference on Automated Deduction (CADE-13). pp. 538–552.

29. Kapur, D. and M. Subramaniam: 2000, ‘Using an induction prover for verifying
arithmetic circuits’. Software Tools for Technology Transfer 3(1), 32–65.

30. Kreisel, G. and J. L. Krivine: 1967, Elements of Mathematical Logic: Model
Theory. Amsterdam: North Holland.

31. Lassez, J.-L. and M. Maher: 1992, ‘On Fourier’s algorithm for linear arithmetic
constraints’. Journal of Automated Reasoning 9, 373–379.

32. Luckham, D. C., S. M. German, F. W. Von Henke, R. A. Karp, P. W. Milne,
D. C. Oppen, W. Polak, and W. L. Scherlis: 1979, ‘Stanford Pascal Verifier user
manual’. Technical report. CSD Report STAN-CS-79-731, Stanford University,
Stanford, CA.

33. Manna, Z.: 1994, ‘STeP: The Stanford Temporal Prover’. Technical re-
port. STAN-CS-TR-94, Computer Science Department, Stanford University,
Stanford, CA.

34. Manning, A., A. Ireland, and A. Bundy: 1993, ‘Increasing the Versatility
of Heuristic Based Theorem Provers’. In: A. Voronkov (ed.): International
Conference on Logic Programming and Automated Reasoning – LPAR 93, St.
Petersburg. pp. 194–204.

35. Mendelson, E.: 1964, Introduction to Mathematical Logic. Van Nostrand
Reinhold Co.

36. Mostowski, A.: 1952, ‘On direct products of theories’. Journal of Simbolic Logic
17, 1–31.

37. Nelson, G. and D. C. Oppen: 1979, ‘Simplification by cooperating decision
procedures’. ACM Transactions on Programming Languages and Systems 1(2),
245–257.

38. Nelson, G. and D. C. Oppen: 1980, ‘Fast decision procedures based on congru-
ence closure’. Journal of the ACM 27(2), 356–364. Also: Stanford CS Report
STAN-CS-77-646, 1977.

gs.tex; 20/03/2002; 18:59; p.55



56

39. Oppen, D. C.: 1978, ‘A 222pn

upper bound on the complexity of Presburger
arithmetic’. Journal of Computer and System Sciences 16(3), 323–332.

40. Owre, S., S. Rajan, J. M. Rushby, N. Shankar, and M. K. Srivas: 1996, ‘PVS:
Combining Specification, Proof Checking, and Model Checking’. In: R. Alur
and T. A. Henzinger (eds.): Proceedings of the 1996 Conference on Computer-
Aided Verification. New Brunswick, NJ, pp. 411–414.

41. Presburger, M.: 1930, ‘Über die Vollständigkeit eines gewissen Systems der
Arithmetik ganzer Zahlen, in welchem die Addition als einzige Operation her-
vortritt’. In: Sprawozdanie z I Kongresu metematyków slowiańskich, Warszawa
1929. pp. 92–101, 395. Annotated English version also available [45].

42. Rueß, H. and N. Shankar: 2001, ‘Deconstructing Shostak’. In: Proceedings of
the Conference on Logic in Computer Science (LICS).

43. Shostak, R. E.: 1984, ‘Deciding combinations of theories’. Journal of the
ACM 31(1), 1–12. Also: Proceedings of the 6th International Conference
on Automated Deduction, volume 138 of Lecture Notes in Computer Science,
pp. 209–222. Springer-Verlag, June 1982.

44. Skolem, T.: 1970, ‘Über einige Satzfunktionen in der Arithmetik’. In: J. E.
Fenstad (ed.): Selected Works in Logic (by Th. Skolem). Universitets–forlaget,
Oslo.

45. Stansifer, R.: 1984, ‘Presburger’s Article on Integer Arithmetic: Remarks and
Translation’. Technical Report TR 84-639, Department of Computer Science,
Cornell University.

46. Tinelli, C. and M. Harandi: 1996, ‘A New Correctness Proof of the Nelson–
Oppen Combination Procedure’. In: F. Baader and K. U. Schultz (eds.):
Frontiers of Combining Systems: Proceeding of the 1st International Workshop.
pp. 103–120.

47. Zhang, H.: 1995, ‘Contextual rewriting in automated reasoning’. Fundamenta
Informaticae 24 24, 107–123.

48. Zhang, H. and D. Kapur: 1985, ‘First-Order Theorem Proving Using Condi-
tional Rewrite Rules’. In: E. Lusk and R. Overbeek (eds.): Proceedings of 9th
Conference on Automated Deduction. pp. 1–20.

49. Zhang, H. and J. L. Rémy: 1985, ‘Contextual Rewriting’. In: J. P. Jouannaud
(ed.): Proceedings of 1st International Conference on Rewriting Techniques and
Applications. pp. 1–20.

gs.tex; 20/03/2002; 18:59; p.56


