1,891 research outputs found

    Tabu search heuristic for inventory routing problem with stochastic demand and time windows

    Get PDF
    This study proposes the hybridization of tabu search (TS) and variable neighbourhood descent (VND) for solving the Inventory Routing Problems with Stochastic Demand and Time Windows (IRPSDTW). Vendor Managed Inventory (VMI) is among the most used approaches for managing supply chains comprising multiple stakeholders, and implementing VMI require addressing the Inventory Routing Problem (IRP). Considering practical constraints related to demand uncertainty and time constraint, the proposed model combines multi-item replenishment schedules with unknown demand to arrange delivery paths, where the actual demand amount is only known upon arrival at a customer location with a time limit. The proposed method starts from the initial solution that considers the time windows and uses the TS method to solve the problem. As an extension, the VND is conducted to jump the solution from its local optimal. The results show that the proposed method can solve the IRPSDTW, especially for uniformly distributed customer locations

    A Computational Study of Genetic Crossover Operators for Multi-Objective Vehicle Routing Problem with Soft Time Windows

    Full text link
    The article describes an investigation of the effectiveness of genetic algorithms for multi-objective combinatorial optimization (MOCO) by presenting an application for the vehicle routing problem with soft time windows. The work is motivated by the question, if and how the problem structure influences the effectiveness of different configurations of the genetic algorithm. Computational results are presented for different classes of vehicle routing problems, varying in their coverage with time windows, time window size, distribution and number of customers. The results are compared with a simple, but effective local search approach for multi-objective combinatorial optimization problems

    ALGORITMA VARIABLE NEIGHBORHOOD DESCENT (VND) PADA VEHICLE ROUTING PROBLEM WITH SIMULTANEOUS DELIVERY AND PICKUP (VRPSDP) DAN IMPLEMENTASINYA

    Get PDF
    Vehicle Routing Problem with Simultaneous Delivery and Pickup (VRPSDP) is a variant of Vehicle Routing Problem (VRP). VRPSDP has special constraints, namely requests and returns are carried out simultaneously. In this article we will use the Variable Neighborhood Descent (VND) algorithm to solve VRPSDP problems. There are two steps taken to use the VND algorithm on VRPSDP, namely finding an initial solution with the Insertion Heuristic algorithm and improving the position of the customer by using the neighborhood operator on the VND algorithm. The implementation of the VND algorithm on VRPSDP has been successfully made using the Borland Delphi 7.0 programming language. Inputs contained in the program are point position, distance between points, customer requests and returns and vehicle capacity. The output contained in the program in the form of routes that have been completed using an algorithm and output in the form of images of the final solution that has been obtained. Based on the results obtained, an example with 6 customers produces 3 routes with a total distance of 266 km, while an example with 10 customers produces 4 routes with a total distance of 100 km

    Thirty years of heterogeneous vehicle routing

    No full text
    It has been around thirty years since the heterogeneous vehicle routing problem was introduced, and significant progress has since been made on this problem and its variants. The aim of this survey paper is to classify and review the literature on heterogeneous vehicle routing problems. The paper also presents a comparative analysis of the metaheuristic algorithms that have been proposed for these problems
    corecore