103,746 research outputs found

    Verifying Temporal Properties of Reactive Systems by Transformation

    Full text link
    We show how program transformation techniques can be used for the verification of both safety and liveness properties of reactive systems. In particular, we show how the program transformation technique distillation can be used to transform reactive systems specified in a functional language into a simplified form that can subsequently be analysed to verify temporal properties of the systems. Example systems which are intended to model mutual exclusion are analysed using these techniques with respect to both safety (mutual exclusion) and liveness (non-starvation), with the errors they contain being correctly identified.Comment: In Proceedings VPT 2015, arXiv:1512.02215. This work was supported, in part, by Science Foundation Ireland grant 10/CE/I1855 to Lero - the Irish Software Engineering Research Centre (www.lero.ie), and by the School of Computing, Dublin City Universit

    Efficient First-Order Temporal Logic for Infinite-State Systems

    Get PDF
    In this paper we consider the specification and verification of infinite-state systems using temporal logic. In particular, we describe parameterised systems using a new variety of first-order temporal logic that is both powerful enough for this form of specification and tractable enough for practical deductive verification. Importantly, the power of the temporal language allows us to describe (and verify) asynchronous systems, communication delays and more complex properties such as liveness and fairness properties. These aspects appear difficult for many other approaches to infinite-state verification.Comment: 16 pages, 2 figure

    Graphical Verification of a Spatial Logic for the Graphical Verification of a Spatial Logic for the pi-calculus

    Get PDF
    The paper introduces a novel approach to the verification of spatial properties for finite [pi]-calculus specifications. The mechanism is based on a recently proposed graphical encoding for mobile calculi: Each process is mapped into a (ranked) graph, such that the denotation is fully abstract with respect to the usual structural congruence (i.e., two processes are equivalent exactly when the corresponding encodings yield the same graph). Spatial properties for reasoning about the behavior and the structure of pi-calculus processes are then expressed in a logic introduced by Caires, and they are verified on the graphical encoding of a process, rather than on its textual representation. More precisely, the graphical presentation allows for providing a simple and easy to implement verification algorithm based on the graphical encoding (returning true if and only if a given process verifies a given spatial formula)

    Towards Energy Consumption Verification via Static Analysis

    Full text link
    In this paper we leverage an existing general framework for resource usage verification and specialize it for verifying energy consumption specifications of embedded programs. Such specifications can include both lower and upper bounds on energy usage, and they can express intervals within which energy usage is to be certified to be within such bounds. The bounds of the intervals can be given in general as functions on input data sizes. Our verification system can prove whether such energy usage specifications are met or not. It can also infer the particular conditions under which the specifications hold. To this end, these conditions are also expressed as intervals of functions of input data sizes, such that a given specification can be proved for some intervals but disproved for others. The specifications themselves can also include preconditions expressing intervals for input data sizes. We report on a prototype implementation of our approach within the CiaoPP system for the XC language and XS1-L architecture, and illustrate with an example how embedded software developers can use this tool, and in particular for determining values for program parameters that ensure meeting a given energy budget while minimizing the loss in quality of service.Comment: Presented at HIP3ES, 2015 (arXiv: 1501.03064

    Trustworthy Refactoring via Decomposition and Schemes: A Complex Case Study

    Get PDF
    Widely used complex code refactoring tools lack a solid reasoning about the correctness of the transformations they implement, whilst interest in proven correct refactoring is ever increasing as only formal verification can provide true confidence in applying tool-automated refactoring to industrial-scale code. By using our strategic rewriting based refactoring specification language, we present the decomposition of a complex transformation into smaller steps that can be expressed as instances of refactoring schemes, then we demonstrate the semi-automatic formal verification of the components based on a theoretical understanding of the semantics of the programming language. The extensible and verifiable refactoring definitions can be executed in our interpreter built on top of a static analyser framework.Comment: In Proceedings VPT 2017, arXiv:1708.0688
    • ā€¦
    corecore