43,474 research outputs found

    Variable Bandwidth Analog Channel Filters for Software Defined Radio

    Get PDF
    An important aspect of Software Defined Radio is the ability to define the bandwidth of the filter that selects the desired channel. This paper first explains the importance of channel filtering. Then the advantage of analog channel filtering with a variable bandwidth in a Software Defined Radio is demonstrated. This is done by comparing the requirements of the analog-to-digital converter with and without an analog filter with a variable bandwidth. Then, a technique for channel filtering is described, in which two passive filters are combined to obtain a variable bandwidth. Passive filters have the advantage of high linearity, low noise and inherent energy efficiency. Some limitations of the concept are discussed. Finally, conclusions are drawn and our ideas for further research are presented

    High-Q variable bandwidth passive filters for Software Defined Radio

    Get PDF
    An important aspect of Software Defined Radio is the ability to define the bandwidth of the filter that selects the desired channel. This paper describes a technique for channel filtering, in which two passive filters are combined to obtain a variable bandwidth. Passive filters have the advantage of high linearity, low noise and inherent energy efficiency. After an explanation of the concept, the requirements on the subsequent analog-todigital conversion are compared with those in a system where (part of) the channel selection is performed digitally. Some drawbacks of the concept are discussed. Finally, conclusions are drawn and our ideas for further research are presented

    Basics of RF electronics

    Full text link
    RF electronics deals with the generation, acquisition and manipulation of high-frequency signals. In particle accelerators signals of this kind are abundant, especially in the RF and beam diagnostics systems. In modern machines the complexity of the electronics assemblies dedicated to RF manipulation, beam diagnostics, and feedbacks is continuously increasing, following the demands for improvement of accelerator performance. However, these systems, and in particular their front-ends and back-ends, still rely on well-established basic hardware components and techniques, while down-converted and acquired signals are digitally processed exploiting the rapidly growing computational capability offered by the available technology. This lecture reviews the operational principles of the basic building blocks used for the treatment of high-frequency signals. Devices such as mixers, phase and amplitude detectors, modulators, filters, switches, directional couplers, oscillators, amplifiers, attenuators, and others are described in terms of equivalent circuits, scattering matrices, transfer functions; typical performance of commercially available models is presented. Owing to the breadth of the subject, this review is necessarily synthetic and non-exhaustive. Readers interested in the architecture of complete systems making use of the described components and devoted to generation and manipulation of the signals driving RF power plants and cavities may refer to the CAS lectures on Low-Level RF.Comment: 36 pages, contribution to the CAS - CERN Accelerator School: Specialised Course on RF for Accelerators; 8 - 17 Jun 2010, Ebeltoft, Denmar

    The doubly terminated lossless digital two-pair in digital filtering

    Get PDF
    A digital lossless two-pair terminated at both ends with "passive" multipliers is studied. Conditions for low sensitivity of the transfer-function magnitude with respect to the digital multiplier coefficients are derived. It is shown that low sensitivity property can be achieved by forcing certain "matching" conditions, at the terminations. The application of these results to the understanding of some well-known digital filter structures is outlined. In particular, it is shown that the coupled-form biquad can be interpreted as a doubly terminated lossless digital two pair, and that it satisfies the "termination matching conditions" for almost all pole locations. All results derived in the paper are based on independentz-domain arguments

    Multi-tap Digital Canceller for Full-Duplex Applications

    Full text link
    We identify phase noise as a bottleneck for the performance of digital self-interference cancellers that utilize a single auxiliary receiver---single-tap digital cancellers---and operate in multipath propagation environments. Our analysis demonstrates that the degradation due to phase noise is caused by a mismatch between the analog delay of the auxiliary receiver and the different delays of the multipath components of the self-interference signal. We propose a novel multi-tap digital self-interference canceller architecture that is based on multiple auxiliary receivers and a customized Normalized-Least-Mean-Squared (NLMS) filtering for self-interference regeneration. Our simulation results demonstrate that our proposed architecture is more robust to phase noise impairments and can in some cases achieve 10~dB larger self-interference cancellation than the single-tap architecture.Comment: SPAWC 201

    Low passband sensitivity digital filters: A generalized viewpoint and synthesis procedures

    Get PDF
    The concepts of losslessness and maximum available power are basic to the low-sensitivity properties of doubly terminated lossless networks of the continuous-time domain. Based on similar concepts, we develop a new theory for low-sensitivity discrete-time filter structures. The mathematical setup for the development is the bounded-real property of transfer functions and matrices. Starting from this property, we derive procedures for the synthesis of any stable digital filter transfer function by means of a low-sensitivity structure. Most of the structures generated by this approach are interconnections of a basic building block called digital "two-pair," and each two-pair is characterized by a lossless bounded-real (LBR) transfer matrix. The theory and synthesis procedures also cover special cases such as wave digital filters, which are derived from continuous-time networks, and digital lattice structures, which are closely related to unit elements of distributed network theory

    A programmable, multi-format photonic transceiver platform enabling flexible optical networks

    Get PDF
    Development of programmable photonic devices for future flexible optical networks is ongoing. To this end, an innovative, multi-format QAM transmitter design is presented. It comprises a segmented-electrode InP IQ-MZM to be fabricated in InP, which can be directly driven by low-power CMOS logic. Arbitrary optical QAM format generation is made possible using only binary electrical signals, without the need for high-performance DACs and high-swing linear drivers. The concept enables a host of Tx-side DSP functionality, including the spectral shaping needed for Nyquist-WDM system concepts. In addition, we report on the development of an optical channel MUX/DEMUX, based on arrays of microresonator filters with reconfigurable bandwidths and center wavelengths. The device is intended for operation with multi-format flexible transceivers, enabling Dense (D)WDM superchannel aggregation and arbitrary spectral slicing in the context of a flexible grid environment

    Study of Adjustable Gains for Control of Oscillation Frequency and Oscillation Condition in 3R-2C Oscillator

    Get PDF
    An idea of adjustable gain in order to obtain controllable features is very useful for design of tuneable oscillators. Several active elements with adjustable properties (current and voltage gain) are discussed in this paper. Three modified oscillator conceptions that are quite simple, directly electronically adjustable, providing independent control of oscillation condition and frequency were designed. Positive and negative aspects of presented method of control are discussed. Expected assumptions of adjustability are verified experimentally on one of the presented solution
    corecore