67 research outputs found

    Design of a Haptic Interface for Medical Applications using Magneto-Rheological Fluid based Actuators

    Get PDF
    This thesis reports on the design, construction, and evaluation of a prototype two degrees-of-freedom (DOF) haptic interface, which takes advantage of Magneto-Rheological Fluid (MRF) based clutches for actuation. Haptic information provides important cues in teleoperated systems and enables the user to feel the interaction with a remote or virtual environment during teleoperation. The two main objectives in designing a haptic interface are stability and transparency. Indeed, deficiencies in these factors in haptics-enabled telerobotic systems has the introduction of haptics in medical environments where safety and reliability are prime considerations. An actuator with poor dynamics, high inertia, large size, and heavy weight can significantly undermine the stability and transparency of a teleoperated system. In this work, the potential benefits of MRF-based actuators to the field of haptics in medical applications are studied. Devices developed with such fluids are known to possess superior mechanical characteristics over conventional servo systems. These characteristics significantly contribute to improved stability and transparency of haptic devices. This idea is evaluated and verified through both theoretical and experimental points of view. The design of a small-scale MRF-based clutch, suitable for a multi-DOF haptic interface, is discussed and its performance is compared with conventional servo systems. This design is developed into four prototype clutches. In addition, a closed-loop torque control strategy is presented. The feedback signal used in this control scheme comes from the magnetic field acquired from embedded Hall sensors in the clutch. The controller uses this feedback signal to compensate for the nonlinear behavior using an estimated model, based on Artificial Neural Networks. Such a control strategy eliminates the need for torque sensors for providing feedback signals. The performance of the developed design and the effectiveness of the proposed modeling and control techniques are experimentally validated. Next, a 2-DOF haptic interface based on a distributed antagonistic configuration of MRF-based clutches is constructed for a class of medical applications. This device is incorporated in a master-slave teleoperation setup that is used for applications involving needle insertion and soft-tissue palpation. Phantom and in vitro animal tissue were used to assess the performance of the haptic interface. The results show a great potential of MRF-based actuators for integration in haptic devices for medical interventions that require reliable, safe, accurate, highly transparent, and stable force reflection

    Smart portable rehabilitation devices

    Get PDF
    BACKGROUND: The majority of current portable orthotic devices and rehabilitative braces provide stability, apply precise pressure, or help maintain alignment of the joints with out the capability for real time monitoring of the patient's motions and forces and without the ability for real time adjustments of the applied forces and motions. Improved technology has allowed for advancements where these devices can be designed to apply a form of tension to resist motion of the joint. These devices induce quicker recovery and are more effective at restoring proper biomechanics and improving muscle function. However, their shortcoming is in their inability to be adjusted in real-time, which is the most ideal form of a device for rehabilitation. This introduces a second class of devices beyond passive orthotics. It is comprised of "active" or powered devices, and although more complicated in design, they are definitely the most versatile. An active or powered orthotic, usually employs some type of actuator(s). METHODS: In this paper we present several new advancements in the area of smart rehabilitation devices that have been developed by the Northeastern University Robotics and Mechatronics Laboratory. They are all compact, wearable and portable devices and boast re-programmable, real time computer controlled functions as the central theme behind their operation. The sensory information and computer control of the three described devices make for highly efficient and versatile systems that represent a whole new breed in wearable rehabilitation devices. Their applications range from active-assistive rehabilitation to resistance exercise and even have applications in gait training. The three devices described are: a transportable continuous passive motion elbow device, a wearable electro-rheological fluid based knee resistance device, and a wearable electrical stimulation and biofeedback knee device. RESULTS: Laboratory tests of the devices demonstrated that they were able to meet their design objectives. The prototypes of portable rehabilitation devices presented here did demonstrate that these concepts are capable of the performance their commercially available but non-portable counterparts exhibit. CONCLUSION: Smart, portable devices with the ability for real time monitoring and adjustment open a new era in rehabilitation where the recovery process could be dramatically improved

    Magneto-Rheological Actuators for Human-Safe Robots: Modeling, Control, and Implementation

    Get PDF
    In recent years, research on physical human-robot interaction has received considerable attention. Research on this subject has led to the study of new control and actuation mechanisms for robots in order to achieve intrinsic safety. Naturally, intrinsic safety is only achievable in kinematic structures that exhibit low output impedance. Existing solutions for reducing impedance are commonly obtained at the expense of reduced performance, or significant increase in mechanical complexity. Achieving high performance while guaranteeing safety seems to be a challenging goal that necessitates new actuation technologies in future generations of human-safe robots. In this study, a novel two degrees-of-freedom safe manipulator is presented. The manipulator uses magneto-rheological fluid-based actuators. Magneto-rheological actuators offer low inertia-to-torque and mass-to-torque ratios which support their applications in human-friendly actuation. As a key element in the design of the manipulator, bi-directional actuation is attained by antagonistically coupling MR actuators at the joints. Antagonistically coupled MR actuators at the joints allow using a single motor to drive multiple joints. The motor is located at the base of the manipulator in order to further reduce the overall weight of the robot. Due to the unique characteristic of MR actuators, intrinsically safe actuation is achieved without compromising high quality actuation. Despite these advantages, modeling and control of MR actuators present some challenges. The antagonistic configuration of MR actuators may result in limit cycles in some cases when the actuator operates in the position control loop. To study the possibility of limit cycles, describing function method is employed to obtain the conditions under which limit cycles may occur in the operation of the system. Moreover, a connection between the amplitude and the frequency of the potential limit cycles and the system parameters is established to provide an insight into the design of the actuator as well as the controller. MR actuators require magnetic fields to control their output torques. The application of magnetic field however introduces hysteresis in the behaviors of MR actuators. To this effect, an adaptive model is developed to estimate the hysteretic behavior of the actuator. The effectiveness of the model is evaluated by comparing its results with those obtained using the Preisach model. These results are then extended to an adaptive control scheme in order to compensate for the effect of hysteresis. In both modeling and control, stability of proposed schemes are evaluated using Lyapunov method, and the effectiveness of the proposed methods are validated with experimental results

    Development of Rotary Variable Damping and Stiffness Magnetorheological Dampers and their Applications on Robotic Arms and Seat Suspensions

    Get PDF
    This thesis successfully expanded the idea of variable damping and stiffness (VSVD) from linear magnetorheological dampers (MR) to rotary magnetorheological dampers; and explored the applications of rotary MR dampers on the robotic arms and seat suspension. The idea of variable damping and stiffness has been proved to be able to reduce vibration to a large degree. Variable damping can reduce the vibration amplitude and variable stiffness can shift the natural frequency of the system from excitation and prevent resonance. Linear MR dampers with the capacity of variable damping and stiffness have been studied by researchers. However, Linear MR dampers usually require larger installation space than rotary MR dampers, and need more expensive MR fluids to fill in their chambers. Furthermore, rotary MR dampers are inherently more suitable than linear MR dampers in rotary motions like braking devices or robot joints. Hence, rotary MR dampers capable of simultaneously varying the damping and stiffness are very attractive to solve angular vibration problems. Out of this motivation, a rotary VSVD MR damper was designed, prototyped, with its feature of variable damping and stiffness verified by experimental property tests in this thesis. Its mathematical model was also built with the parameters identified. The experimental tests indicated that it has a 141.6% damping variation and 618.1% stiffness variation. This damper’s successful development paved the way for the applications of rotary MR dampers with the similar capability of variable damping and stiffness

    肘関節粘弾性特性分析に基づいた可変粘弾性握手マニピュレータの開発

    Get PDF
    【学位授与の要件】中央大学学位規則第4条第1項【論文審査委員主査】中村 太郎 (中央大学理工学部教授)【論文審査委員副査】平岡 弘之(中央大学理工学部教授)、新妻 実保子(中央大学理工学部准教授)、諸麥 俊司(中央大学理工学部准教授)、万 偉偉(大阪大学准教授)博士(工学)中央大

    Advanced Mobile Robotics: Volume 3

    Get PDF
    Mobile robotics is a challenging field with great potential. It covers disciplines including electrical engineering, mechanical engineering, computer science, cognitive science, and social science. It is essential to the design of automated robots, in combination with artificial intelligence, vision, and sensor technologies. Mobile robots are widely used for surveillance, guidance, transportation and entertainment tasks, as well as medical applications. This Special Issue intends to concentrate on recent developments concerning mobile robots and the research surrounding them to enhance studies on the fundamental problems observed in the robots. Various multidisciplinary approaches and integrative contributions including navigation, learning and adaptation, networked system, biologically inspired robots and cognitive methods are welcome contributions to this Special Issue, both from a research and an application perspective

    Soft pneumatic devices for blood circulation improvement

    Get PDF
    The research activity I am presenting in this thesis lies within the framework of a cooperation between the University of Cagliari (Applied Mechanics and Robotics lab, headed by professor Andrea Manuello Bertetto, and the research group of physicians referencing to professor Alberto Concu at the Laboratory of Sports Physiology, Department of Medical Sciences), and the Polytechnic of Turin (professor Carlo Ferraresi and his equipe at the Group of Automation and Robotics, Department of Mechanical and Aerospace Engineering) This research was also funded by the Italian Ministry of Research (MIUR – PRIN 2009). My activity has been mainly carried on at the Department of Mechanics, Robotics lab under the supervision of prof. Manuello; I have also spent one year at the Control Lab of the School of Electrical Engineering at Aalto University (Helsinki, Finland). The tests on the patients were taken at the Laboratory of Sports Physiology, Cagliari. I will be describing the design, development and testing of some soft pneumatic flexible devices meant to apply an intermittent massage and to restore blood circulation in lower limbs in order to improve cardiac output and wellness in general. The choice of the actuators, as well as the pneumatic circuits and air distribution system and PLC control patterns will be outlined. The trial run of the devices have been field--‐tested as soon a prototype was ready, so as to tune its features step--‐by--‐ step. I am also giving a characterization of a commercial thin force sensor after briefly reviewing some other type of thin pressure transducer. It has been used to gauge the contact pressure between the actuator and the subject’s skin in order to correlate the level of discomfort to the supply pressure, and to feed this value back to regulate the supply air flow. In order for the massage to be still effective without causing pain or distress or any cutoff to the blood flow, some control objective have been set, consisting in the regulation of the contact force so that it comes to the constant set point smoothly and its value holds constant until unloading occurs. The targets of such mechatronic devices range from paraplegic patients lacking of muscle tone because of their spinal cord damage, to elite endurance athletes needing a circulation booster when resting from practicing after serious injuries leading to bed rest. Encouraging results have been attained for both these two categories, based on the monitored hemodynamic variables

    Mechatronic Systems

    Get PDF
    Mechatronics, the synergistic blend of mechanics, electronics, and computer science, has evolved over the past twenty five years, leading to a novel stage of engineering design. By integrating the best design practices with the most advanced technologies, mechatronics aims at realizing high-quality products, guaranteeing at the same time a substantial reduction of time and costs of manufacturing. Mechatronic systems are manifold and range from machine components, motion generators, and power producing machines to more complex devices, such as robotic systems and transportation vehicles. With its twenty chapters, which collect contributions from many researchers worldwide, this book provides an excellent survey of recent work in the field of mechatronics with applications in various fields, like robotics, medical and assistive technology, human-machine interaction, unmanned vehicles, manufacturing, and education. We would like to thank all the authors who have invested a great deal of time to write such interesting chapters, which we are sure will be valuable to the readers. Chapters 1 to 6 deal with applications of mechatronics for the development of robotic systems. Medical and assistive technologies and human-machine interaction systems are the topic of chapters 7 to 13.Chapters 14 and 15 concern mechatronic systems for autonomous vehicles. Chapters 16-19 deal with mechatronics in manufacturing contexts. Chapter 20 concludes the book, describing a method for the installation of mechatronics education in schools

    磁性流体を用いたバックドライブ可能な油圧アクチュエータの開発

    Get PDF
    早大学位記番号:新7478早稲田大
    corecore