8,269 research outputs found

    Variable temporal-length 3-D discrete cosine transform coding

    Get PDF
    Version of RecordPublishe

    Three dimensional DCT based video compression.

    Get PDF
    by Chan Kwong Wing Raymond.Thesis (M.Phil.)--Chinese University of Hong Kong, 1997.Includes bibliographical references (leaves 115-123).Acknowledgments --- p.iTable of Contents --- p.ii-vList of Tables --- p.viList of Figures --- p.viiAbstract --- p.1Chapter Chapter 1 : --- IntroductionChapter 1.1 --- An Introduction to Video Compression --- p.3Chapter 1.2 --- Overview of Problems --- p.4Chapter 1.2.1 --- Analog Video and Digital Problems --- p.4Chapter 1.2.2 --- Low Bit Rate Application Problems --- p.4Chapter 1.2.3 --- Real Time Video Compression Problems --- p.5Chapter 1.2.4 --- Source Coding and Channel Coding Problems --- p.6Chapter 1.2.5 --- Bit-rate and Quality Problems --- p.7Chapter 1.3 --- Organization of the Thesis --- p.7Chapter Chapter 2 : --- Background and Related WorkChapter 2.1 --- Introduction --- p.9Chapter 2.1.1 --- Analog Video --- p.9Chapter 2.1.2 --- Digital Video --- p.10Chapter 2.1.3 --- Color Theory --- p.10Chapter 2.2 --- Video Coding --- p.12Chapter 2.2.1 --- Predictive Coding --- p.12Chapter 2.2.2 --- Vector Quantization --- p.12Chapter 2.2.3 --- Subband Coding --- p.13Chapter 2.2.4 --- Transform Coding --- p.14Chapter 2.2.5 --- Hybrid Coding --- p.14Chapter 2.3 --- Transform Coding --- p.15Chapter 2.3.1 --- Discrete Cosine Transform --- p.16Chapter 2.3.1.1 --- 1-D Fast Algorithms --- p.16Chapter 2.3.1.2 --- 2-D Fast Algorithms --- p.17Chapter 2.3.1.3 --- Multidimensional DCT Algorithms --- p.17Chapter 2.3.2 --- Quantization --- p.18Chapter 2.3.3 --- Entropy Coding --- p.18Chapter 2.3.3.1 --- Huffman Coding --- p.19Chapter 2.3.3.2 --- Arithmetic Coding --- p.19Chapter Chapter 3 : --- Existing Compression SchemeChapter 3.1 --- Introduction --- p.20Chapter 3.2 --- Motion JPEG --- p.20Chapter 3.3 --- MPEG --- p.20Chapter 3.4 --- H.261 --- p.22Chapter 3.5 --- Other Techniques --- p.23Chapter 3.5.1 --- Fractals --- p.23Chapter 3.5.2 --- Wavelets --- p.23Chapter 3.6 --- Proposed Solution --- p.24Chapter 3.7 --- Summary --- p.25Chapter Chapter 4 : --- Fast 3D-DCT AlgorithmsChapter 4.1 --- Introduction --- p.27Chapter 4.1.1 --- Motivation --- p.27Chapter 4.1.2 --- Potentials of 3D DCT --- p.28Chapter 4.2 --- Three Dimensional Discrete Cosine Transform (3D-DCT) --- p.29Chapter 4.2.1 --- Inverse 3D-DCT --- p.29Chapter 4.2.2 --- Forward 3D-DCT --- p.30Chapter 4.3 --- 3-D FCT (3-D Fast Cosine Transform Algorithm --- p.30Chapter 4.3.1 --- Partitioning and Rearrangement of Data Cube --- p.30Chapter 4.3.1.1 --- Spatio-temporal Data Cube --- p.30Chapter 4.3.1.2 --- Spatio-temporal Transform Domain Cube --- p.31Chapter 4.3.1.3 --- Coefficient Matrices --- p.31Chapter 4.3.2 --- 3-D Inverse Fast Cosine Transform (3-D IFCT) --- p.32Chapter 4.3.2.1 --- Matrix Representations --- p.32Chapter 4.3.2.2 --- Simplification of the calculation steps --- p.33Chapter 4.3.3 --- 3-D Forward Fast Cosine Transform (3-D FCT) --- p.35Chapter 4.3.3.1 --- Decomposition --- p.35Chapter 4.3.3.2 --- Reconstruction --- p.36Chapter 4.4 --- The Fast Algorithm --- p.36Chapter 4.5 --- Example using 4x4x4 IFCT --- p.38Chapter 4.6 --- Complexity Comparison --- p.43Chapter 4.6.1 --- Complexity of Multiplications --- p.43Chapter 4.6.2 --- Complexity of Additions --- p.43Chapter 4.7 --- Implementation Issues --- p.44Chapter 4.8 --- Summary --- p.46Chapter Chapter 5 : --- QuantizationChapter 5.1 --- Introduction --- p.49Chapter 5.2 --- Dynamic Ranges of 3D-DCT Coefficients --- p.49Chapter 5.3 --- Distribution of 3D-DCT AC Coefficients --- p.54Chapter 5.4 --- Quantization Volume --- p.55Chapter 5.4.1 --- Shifted Complement Hyperboloid --- p.55Chapter 5.4.2 --- Quantization Volume --- p.58Chapter 5.5 --- Scan Order for Quantized 3D-DCT Coefficients --- p.59Chapter 5.6 --- Finding Parameter Values --- p.60Chapter 5.7 --- Experimental Results from Using the Proposed Quantization Values --- p.65Chapter 5.8 --- Summary --- p.66Chapter Chapter 6 : --- Entropy CodingChapter 6.1 --- Introduction --- p.69Chapter 6.1.1 --- Huffman Coding --- p.69Chapter 6.1.2 --- Arithmetic Coding --- p.71Chapter 6.2 --- Zero Run-Length Encoding --- p.73Chapter 6.2.1 --- Variable Length Coding in JPEG --- p.74Chapter 6.2.1.1 --- Coding of the DC Coefficients --- p.74Chapter 6.2.1.2 --- Coding of the DC Coefficients --- p.75Chapter 6.2.2 --- Run-Level Encoding of the Quantized 3D-DCT Coefficients --- p.76Chapter 6.3 --- Frequency Analysis of the Run-Length Patterns --- p.76Chapter 6.3.1 --- The Frequency Distributions of the DC Coefficients --- p.77Chapter 6.3.2 --- The Frequency Distributions of the DC Coefficients --- p.77Chapter 6.4 --- Huffman Table Design --- p.84Chapter 6.4.1 --- DC Huffman Table --- p.84Chapter 6.4.2 --- AC Huffman Table --- p.85Chapter 6.5 --- Implementation Issue --- p.85Chapter 6.5.1 --- Get Category --- p.85Chapter 6.5.2 --- Huffman Encode --- p.86Chapter 6.5.3 --- Huffman Decode --- p.86Chapter 6.5.4 --- PutBits --- p.88Chapter 6.5.5 --- GetBits --- p.90Chapter Chapter 7 : --- "Contributions, Concluding Remarks and Future Work"Chapter 7.1 --- Contributions --- p.92Chapter 7.2 --- Concluding Remarks --- p.93Chapter 7.2.1 --- The Advantages of 3D DCT codec --- p.94Chapter 7.2.2 --- Experimental Results --- p.95Chapter 7.1 --- Future Work --- p.95Chapter 7.2.1 --- Integer Discrete Cosine Transform Algorithms --- p.95Chapter 7.2.2 --- Adaptive Quantization Volume --- p.96Chapter 7.2.3 --- Adaptive Huffman Tables --- p.96Appendices:Appendix A : The detailed steps in the simplification of Equation 4.29 --- p.98Appendix B : The program Listing of the Fast DCT Algorithms --- p.101Appendix C : Tables to Illustrate the Reording of the Quantized Coefficients --- p.110Appendix D : Sample Values of the Quantization Volume --- p.111Appendix E : A 16-bit VLC table for AC Run-Level Pairs --- p.113References --- p.11

    Fast algorithm for the 3-D DCT-II

    Get PDF
    Recently, many applications for three-dimensional (3-D) image and video compression have been proposed using 3-D discrete cosine transforms (3-D DCTs). Among different types of DCTs, the type-II DCT (DCT-II) is the most used. In order to use the 3-D DCTs in practical applications, fast 3-D algorithms are essential. Therefore, in this paper, the 3-D vector-radix decimation-in-frequency (3-D VR DIF) algorithm that calculates the 3-D DCT-II directly is introduced. The mathematical analysis and the implementation of the developed algorithm are presented, showing that this algorithm possesses a regular structure, can be implemented in-place for efficient use of memory, and is faster than the conventional row-column-frame (RCF) approach. Furthermore, an application of 3-D video compression-based 3-D DCT-II is implemented using the 3-D new algorithm. This has led to a substantial speed improvement for 3-D DCT-II-based compression systems and proved the validity of the developed algorithm

    Data compression techniques applied to high resolution high frame rate video technology

    Get PDF
    An investigation is presented of video data compression applied to microgravity space experiments using High Resolution High Frame Rate Video Technology (HHVT). An extensive survey of methods of video data compression, described in the open literature, was conducted. The survey examines compression methods employing digital computing. The results of the survey are presented. They include a description of each method and assessment of image degradation and video data parameters. An assessment is made of present and near term future technology for implementation of video data compression in high speed imaging system. Results of the assessment are discussed and summarized. The results of a study of a baseline HHVT video system, and approaches for implementation of video data compression, are presented. Case studies of three microgravity experiments are presented and specific compression techniques and implementations are recommended

    Coder-oriented matching criteria for motion estimation

    Get PDF

    Distributed video coding for wireless video sensor networks: a review of the state-of-the-art architectures

    Get PDF
    Distributed video coding (DVC) is a relatively new video coding architecture originated from two fundamental theorems namely, Slepian–Wolf and Wyner–Ziv. Recent research developments have made DVC attractive for applications in the emerging domain of wireless video sensor networks (WVSNs). This paper reviews the state-of-the-art DVC architectures with a focus on understanding their opportunities and gaps in addressing the operational requirements and application needs of WVSNs

    Design of a digital compression technique for shuttle television

    Get PDF
    The determination of the performance and hardware complexity of data compression algorithms applicable to color television signals, were studied to assess the feasibility of digital compression techniques for shuttle communications applications. For return link communications, it is shown that a nonadaptive two dimensional DPCM technique compresses the bandwidth of field-sequential color TV to about 13 MBPS and requires less than 60 watts of secondary power. For forward link communications, a facsimile coding technique is recommended which provides high resolution slow scan television on a 144 KBPS channel. The onboard decoder requires about 19 watts of secondary power
    corecore