56,383 research outputs found

    Variable Word Rate N-grams

    Get PDF
    The rate of occurrence of words is not uniform but varies from document to document. Despite this observation, parameters for conventional n-gram language models are usually derived using the assumption of a constant word rate. In this paper we investigate the use of variable word rate assumption, modelled by a Poisson distribution or a continuous mixture of Poissons. We present an approach to estimating the relative frequencies of words or n-grams taking prior information of their occurrences into account. Discounting and smoothing schemes are also considered. Using the Broadcast News task, the approach demonstrates a reduction of perplexity up to 10%.Comment: 4 pages, 4 figures, ICASSP-200

    Effective Use of Word Order for Text Categorization with Convolutional Neural Networks

    Full text link
    Convolutional neural network (CNN) is a neural network that can make use of the internal structure of data such as the 2D structure of image data. This paper studies CNN on text categorization to exploit the 1D structure (namely, word order) of text data for accurate prediction. Instead of using low-dimensional word vectors as input as is often done, we directly apply CNN to high-dimensional text data, which leads to directly learning embedding of small text regions for use in classification. In addition to a straightforward adaptation of CNN from image to text, a simple but new variation which employs bag-of-word conversion in the convolution layer is proposed. An extension to combine multiple convolution layers is also explored for higher accuracy. The experiments demonstrate the effectiveness of our approach in comparison with state-of-the-art methods

    A Machine learning approach to POS tagging

    Get PDF
    We have applied inductive learning of statistical decision trees and relaxation labelling to the Natural Language Processing (NLP) task of morphosyntactic disambiguation (Part Of Speech Tagging). The learning process is supervised and obtains a language model oriented to resolve POS ambiguities. This model consists of a set of statistical decision trees expressing distribution of tags and words in some relevant contexts. The acquired language models are complete enough to be directly used as sets of POS disambiguation rules, and include more complex contextual information than simple collections of n-grams usually used in statistical taggers. We have implemented a quite simple and fast tagger that has been tested and evaluated on the Wall Street Journal (WSJ) corpus with a remarkable accuracy. However, better results can be obtained by translating the trees into rules to feed a flexible relaxation labelling based tagger. In this direction we describe a tagger which is able to use information of any kind (n-grams, automatically acquired constraints, linguistically motivated manually written constraints, etc.), and in particular to incorporate the machine learned decision trees. Simultaneously, we address the problem of tagging when only small training material is available, which is crucial in any process of constructing, from scratch, an annotated corpus. We show that quite high accuracy can be achieved with our system in this situation.Postprint (published version

    Handling Massive N-Gram Datasets Efficiently

    Get PDF
    This paper deals with the two fundamental problems concerning the handling of large n-gram language models: indexing, that is compressing the n-gram strings and associated satellite data without compromising their retrieval speed; and estimation, that is computing the probability distribution of the strings from a large textual source. Regarding the problem of indexing, we describe compressed, exact and lossless data structures that achieve, at the same time, high space reductions and no time degradation with respect to state-of-the-art solutions and related software packages. In particular, we present a compressed trie data structure in which each word following a context of fixed length k, i.e., its preceding k words, is encoded as an integer whose value is proportional to the number of words that follow such context. Since the number of words following a given context is typically very small in natural languages, we lower the space of representation to compression levels that were never achieved before. Despite the significant savings in space, our technique introduces a negligible penalty at query time. Regarding the problem of estimation, we present a novel algorithm for estimating modified Kneser-Ney language models, that have emerged as the de-facto choice for language modeling in both academia and industry, thanks to their relatively low perplexity performance. Estimating such models from large textual sources poses the challenge of devising algorithms that make a parsimonious use of the disk. The state-of-the-art algorithm uses three sorting steps in external memory: we show an improved construction that requires only one sorting step thanks to exploiting the properties of the extracted n-gram strings. With an extensive experimental analysis performed on billions of n-grams, we show an average improvement of 4.5X on the total running time of the state-of-the-art approach.Comment: Published in ACM Transactions on Information Systems (TOIS), February 2019, Article No: 2

    Distributed Representations of Sentences and Documents

    Full text link
    Many machine learning algorithms require the input to be represented as a fixed-length feature vector. When it comes to texts, one of the most common fixed-length features is bag-of-words. Despite their popularity, bag-of-words features have two major weaknesses: they lose the ordering of the words and they also ignore semantics of the words. For example, "powerful," "strong" and "Paris" are equally distant. In this paper, we propose Paragraph Vector, an unsupervised algorithm that learns fixed-length feature representations from variable-length pieces of texts, such as sentences, paragraphs, and documents. Our algorithm represents each document by a dense vector which is trained to predict words in the document. Its construction gives our algorithm the potential to overcome the weaknesses of bag-of-words models. Empirical results show that Paragraph Vectors outperform bag-of-words models as well as other techniques for text representations. Finally, we achieve new state-of-the-art results on several text classification and sentiment analysis tasks
    • …
    corecore