2,444 research outputs found

    Maximal tori of monodromy groups of FF-isocrystals and an application to abelian varieties

    Full text link
    Let X0X_0 be a smooth geometrically connected variety defined over a finite field Fq\mathbb F_q and let E0\mathcal E_0^{\dagger} be an irreducible overconvergent FF-isocrystal on X0X_0. We show that if a subobject of minimal slope of the underlying convergent F-isocrystal E0\mathcal E_0 admits a non-zero morphism to OX0\mathcal O_{X_0} as convergent isocrystal, then E0\mathcal E_0^{\dagger} is isomorphic to OX0\mathcal O^{\dagger}_{X_0} as overconvergent isocrystal. This proves a special case of a conjecture of Kedlaya. The key ingredient in the proof is the study of the monodromy group of E0\mathcal E_0^{\dagger} and the subgroup defined by E0\mathcal E_0. The new input in this setting is that the subgroup contains a maximal torus of the entire monodromy group. This is a consequence of the existence of a Frobenius torus of maximal dimension. As an application, we prove a finiteness result for the torsion points of abelian varieties, which extends the previous theorem of Lang-N\'eron and answers positively a question of Esnault.Comment: 16 pages; minor edit

    On factorisation forests

    Get PDF
    The theorem of factorisation forests shows the existence of nested factorisations -- a la Ramsey -- for finite words. This theorem has important applications in semigroup theory, and beyond. The purpose of this paper is to illustrate the importance of this approach in the context of automata over infinite words and trees. We extend the theorem of factorisation forest in two directions: we show that it is still valid for any word indexed by a linear ordering; and we show that it admits a deterministic variant for words indexed by well-orderings. A byproduct of this work is also an improvement on the known bounds for the original result. We apply the first variant for giving a simplified proof of the closure under complementation of rational sets of words indexed by countable scattered linear orderings. We apply the second variant in the analysis of monadic second-order logic over trees, yielding new results on monadic interpretations over trees. Consequences of it are new caracterisations of prefix-recognizable structures and of the Caucal hierarchy.Comment: 27 page

    Principles and Concepts of Agent-Based Modelling for Developing Geospatial Simulations

    Get PDF
    The aim of this paper is to outline fundamental concepts and principles of the Agent-Based Modelling (ABM) paradigm, with particular reference to the development of geospatial simulations. The paper begins with a brief definition of modelling, followed by a classification of model types, and a comment regarding a shift (in certain circumstances) towards modelling systems at the individual-level. In particular, automata approaches (e.g. Cellular Automata, CA, and ABM) have been particularly popular, with ABM moving to the fore. A definition of agents and agent-based models is given; identifying their advantages and disadvantages, especially in relation to geospatial modelling. The potential use of agent-based models is discussed, and how-to instructions for developing an agent-based model are provided. Types of simulation / modelling systems available for ABM are defined, supplemented with criteria to consider before choosing a particular system for a modelling endeavour. Information pertaining to a selection of simulation / modelling systems (Swarm, MASON, Repast, StarLogo, NetLogo, OBEUS, AgentSheets and AnyLogic) is provided, categorised by their licensing policy (open source, shareware / freeware and proprietary systems). The evaluation (i.e. verification, calibration, validation and analysis) of agent-based models and their output is examined, and noteworthy applications are discussed.Geographical Information Systems (GIS) are a particularly useful medium for representing model input and output of a geospatial nature. However, GIS are not well suited to dynamic modelling (e.g. ABM). In particular, problems of representing time and change within GIS are highlighted. Consequently, this paper explores the opportunity of linking (through coupling or integration / embedding) a GIS with a simulation / modelling system purposely built, and therefore better suited to supporting the requirements of ABM. This paper concludes with a synthesis of the discussion that has proceeded. The aim of this paper is to outline fundamental concepts and principles of the Agent-Based Modelling (ABM) paradigm, with particular reference to the development of geospatial simulations. The paper begins with a brief definition of modelling, followed by a classification of model types, and a comment regarding a shift (in certain circumstances) towards modelling systems at the individual-level. In particular, automata approaches (e.g. Cellular Automata, CA, and ABM) have been particularly popular, with ABM moving to the fore. A definition of agents and agent-based models is given; identifying their advantages and disadvantages, especially in relation to geospatial modelling. The potential use of agent-based models is discussed, and how-to instructions for developing an agent-based model are provided. Types of simulation / modelling systems available for ABM are defined, supplemented with criteria to consider before choosing a particular system for a modelling endeavour. Information pertaining to a selection of simulation / modelling systems (Swarm, MASON, Repast, StarLogo, NetLogo, OBEUS, AgentSheets and AnyLogic) is provided, categorised by their licensing policy (open source, shareware / freeware and proprietary systems). The evaluation (i.e. verification, calibration, validation and analysis) of agent-based models and their output is examined, and noteworthy applications are discussed.Geographical Information Systems (GIS) are a particularly useful medium for representing model input and output of a geospatial nature. However, GIS are not well suited to dynamic modelling (e.g. ABM). In particular, problems of representing time and change within GIS are highlighted. Consequently, this paper explores the opportunity of linking (through coupling or integration / embedding) a GIS with a simulation / modelling system purposely built, and therefore better suited to supporting the requirements of ABM. This paper concludes with a synthesis of the discussion that has proceeded

    Monadic Intersection Types, Relationally (Extended Version)

    Full text link
    We extend intersection types to a computational λ\lambda-calculus with algebraic operations \`a la Plotkin and Power. We achieve this by considering monadic intersections, whereby computational effects appear not only in the operational semantics, but also in the type system. Since in the effectful setting termination is not anymore the only property of interest, we want to analyze the interactive behavior of typed programs with the environment. Indeed, our type system is able to characterize the natural notion of observation, both in the finite and in the infinitary setting, and for a wide class of effects, such as output, cost, pure and probabilistic nondeterminism, and combinations thereof. The main technical tool is a novel combination of syntactic techniques with abstract relational reasoning, which allows us to lift all the required notions, e.g. of typability and logical relation, to the monadic setting
    corecore