
GT-VC 2005 Preliminary Version

Graphical Verification of a Spatial Logic
for the π-calculus

Fabio Gadducci 1 and Alberto Lluch Lafuente 2

Dipartimento di Informatica, Università di Pisa
largo Bruno Pontecorvo 3c, I-56127 Pisa, Italia

Abstract

The paper introduces a novel approach to the verification of spatial properties for fi-
nite π-calculus specifications. The mechanism is based on a recently proposed graph-
ical encoding for mobile calculi: Each process is mapped into a (ranked) graph, such
that the denotation is fully abstract with respect to the usual structural congruence
(i.e., two processes are equivalent exactly when the corresponding encodings yield
the same graph). Spatial properties for reasoning about the behavior and the struc-
ture of π-calculus processes are then expressed in a logic introduced by Caires, and
they are verified on the graphical encoding of a process, rather than on its textual
representation. More precisely, the graphical presentation allows for providing a sim-
ple and easy to implement verification algorithm based on the graphical encoding
(returning true if and only if a given process verifies a given spatial formula).

Key words: Process calculi, spatial logic, verification.

1 Introduction

A recent series of papers advocated spatial logics as a suitable formalism for ex-
pressing behavioral and spatial properties of system specifications, often given
as processes of a calculus. Besides the temporal modalities of the Hennessy-
Milner tradition, these logics include operators for reasoning about the struc-
tural properties of a system. For example, the connective void represents the
(processes structurally congruent to the) empty system, and the formula φ1|φ2

is satisfied by those processes that can be decomposed into two parallel compo-
nents, satisfying φ1 and φ2, respectively. Moreover, these logics come equipped
with mechanisms for reasoning about the names occurring in a system.

� Work partly supported by the EU within the project HPRN-CT-2002-00275 SegraVis
(Syntactic and Semantic Integration of Visual Modelling Techniques).
1 Email: gadducci@di.unipi.it
2 Email: lafuente@di.unipi.it

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

41
Graph Transformation for Verification and Concurrency (pre-proceedings)
CTIT Technical Report 05-34, University of Twente, August 2005

CORE Metadata, citation and similar papers at core.ac.uk

Provided by IMT Institutional Repository

https://core.ac.uk/display/12096141?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Gadducci and Lluch Lafuente

There are several approaches to the verification of spatial properties, on
logics either for process calculi (see e.g. [2,4,3] and the references therein) or
for other data structures such as heaps [14], trees [6], and graphs [5]. In this
paper we propose a novel approach to the verification of spatial formulae [2]
for finite π-calculus specifications, based on a graphical encoding for nominal
calculi [8]. Even if a few articles have been already proposed on the verifi-
cation of graphically described systems (see e.g [1,13,16]), to the best of our
knowledge this is the first attempt to the model-checking of spatial properties
for processes of nominal calculi, based on a graphical presentation.

Our paper is to be considered a combination of the graphical encoding of
the π-calculus in [8] and of the verification techniques for spatial properties
in [2], and it provides mechanisms for checking spatial formulae on the graph-
ical representation of processes. Even if the present work focuses on the finite
fragment of the π-calculus (hence on the recursion-free formulae of the spatial
logic), we believe that it may offer novel insights on the model-checking of
spatial formulae, possibly linking it to the standard logics for graphs; more-
over, it offers further evidence of the adequacy of graph-based formalisms for
system design and verification.

The structure of the paper is as follows. Section 2 presents the finite frag-
ment of the π-calculus and the spatial logic for processes proposed in [2].
Section 3 recalls the main definitions concerning ranked graphs [7]. Section 4
presents an encoding of π-calculus processes into ranked graphs, streamlining
the proposal already discussed in [8]. Section 5 proposes our algorithm for
the verification of (closed) spatial formulae, briefly discussing its computa-
tional costs. The final section outlines future research avenues. Due to space
constraints, (sketches of) the proofs are included in an appendix.

2 The π-calculus and a Spatial Logic

2.1 Synchronous (finite) π-calculus

We now introduce the finite, sum-free fragment of synchronous π-calculus.

Definition 2.1 (processes) Let N be a set of names, ranged over by
a, b, c, . . .; and let ∆ = {a(b), ab | a, b ∈ N} be the set of prefix operators,
ranged over by δ. A process P is a term generated by the syntax

P ::= 0 | (νa)P | P |P | δ.P

We let P, Q, R, . . . range over the set P of processes.

The standard definition for the set of free names of a process P , denoted by
fn(P), is assumed. Similarly for α-convertibility, with respect to the restriction
operators (νa)P and the input operators b(a).P : In both cases, the name a is
bound in P , and it can be freely α-converted.

2

42
Graph Transformation for Verification and Concurrency (pre-proceedings)

CTIT Technical Report 05-34, University of Twente, August 2005

Gadducci and Lluch Lafuente

Using the definitions above, the behavior of a process P is described as
a relation over abstract processes, i.e., a relation obtained by closing a set of
basic rules under structural congruence.

Definition 2.2 (structural congruence) The structural congruence for
processes is the relation ≡⊆ P × P, closed under process construction and
α-conversion, inductively generated by the following set of axioms

P | Q = Q | P P | (Q | R) = (P | Q) | R P | 0 = P (νa)0 = 0

(νa)(νb)P = (νb)(νa)P (νa)(P | Q) = P | (νa)Q for a �∈ fn(P)

Definition 2.3 (reduction semantics) The reduction relation for pro-
cesses is the relation Rπ ⊆ P × P, closed under the structural congruence
≡, inductively generated by the following set of axioms and inference rules

a(b).P | ac.Q → P{c/b} | Q

P → Q

(νa)P → (νa)Q

P → Q

P | R → Q | R

where P → Q means that (P, Q) ∈ Rπ.

The first rule denotes the communication between two processes: Process
ac.Q is ready to communicate the (possibly global) name c along the channel a;
it then synchronizes with process a(b).P , and the local name b is substituted by
c on the residual process P . The latter rules state the closure of the reduction
relation with respect to the operators of restriction and parallel composition.

Finally, we present the commitment relation, a variant of the standard
labeled transition system semantics, introduced in [2] for verification purposes.

Definition 2.4 (commitment semantics) Let Λ = {τ} � ∆ be the set of
commitment labels, ranged over by λ. The commitment relation for processes
is the relation Rc ⊆ P × Λ × P, closed under the structural congruence ≡,
inductively generated by the following set of axioms and inference rules

P → Q

P
τ→ Q

a, c �∈ N

(νN)(ac.P |Q)
ac→ (νN)(P |Q)

a, c �∈ N

(νN)(a(b).P |Q)
a(c)→ (νN)(P{c/b}|Q)

where P
λ→ Q means that 〈P, λ, Q〉 ∈ Rc and (νN) stands for (νa1) . . . (νak)

for any finite N = {a1, . . . , ak} ⊂ N .

Example 2.5 Let us consider the process race ≡ (νa)ba.aa | b(d).dc. The
sub-process on the left is ready to send a bound name a via a channel b.
After a scope extension of the restriction operator, a possible commitment of
race thus consists of a synchronization on b: race

τ→ (νa)(aa | ac). The
residual process is deadlocked, since the restriction forbids a to be observed.
Removing the restriction results in a process that may perform commitments

aa | ac
aa−→ ac (a sent over a) and aa | ac

ac−→ aa (c sent over a).

3

43
Graph Transformation for Verification and Concurrency (pre-proceedings)
CTIT Technical Report 05-34, University of Twente, August 2005

Gadducci and Lluch Lafuente

2.2 Spatial logic

This section recalls the finite fragment of the spatial logic presented in [2].

Definition 2.6 (logic syntax) Let V be a set of name variables, ranged
over by x, y, . . ., and let Ξ = Λ∪{xy, x(y) | x, y ∈ V } be the set of observables,
ranged over by ξ. A spatial formula is a term generated by the syntax

φ ::= T | ¬φ | φ ∨ φ | void | φ|φ | η�φ | ∃x.φ | Ix.φ | η = η | 〈ξ〉φ

where η ∈ V �N . We let φ, φ1, . . . range over the set SF of spatial formulae.

Boolean connectives have the usual meaning; void characterizes processes
that are structurally congruent to the empty process; φ1|φ2 holds for processes
that are structurally congruent to the composition of two sub-processes, sat-
isfying φ1 and φ2, respectively; η�φ is true for those processes such that φ
holds after the revelation of name η; ∃x.φ and Ix.φ characterize processes
such that φ holds for a name in N and a fresh name in N (see below), re-
spectively; η1 = η2 requires η1 and η2 to be equal; and 〈λ〉φ is satisfied by a
process P if P can be committed into Q with label λ and Q satisfies φ.

A formula is closed if all its variables occur inside the scope of either an
existential or a fresh quantifier. The set of free names of a formula φ, denoted
as ffn(φ), is defined in the obvious way, since the only binding operators are
the name quantifiers. A name is fresh with respect to a formula (process) if it
is different from any free name of the formula (process, respectively).

Definition 2.7 (logic semantics) The denotation �φ�, mapping a closed
formula φ into a set of abstract processes, is defined by

�T � = P �a�φ� = {P | ∃P ′.P ≡ (νa)P ′ and P ′ ∈ �φ�}
�¬φ� = P \ �φ� �∃x.φ� =

⋃
a∈N �φ{a/x}�

�φ1 ∨ φ2� = �φ1� ∪ �φ2� �Ix.φ� =
⋃

a�∈ffn(φ)(�φ{a/x}� \ {P | a ∈ fn(P)})

�void� = {P | P ≡ 0} �a = b� =

⎧⎨
⎩

P if a = b

∅ otherwise

�φ1|φ2� = {P | ∃P1, P2.P ≡ P1|P2 and P1 ∈ �φ1� and P2 ∈ �φ2�}
�〈λ〉φ� = {P | ∃Q.P

λ→ Q and Q ∈ �φ�}
In addition to the usual abbreviations, we shall use the hidden name quan-

tifier (Hx.φ ≡ Ix.x�φ) for existentially quantifying over restricted names.

Example 2.8 (a spatial property) In our running example two component
processes are ready to send distinct names over the same restricted channel
after a synchronization. We may express that property by the formula

crash ≡ Hx.∃y.∃z.y �= z ∧ 〈τ〉(〈xy〉T | 〈xz〉T)

4

44
Graph Transformation for Verification and Concurrency (pre-proceedings)

CTIT Technical Report 05-34, University of Twente, August 2005

Gadducci and Lluch Lafuente

Explicitly, the formula first quantifies over all the possible restricted names
x. Then, it quantifies over all pairs of different names y, z such that after a
synchronization the residual process can be decomposed into two components,
sending names y and z, respectively, on the same channel x.

2.3 Some technical results

We state some technical lemmas. The first recalls Gabbay-Pitts Property [2].

Proposition 2.9 (Gabbay-Pitts) Let P be a process, and let φ be a formula
such that x is the only free variable. Then

(i) P ∈ �Ix.φ� iff P ∈ ⋂
a�∈(fn(P)∪ffn(φ))�φ{a/x}�.

(ii) P ∈ �∃x.φ� iff P ∈ �Ix.φ� or P ∈ ⋃
a∈(fn(P)∪ffn(φ))�φ{a/x}�.

These properties make existential and fresh quantification decidable. Con-
sider item 1 : By definition, the semantics of the fresh name quantifier is given
in terms of the union over the substitution with those names appearing neither
in P nor in φ; hence, fresh quantification Ix.φ can be decided by substituting
any fresh name for variable x in φ, and then checking the resulting formula.

The second lemma describes a normal form for processes. This result is used
on Proposition 2.11: It concerns the revelation operator, stating that only a
finite set of instances for the channel to be revealed has to be considered.

Lemma 2.10 (normal forms) Let P be a process. Then, P is structurally
congruent to a process (νa1) . . . (νan)(P1 | . . . | Pm), such that all ai’s are
different names, all Pj’s are prefixed processes, and {a1, . . . , an} ⊆ ⋃

j fn(Pj).

We then denote a normal form as (νN)Q, for Q a set of prefixed processes,
since the order of restriction operators and parallel compositions is immaterial.

Proposition 2.11 (revelation set) Let P be a process and a�φ a closed
formula. Then, P ∈ �a�φ� iff a �∈ fn(P) and either (i) P ∈ �φ�; or (ii)
(νa)(νN)Q is a normal form of P and (νN)Q ∈ �φ�.

In order to verify if a�φ holds in process P , the check that a is not free
in P is firstly performed; then it suffices either to check again P , or to fix a
normal form (νN)Q for P and check all those processes obtained by revealing
any restricted name as a. This result will simplify the verification procedure,
since the normal form directly corresponds to the graphical representation.

3 Graphs and their Ranked Version

We recall a few definitions concerning (labeled hyper-)graphs, and their ranked
extension, referring to [7] for a detailed introduction and a comparison with
the standard presentation [11]. In the following we assume a chosen signature
(Σ, S), for Σ a set of operators (edge labels), and S a set of sorts (node labels),
such that the arity of an operator in Σ is a pair (s, ω), for ω ∈ S∗ and s ∈ S.

5

45
Graph Transformation for Verification and Concurrency (pre-proceedings)
CTIT Technical Report 05-34, University of Twente, August 2005

Gadducci and Lluch Lafuente

Definition 3.1 (graphs) A graph d (over (Σ, S)) is a tuple 〈N, E, l, s, t〉,
where N , E are the sets of nodes and edges; l is the pair of labeling functions
le : E → Σ, ln : N → S; s : E → N and t : E → N∗ are the source
and target functions; and such that for each edge e ∈ E, the arity of le(e) is
(ln(s(e)), l∗n(t(e))), i.e., each edge preserves the arity of its label.

With an abuse of notation, in the definition above we let l∗n stand for the
extension of the function ln from nodes to strings of nodes; sometimes, we use
l as a shorthand for ln and le. In the following, we denote the components of
a graph d by Nd, Ed, ld, sd and td, dropping the subscript whenever clear.

In order to define the process encoding, we need operations on graphs. The
first step is to equip them with “handles” for interacting with an environment.

Definition 3.2 (ranked graphs) Let dr, dv be graphs with no edges. A
(dr, dv)-ranked graph (a graph of rank (dr, dv)) is a triple g = 〈r, d, v〉, for
d a graph and r : dr → d, v : dv → d the root and variable morphisms.

Let g, g′ be ranked graphs of the same rank. A ranked graph morphism
f : g → g′ is a graph morphism fd : d → d′ between the underlying graphs that
preserves the root and variable morphisms.

We let dr
r⇒ d

v⇐ dv denote the (dr, dv)-ranked graph d. With an abuse of
notation, we sometimes refer to the image of the root and variable morphisms
as roots and variables, respectively. More importantly, in the following we will
often refer implicitly to a ranked graph as the representative of its isomorphism
class, still using the same symbols to denote it and its components.

Definition 3.3 (sequential and parallel composition) Let G = dr
r⇒

d
v⇐ di and H = di

r′⇒ d′ v′⇐ dv be ranked graphs. Then, their sequential

composition is the ranked graph G ◦ H = dr
r′′⇒ d′′ v′′⇐ dv, for d′′ the disjoint

union d � d′, modulo the equivalence on nodes induced by v(x) = r′(x) for all
x ∈ Ndi

, and r′′ : dr → d′′, v′′ : dv → d′′ the uniquely induced arrows.

Let G = dr
r⇒ d

v⇐ dv and H = d′
r

r′⇒ d′ v′⇐ d′
vbe ranked graphs. Then, their

parallel composition is the ranked graph G⊗H = (dr ∪ d′
r)

r′′⇒ d′′ v′′⇐ (dv ∪ d′
v),

for d′′ the disjoint union d � d′, modulo the equivalence on nodes induced by
r(x) = r′(x) for all x ∈ Ndr ∩Nd′r and v(y) = v′(y) for all y ∈ Ndv ∩Nd′v , and
r′′ : dr ∪ d′

r → d′′, v′′ : dv ∪ d′
v → d′′ the uniquely induced arrows.

The sequential composition G ◦H is obtained by taking the disjoint union
of the graphs underlying G and H, and gluing the variables of G with the
corresponding roots of H. Similarly, the parallel composition G⊗H is obtained
by taking the disjoint union of the graphs underlying G and H, and gluing
the roots (variables) of G with the corresponding roots (variables) of H.

The two operations are concretely defined, but they are intended to act
on isomorphic classes of ranked graphs (hence, with the same rank). In fact,
the result is clearly independent of the choice of the representative, up-to
isomorphism. Moreover, the operators then become associative.

6

46
Graph Transformation for Verification and Concurrency (pre-proceedings)

CTIT Technical Report 05-34, University of Twente, August 2005

Gadducci and Lluch Lafuente

p �� • �� out ��

��

��

• p��

◦ b��

◦ a��

p �� • �� out ��

����

•
a �� ◦ a��

b �� ◦ b��

Fig. 1. Ranked graphs outb,a (left) and �aa� ⊗ id{a,b} (right).

p �� • �� out
0 ��

2
��

1 ��

• �� out ��

��
��

•
◦ a��

◦ b��

◦ b��

p �� • �� in
0 ��

2
��

1
		

• �� out
0 ��

1

2 ��

•
◦ c��

◦

Fig. 2. Ranked graphs outb,a ◦ (�aa� ⊗ id{a,b}) (left) and �b(d).dc� (right).

out
0 ��

2
��

1
��

• �� out ��

����

•
p �� •

		

◦ a��

◦ b��

in
0 ��

2
��

1 ��

• �� out
0 ��

1

��

2
��• ◦ c��

◦

Fig. 3. The ranked graph �ba.aa� ⊗ �b(d).dc�.

Example 3.4 (some graphs) Fig. 1 depicts two ranked graphs (part of the
encoding of our running example): Their sequential composition appears in
Fig. 2 (left). Fig. 3 represents the parallel composition of the graphs in Fig. 2.

The nodes in the domain of the root (variable) morphism are depicted as
a vertical sequence on the left (right, resp.); the variable and root morphisms
are represented by dotted arrows, directed from right-to-left and left-to-right,
respectively. Edges are represented by a boxed label, from where arrows pointing
to the target nodes leave, and to where the arrow from the source node arrives;
the sequence of target nodes is usually the clockwise order of the start points of
the tentacles, even if sometimes it is indicated by a numbering on the tentacles:
For the edge of the leftmost graph of Fig. 1 the sequence is (v(p), v(b), v(a)).

The leftmost graph of Fig. 1 has rank ({p}, {p, a, b}), four nodes and one
edge labeled by out; the rightmost graph has rank ({p, a, b}, {a, b}), four nodes
and one edge labeled by out. For graphical convenience, nodes with different
labels appearing in the underlying graph are also denoted differently.

A graph expression is a term for the syntax containing ranked graphs as
constants, and parallel and sequential composition as operators. An expression
is well-formed if all occurrences of these operators are defined for the rank
of the sub-expressions, according to Definition 3.3: Its rank is inductively
computed and its value is the graph obtained by evaluating its operators.

7

47
Graph Transformation for Verification and Concurrency (pre-proceedings)
CTIT Technical Report 05-34, University of Twente, August 2005

Gadducci and Lluch Lafuente

• p��

p �� • �� op

��

��

��

◦ a��

◦ b��

p �� •
��
ν

��◦ a��

a �� ◦ a�� a �� ◦ p �� •

Fig. 4. Ranked graphs opa,b (for op ∈ {in, out}), νa, ida, 0a and 0p.

4 From Processes to Graphs

We now present the encoding of π-calculus processes into ranked graphs, based
on the encoding presented in [8]. It is built out of a signature (Σπ, Sπ), and
it preserves structural congruence. The set of sorts Sπ is Intuitively, a graph
reachable from a node of sort sp corresponds to a process, while each node
of sort sn represents a name. The set Σπ contains three operators: {in, out}
of sort (sp, spsnsn), and {ν} of sort (sp, sn). Clearly, the operators in and out
simulate the input and output prefixes, respectively; and operator ν stands for
restriction. Furthermore, please note that there is instead no explicit operator
accounting parallel composition.

The second step is the characterization of a class of graphs, such that all
processes can be encoded into an expression containing only those graphs as
constants, and parallel and sequential composition as binary operators. Let
p �∈ N : Our choice is depicted in Fig. 4, for all a, b ∈ N .

Finally, let idΓ be a shorthand of
⊗

x∈Γ idx, for a set Γ of names (since the
ordering is immaterial). Finally, The encoding of processes into ranked graphs,
mapping each finite process into a graph expression, is presented below.

Definition 4.1 (encoding for processes) Let P be a process. The encod-
ing �P�, mapping a process P into a ranked graph, is defined by structural
induction according to the following rules

�(νa)P� =

⎧⎨
⎩

�P� if a �∈ fn(P)

(�P� ⊗ νa) ◦ (0a ⊗ idfn(P)\{a}) otherwise

�P | Q� = �P� ⊗ �Q�

�0� = 0p

�ab.P� = outa,b ◦ (�P� ⊗ id{a,b})

�a(b).P� = ina,b ◦ (�P� ⊗ id{a,b}) ◦ (0b ⊗ idfn(P)\{b})

Note the conditional rule for (νa).P : It is required for removing the occur-
rence of useless restriction operators, i.e., those binding a name not occurring
in the process. The mapping is well-defined, since the resulting graph expres-
sion is well-formed, and the encoding �P� is a graph of rank ({p}, fn(P)).

8

48
Graph Transformation for Verification and Concurrency (pre-proceedings)

CTIT Technical Report 05-34, University of Twente, August 2005

Gadducci and Lluch Lafuente

ν

��

out
0 ��

2
��

1
��

• �� out ��

����

•
p �� •

��

		

◦

◦ b��

in
0 ��

2
��

1 ��

• �� out
0 ��

1

��

2
��• ◦ c��

◦

Fig. 5. The ranked graph �(νa)ba.aa | b(d).dc�.

Example 4.2 (mapping a process) In order to give some intuition about
the intended meaning of the previous rules, we show the construction of the
encoding for the process ba.aa (a subprocess of our running example) whose
graphical representation is depicted in Figure 2 (left)

�ba.aa� = outb,a ◦ (�aa�⊗ id{a,b}) = outb,a ◦ ((outa,a ◦ (0p ⊗ id{a}))⊗ id{a,b})

The denotation of (�aa�⊗id{a,b}) coincides with (outa,a⊗id{a,b})◦(0p⊗id{a,b}),
and the latter is clearly matched by its graphical representation. On the other
hand, the graphical representation of �race� is depicted in Fig. 5.

The mapping �·� is not surjective, since there are graphs of rank ({p}, Γ)
that are not image of any process. Nevertheless, let us assume that we restrict
our attention to processes verifying a simple syntactical condition, namely,
forbidding the occurrences of input prefixes such as a(a). Then, our encoding
is sound and complete, as stated by the proposition below (adapted from [8]).

Proposition 4.3 Let P , Q be processes. Then, P ≡ Q iff �P� = �Q�.

5 A Verification Algorithm

This section introduces an algorithm for verifying spatial formulae over the
graphical representation of processes. It takes as input a closed formula φ to
be verified and a ranked graph G = r ⇒ d ⇐ v such that G = �P� for some
process P , and returns a boolean, namely, true if P ∈ �φ�, false otherwise. It is
defined by case induction on the formula to be verified, exploiting the structure
of the graphical encoding. For any process P , the first call is eval(�P�, φ).

Checking Booleans, Void and Name equality. The procedures to evaluate
boolean formulae and name equality are self-explaining, and checking void

just consists on determining whether d has no edge.

case T return true;
case ¬φ return ¬eval(G, φ);
case φ1 ∨ φ2 return eval(G, φ1) ∨ eval(G, φ2);
case void if Ed = ∅ then return true else return false;
case a = b return a = b;

9

49
Graph Transformation for Verification and Concurrency (pre-proceedings)
CTIT Technical Report 05-34, University of Twente, August 2005

Gadducci and Lluch Lafuente

Checking Composition (φ1 | φ2). The algorithm builds all pairs that cor-
respond to a decomposition of the graph under consideration. These graphs
are obtained by splitting the set of edges outgoing from the root that are not
labeled with ν. This latter set is denoted by E in the pseudo-code below.

case φ1|φ2

E ← {e ∈ Ed | sd(e) = r(p) and ld(e) �= ν};
R ← {(n, e) ∈ Nd × Ed | sd(e) = r(p) ∧ ld(e) = ν ∧ td(e) = n};
foreach E1 ∈ 2E do

G1 ← sub-ranked graph of G generated by E1;
G2 ← sub-ranked graph of G generated by E \ E1;
foreach (n, e) ∈ R do

if n ∈ d1 and n ∈ d2 then continue outermost loop;
if n ∈ d1 then d1 ← d1 ∪ {e};
if n ∈ d2 then d2 ← d2 ∪ {e};

if eval(G1, φ1) ∧ eval(G2, φ2) then return true;
return false;

Intuitively, each edge in E corresponds to a prefixed sub-process of the process
represented by G. However, not every graph decomposition correspond to a
correct process decomposition, and the reason for this is basically pinpointed
by the structural axiom (νa)(P | Q) = P | (νa)Q for a �∈ fn(P). In other
terms, after choosing a graph decomposition G1 and G2, it is necessary to
consider all the names in the scope of a restriction operator placed on top
of the process, and to check that each name occurs only in one of the two
graphs. Hence, the procedure computes the set R of restricted nodes (together
with the corresponding edges), and it checks for each restricted node n in
R whether n belongs to both d1 and d2. If this is the case, then the chosen
graph decomposition is not valid, since the name corresponding to ln(n) would
occur free in both sub-processes. On the other hand, if n occurs in only one
of the di’s, the restriction edge is added to the corresponding ranked graph.
After checking every restricted node in R, the algorithm recursively evaluates
whether G1 satisfies φ1 and G2 satisfies φ2.

Sub-ranked graphs are defined in the appendix. They correspond to the usual
sub-graphs reachable from a node (namely r(p)) and a set of adjacent edges,
and they are built in linear complexity by a depth-first exploration.

Checking Name Quantification (∃x.φ). We exploit Proposition 2.9 and let
x range on the nodes in dv ∪ ffn(φ), since dv represent the free names in the
process encoded by G. If the result is negative in all such cases, we check if
φ{a/x} holds, for fresh name a, relying on the case for fresh quantification.

case ∃x.φ
foreach a ∈ dv ∪ ffn(φ) do if eval(G, φ{a/x}) then return true;
return eval(G, Ix.φ);

10

50
Graph Transformation for Verification and Concurrency (pre-proceedings)

CTIT Technical Report 05-34, University of Twente, August 2005

Gadducci and Lluch Lafuente

Checking Fresh Quantification (Ix.φ). Once more we exploit Proposi-
tion 2.9. We let a be a name neither in dv nor in ffn(φ), i.e., a name that is
fresh for both the process and the formula. Then, we evaluate φ{a/x} on G.

case Ix.φ
a ← new name not in dv ∪ ffn(φ);
return eval(G, φ{a/x});
Checking commitment (〈λ〉φ). The algorithm distinguishes three different

cases for λ. If λ is τ then the algorithm looks for an out-labeled edge and an
in-labeled edge which operate on the same name node. Once such a pair is
found a synchronization is simulated by building the residual graph, i.e., by
coalescing the continuations of the two operators with the root of the process
and the node being sent with the node being received. The procedure then
removes the two involved edges, and it performs a garbage collection, deleting
the useless occurrences of the restriction operator and all the isolated nodes
(i.e., those nodes that appeared uniquely in the target sequence of the removed
operators); finally, the algorithm checks whether φ holds in the resulting graph.
Input and output commitments are computed similarly.

case 〈λ〉φ
if λ = τ then

foreach e1, e2 ∈ Ed with ld(e1) = out and ld(e2) = in do
if sd(e1) = sd(e2) = r(p) and td(e1)[1] = td(e2)[1] then

G1 ← G; d1 ← d{r(p)=td(e1)[0]=td(e2)[0],td(e1)[2]=td(e2)[2]} \ {e1, e2};
G1 ← gc(G1);
if eval(G1, φ) then return true;

if λ = ab then
foreach e ∈ Ed with ld(e) = out do

if sd(e) = r(p) and td(e)[1] = v(a) and td(e)[2] = v(b) then
G1 ← G; d1 ← d{r(p)=td(e)[0]} \ {e}; G1 ← gc(G1);
if eval(G1, φ) then return true;

if λ = a(b) then
foreach e ∈ Ed with ld(e) = in do

if sd(e) = r(p) and td(e)[1] = v(a) then
G1 ← G; d1 ← d{r(p)=td(e)[0]} \ {e}; dv1 ← dv ∪ {b};
v1 ← v ∪ {b �→ td(e)[2]}; G1 ← gc(G1);
if eval(G1, φ) then return true;

return false;

The garbage collection phase gc(G1) takes linear time, since it checks the
connectivity for at most three nodes. It ensures that the resulting graph rep-
resents the encoding of the residual process after the commitment: To this
end, garbage collection may also remove nodes from the variable graph.

Note that, even if not explicitly stated, the occurrence of labels as x(x) in
a formula is forbidden and the algorithm returns false whenever a(a) is met.

11

51
Graph Transformation for Verification and Concurrency (pre-proceedings)
CTIT Technical Report 05-34, University of Twente, August 2005

Gadducci and Lluch Lafuente

out ��

��
��

•
p �� •

��

◦ a��

out ��

��

��

•
◦ c��

•
p �� • �� out

��

��
�� ◦ a��

•
p �� • �� out

��

��

��

◦ a��

◦ c��

Fig. 6. The ranked graph �aa | ac� (left) and two sub-ranked graphs (right).

Checking Revelation (a�φ). According to Proposition 2.11, the algorithm
first checks whether a is free in the process represented by G, that is, if it
belongs to dv. If this fails, the algorithm then tries to check whether P satisfies
φ. Finally, it reveals any restricted node as a: This is done by removing ν-
labeled edges outgoing from the root of d and adding a to the variables.

case a�φ
if a ∈ dv then return false;
if eval(G, φ) then return true;
foreach e ∈ Ed with ld(e) = ν and sd(e) = r(p) do

G1 ← G; Ed1 ← Ed \ {e}; dv1 ← dv ∪ {a}; v1 ← v ∪ {a �→ td(e)[0]};
if eval(G1, φ) then return true;

return false;

Example 5.1 Does race ≡ (νa)ba.aa | b(d).dc satisfy the property crash ≡
Hx.∃y.∃z.y �= z ∧ 〈τ〉(〈xy〉T | 〈xz〉T)? The algorithm will first try and fix x
as a fresh name (say a) and try to reveal it as one of the restricted names in
�race�. Thus, x is revealed as a and the ranked graph depicted in Fig. 3 is
constructed. Next, the algorithm will try and find a synchronization. The input
and output edges, communicating on node b, are found and the residual graph
is constructed: This latter is depicted in Fig. 6 (left). Then, the algorithm looks
at every possible decomposition, which in this case (apart from the trivial ones
where one component is void) are two, namely the two possibilities to form
an ordered pair with the two out-labeled edges. The corresponding sub-ranked
graphs are represented in Fig. 6 (right). In the decomposition formed with first
the top graph and then the bottom graph the algorithm will successfully find
the commitments sending a and c on channel a, thus returning true.

We now state the correctness of the proposed evaluation procedure.

Theorem 5.2 (correct algorithms) Let P be a process and φ a closed for-
mula. Then, P ∈ �φ� iff eval(�P�, φ) = true.

Concerning the complexity of the algorithm, most of the operations rely
on enumerating sets of edges or nodes and thus require polynomial time. The
only exception is the verification of composition, where an exponential number
of decompositions has to be considered.

12

52
Graph Transformation for Verification and Concurrency (pre-proceedings)

CTIT Technical Report 05-34, University of Twente, August 2005

Gadducci and Lluch Lafuente

6 Conclusions and Future Work

The paper introduced a graph-based technique for the verification of spatial
properties of finite π-calculus specifications. We considered only the deter-
ministic fragment of the calculus, in order to offer as simple a presentation as
possible: The choice operator could be included without major efferts.

Besides being intuition appealing, the graphical presentation offers canon-
ical representatives for abstract processes, since two processes are structurally
congruent iff they are mapped to the same ranked graph (up to isomorphism).
The encoding has also a unique advantage with respect to most of the ap-
proaches to the graphical implementation of calculi with name mobility (such
as Milner’s bigraphs [10]): It allows for the reuse of standard graph transforma-
tion theory and tools for simulating the reduction semantics of the calculus [8].

The paper offers an effective mechanism for the verification of spatial prop-
erties, thus presenting a constructive alternative to the techniques proposed
in [2]. In fact, even if no formal comparison is drawn, our algorithm on graphs
exploits a “normal form” representation for processes that seems to be under-
lying also the model-checker proposed in [15]. Concerning efficiency, our worst
case is the verification of parallel composition, since graph decomposition is
exponential for general formulas. Again, no comparison can be traced to the
results in [15], since the efficiency for their algorithms is not fully reported.

We are not aware of any other tool for model-checking formulas of spatial
logics with respect to processes of π-calculus. However, besides any consid-
eration on the efficiency and usability of our algorithm, we believe that a
main contribution of our paper is the further illustration of the usefulness of
graphical techniques for the design and validation of concurrent systems: The
claim is supported by a sound and complete encoding of spatial formulae into
formulae of a temporal graph logic that is going to appear elsewhere.

The present proposal restricts to the finite fragment of the π-calculus. We
are currently investigating how to generalize our approach in order to include
recursive specifications, and thus considering the full spatial logic of [2]. The
original graphical encoding of [8] already considers recursive processes, hence
our main efforts are going to focus on extending the algorithm. Finally, we
are planning an implementation of our approach, possibly by integrating it in
existing tools for the analysis of graphically designed systems, such as [9,12].

References

[1] Baldan, P., A. Corradini and B. Köenig, A static analysis technique for graph
transformation systems, in: K. Larsen and M. Nielsen, editors, Concurrency
Theory, Lect. Notes in Comp. Sci. 2154 (2001), pp. 381–395.

[2] Caires, L., Behavioral and spatial observations in a logic for the π-calculus,
in: I. Walukiewicz, editor, Foundations of Software Science and Computation
Structures, Lect. Notes in Comp. Sci. 2987 (2004), pp. 72–87.

13

53
Graph Transformation for Verification and Concurrency (pre-proceedings)
CTIT Technical Report 05-34, University of Twente, August 2005

Gadducci and Lluch Lafuente

[3] Caires, L. and L. Cardelli, A spatial logic for concurrency (part I), Information
and Computation 186 (2003), pp. 194–235.

[4] Caires, L. and L. Cardelli, A spatial logic for concurrency – II, Theor. Comp.
Sci. 322 (2004), pp. 517–565.

[5] Cardelli, L., P. Gardner and G. Ghelli, A spatial logic for querying graphs, in:
P. Widmayer and F. Trigueiro Ruiz et alii, editors, Automata, Languages and
Programming, Lect. Notes in Comp. Sci. 2380 (2002), pp. 597–610.

[6] Cardelli, L., P. Gardner and G. Ghelli, Manipulating trees with hidden labels,
in: A. Gordon, editor, Foundations of Software Science and Computation
Structures, Lect. Notes in Comp. Sci. 2620 (2003), pp. 216–232.

[7] Corradini, A. and F. Gadducci, An algebraic presentation of term graphs, via
gs-monoidal categories, Applied Categorical Structures 7 (1999), pp. 299–331.

[8] Gadducci, F., Term graph rewriting and the π-calculus, in: A. Ohori, editor,
Programming Languages and Semantics, Lect. Notes in Comp. Sci. 2895 (2003),
pp. 37–54.

[9] Kozioura, V. and B. König, AUGUR: An unfolding-based verification tool
for GTS, available at http://www.fmi.uni-stuttgart.de/szs/tools/augur
(2005).

[10] Milner, R., Bigraphical reactive systems, in: K. Larsen and M. Nielsen, editors,
Concurrency Theory, Lect. Notes in Comp. Sci. 2154 (2001), pp. 16–35.

[11] Plump, D., Term graph rewriting, in: H. Ehrig and G. Engels et alii, editors,
Handbook of Graph Grammars and Computing by Graph Transformation, II:
Applications, Languages and Tools, Theoretical Computer Science 2, World
Scientific, 1999 pp. 3–61.

[12] Rensink, A., The GROOVE simulator: A tool for state space generation,
in: J. Pfaltz, M. Nagl and B. Böhlen, editors, Applications of Graph
Transformations with Industrial Relevance, Lect. Notes in Comp. Sci. 3062
(2003), pp. 479–485, tool available at http://sourceforge.net/projects/
groove.

[13] Rensink, A., Towards model checking graph grammars, in: M. Leuschel,
S. Gruner and S. Lo Presti, editors, Automated Verification of Critical Systems,
University of Southampton Technical Reports DSSE–TR–2003–2 (2003), pp.
150–160.

[14] Reynolds, J., Separation logic: A logic for shared mutable data structures, in:
Logic in Computer Science (2002), pp. 55–74.

[15] Torres Vieira, H. and L. Caires, The spatial logic model checker user’s
manual, Technical Report TR-DI/FCT/UNL-03/2004, Faculty of Science and
Technology, New University of Lisbon (2004).

[16] Varró, D., Automated formal verification of visual modeling languages by model
checking, Software and Systems Modeling 3 (2004), pp. 85–113.

14

54
Graph Transformation for Verification and Concurrency (pre-proceedings)

CTIT Technical Report 05-34, University of Twente, August 2005

Gadducci and Lluch Lafuente

A Technicalities and Proofs

Proposition 2.11 (revelation set) Let P be a process and a�φ a closed
formula. Then, P ∈ �a�φ� iff a �∈ fn(P) and either (i) P ∈ �φ�; or (ii)
(νa)(νN)Q is a normal form of P and (νN)Q ∈ �φ�.

Proof. By definition, a process P ∈ �a�φ� iff ∃P ′.P ≡ (νa)P ′ and P ′ ∈ �φ�.
Thus, this clearly implies that a �∈ fn(P). So, let us choose such a process
P ′, and let us assume that a �∈ fn(P ′): Then, P ≡ P ′. Otherwise, a normal
form (νM)Q can be obtained for P ′, such that a �∈ M , since structural con-
gruence preserves free variables. And since structural congruence also preserve
satisfiability, then P ≡ (νa)(νM)Q with (νM)Q ∈ �φ�. �

Next we present the definition of ranked graph generated by a set of edges.

Definition A.1 (generated graph) Let G = {p} r⇒ d
v⇐ dv be a ranked

graph, and E ⊆ Ed a set of edges of its underlying graph with source r(p).
Then, the sub-ranked graph of G generated by E is the ranked graph H =

{p} r1⇒ d1
v1⇐ dv1, for d1 the smallest graph containing E and r(p) and satisfying

• ∀e ∈ Ed : e ∈ Ed1 ⇒ ∀i.td(e)[i] ∈ Nd1

• ∀e ∈ Ed : sd(e) ∈ Nd1 \ r(p) ⇒ e ∈ Ed1

• ∀n ∈ dv : v(n) ∈ Nd1 ⇒ n ∈ dv1

where all the derived functions are obviously defined by restriction.

The definition is well-given, since H clearly is a ranked graph.

In order to show the correctness of the algorithms we need some additional
lemmas. The first provides a set-theoretical characterization for those ranked
graphs that are the encoding of a process (recall that �·� is not surjective,
and there are some graphs of rank ({p}, Γ) that are not image of any process.

Lemma A.2 (encoded process) Let G = {p} ⇒ d ⇐ Γ be a ranked graph.
Then, there exists a process P with Γ = fn(P) such that G = �P� iff

(i) d is a connected hyper-tree with r(p) as root;

(ii) leaves of sort sp are in the target on exactly one edge;

(iii) d has no useless restriction edge;

(iv) no variable in Γ is mapped to a bound node in d;

(v) no bound node in d is bounded more than once;

(vi) every free node of d is the image of a variable in Γ;

(vii) if e bounds a node name u and u is in the target of an edge e′ then there
is a path of length 1 or more from sd(e) to sd(e

′).

where a node is bound if it is the first argument of an edge labeled by a restric-
tion or the second argument of an input operator, and free otherwise.

15

55
Graph Transformation for Verification and Concurrency (pre-proceedings)
CTIT Technical Report 05-34, University of Twente, August 2005

Gadducci and Lluch Lafuente

Proof. Suppose G = �P� for some P . It is easy to see that the encoding only
delivers ranked graphs that are connected trees and that satisfy exactly the
conditions listed above.

If G satisfies the above conditions, then we define P as [G]g

[G]g =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(νt(e)[0])[G/{e}]g if ∃e ∈ Ed.l(e) = ν and r(p) = s(e)

t(e)[1]t(e)[2].[G1]
g | [G \ G1]

g if ∃e ∈ Ed.l(e) = out and r(p) = s(e)

t(e)[1](t(e)[2]).[G1]
g | [G \ G1]

g if ∃e ∈ Ed.l(e) = in and r(p) = s(e)

0 otherwise

where G1 is the sub-ranked graph of G generated by a node e with r(p) =
t(e)[0] after its removal, i.e. the sub-ranked graph corresponding to the contin-
uation of the operation represented by e. Clearly, the definition is ambiguous
but all possibilities of choosing e deliver structurally congruent processes.

Moreover, it can be shown that �·� and [·]g are mutually inverse. �

The next lemma states that every ranked graph created during the evalu-
ation of a closed formula corresponds to a process.

Lemma A.3 (algorithm sub-calls) Let P be a process and φ a closed for-
mula. Then, for every sub-call eval(G, φ′) of eval(�P�, φ) there exists a process
Q such that G = �Q�.

The proof of the lemma is a straightforward check that every ranked graph
considered during the evaluation satisfies the conditions of Lemma A.2.

Theorem 5.2 (algorithm soundness) Let P be a process and φ a closed
formula. Then, P ∈ �φ� iff eval(�P�, φ) = true.

Proof. The proof is by induction on P and φ distinguishing the different cases
for φ. Booleans and name equality are trivial.

If φ is void observe that if P ∈ �void� then P ≡ 0. Clearly, the set of
edges in �0� is empty. On the other hand, if we have a ranked graph G = �P�
for some P such that Ed is empty, then P can only be the empty process and
thus P ∈ �void�.

If φ is φ1 | φ2 first observe that every edge in G is necessarily either in G1

or G2. By Lemma A.3, G1 = �Q� and G2 = �R� for some processes Q, R ∈ P.
It is easy to see that G = G1 ⊗ G2, hence P ≡ Q | R. Applying induction we
have that eval(P, φ1 | φ2) implies P ∈ �φ1 | φ2�.

16

56
Graph Transformation for Verification and Concurrency (pre-proceedings)

CTIT Technical Report 05-34, University of Twente, August 2005

Gadducci and Lluch Lafuente

To show the opposite direction assume that P ∈ �φ1 | φ2�. This implies
that there are two processes Q, R such that P ≡ Q | R with Q ∈ �φ1� and
R ∈ �φ2�. Suppose that eval(P, φ1 | φ2) returns false. Since we assume the
induction hypothesis to hold, the only possibility is that the pair of ranked
graphs �Q�, �R� is missed by the algorithm. Let EQ,ER respectively be the
edges of the graphs of �Q� and �R�. Since G can be seen as �Q�⊗ �R�, the
ranked graphs generated by EQ,ER could not be missed. Thus, eval(P, φ1 | φ2)
returns true.

If φ is a�φ1 we use Proposition 2.11. Since dv = fn(P) checking whether
n �∈ dv and checking whether n �∈ fn(P) is the same. By induction the first
sub-call in the procedure is correct. Finally, observe that each of the ranked
graphs G1 considered by the algorithms is the encoding of one the processes
(νM)Q for a �∈ M .

If φ is ∃x.φ1 observe that dv = fn(P). Hence a sub-call eval(G, φ1{a/x})
returns true exactly when P ∈ �φ{a/x}� for some a ∈ fn(P)∪ffn(φ). Applying
induction for the last call of the procedure and by Proposition 2.9 we obtain
the desired result.

If φ is Ix.φ1 we recall again that dv = fn(P) and thus the sub-call
eval(G, φ1{a/x}) returns true exactly when P ∈ �φ{a/x}� for the fresh name
a. By Proposition 2.9 we obtain the desired result.

If φ is 〈λ〉φ1 suppose that λ is τ and that eval(�P�, φ) is true. This im-
plies that the algorithm finds a ranked graph �Q� for some Q such that
eval(�Q�, φ1). It is easy to see that this generation corresponds to a synchro-
nization P

τ→ Q. Hence, we have that P ∈ �φ�. The opposite direction is
similar since the algorithm can not miss any synchronization. The other cases
for λ are similar. �

17

57
Graph Transformation for Verification and Concurrency (pre-proceedings)
CTIT Technical Report 05-34, University of Twente, August 2005

(This page intentionally left blank)

58
Graph Transformation for Verification and Concurrency (pre-proceedings)

CTIT Technical Report 05-34, University of Twente, August 2005

