738 research outputs found

    Models and Methods for Merge-In-Transit Operations

    Get PDF
    We develop integer programming formulations and solution methods for addressing operational issues in merge-in-transit distribution systems. The models account for various complex problem features including the integration of inventory and transportation decisions, the dynamic and multimodal components of the application, and the non-convex piecewise linear structure of the cost functions. To accurately model the cost functions, we introduce disaggregation techniques that allow us to derive a hierarchy of linear programming relaxations. To solve these relaxations, we propose a cutting-plane procedure that combines constraint and variable generation with rounding and branch-and-bound heuristics. We demonstrate the effectiveness of this approach on a large set of test problems with instances with up to almost 500,000 integer variables derived from actual data from the computer industry. Key words : Merge-in-transit distribution systems, logistics, transportation, integer programming, disaggregation, cutting-plane method

    Optimality-based bound contraction with multiparametric disaggregation for the global optimization of mixed-integer bilinear problems

    Get PDF
    We address nonconvex mixed-integer bilinear problems where the main challenge is the computation of a tight upper bound for the objective function to be maximized. This can be obtained by using the recently developed concept of multiparametric disaggregation following the solution of a mixed-integer linear relaxation of the bilinear problem. Besides showing that it can provide tighter bounds than a commercial global optimization solver within a given computational time, we propose to also take advantage of the relaxed formulation for contracting the variables domain and further reduce the optimality gap. Through the solution of a real-life case study from a hydroelectric power system, we show that this can be an efficient approach depending on the problem size. The relaxed formulation from multiparametric formulation is provided for a generic numeric representation system featuring a base between 2 (binary) and 10 (decimal)

    Spatial networks in multi-region computable general equilibrium models:

    Get PDF
    The spatial dimension of economic policy is often important. However, as opposed to partial-equilibrium multi-region programming models, existing multi-region Computable General Equilibrium (CGE) models have rarely explicitly treated geographical space. This paper develops a spatial-network, mixed-complementarity CGE model that combines the strengths of CGE and partial-equilibrium programming models. We implement the model with a prototype data set for a stylized, poor, developing country with rural regions linked to an urban region that provides the gateway to international markets. We demonstrate that the model provides a good framework for analyzing the impact of higher world prices and reduced domestic transportation costs.Equilibrium (Economics), Economic policy., Spatial analysis (Statistics), Computable general equilibrium (CGE).,

    A Comparison of Mixed-Integer Programming Models for Non-Convex Piecewise Linear Cost Minimization Problems

    Get PDF
    We study a generic minimization problem with separable non-convex piecewise linear costs, showing that the linear programming (LP) relaxation of three textbook mixed integer programming formulations each approximates the cost function by its lower convex envelope. We also show a relationship between this result and classical Lagrangian duality theory

    Global optimisation of large-scale quadratic programs: application to short-term planning of industrial refinery-petrochemical complexes

    Get PDF
    This thesis is driven by an industrial problem arising in the short-term planning of an integrated refinery-petrochemical complex (IRPC) in Colombia. The IRPC of interest is composed of 60 industrial plants and a tank farm for crude mixing and fuel blending consisting of 30 additional units. It considers both domestic and imported crude oil supply, as well as refined product imports such as low sulphur diesel and alkylate. This gives rise to a large-scale mixed-integer quadratically constrained quadratic program (MIQCQP) comprising about 7,000 equality constraints with over 35,000 bilinear terms and 280 binary variables describing operating modes for the process units. Four realistic planning scenarios are recreated to study the performance of the algorithms developed through the thesis and compare them to commercial solvers. Local solvers such as SBB and DICOPT cannot reliably solve such large-scale MIQCQPs. Usually, it is challenging to even reach a feasible solution with these solvers, and a heuristic procedure is required to initialize the search. On the other hand, global solvers such as ANTIGONE and BARON determine a feasible solution for all the scenarios analysed, but they are unable to close the relaxation gap to less than 40% on average after 10h of CPU runtime. Overall, this industrial-size problem is thus intractable to global optimality in a monolithic way. The first main contribution of the thesis is a deterministic global optimisation algorithm based on cluster decomposition (CL) that divides the network into groups of process units according to their functionality. The algorithm runs through the sequences of clusters and proceeds by alternating between: (i) the (global) solution of a mixed-integer linear program (MILP), obtained by relaxing the bilinear terms based on their piecewise McCormick envelopes and a dynamic partition of their variable ranges, in order to determine an upper bound on the maximal profit; and (ii) the local solution of a quadratically-constrained quadratic program (QCQP), after fixing the binary variables and initializing the continuous variables to the relaxed MILP solution point, in order to determine a feasible solution (lower bound on the maximal profit). Applied to the base case scenario, the CL approach reaches a best solution of 2.964 MMUSD/day and a relaxation gap of 7.5%, a remarkable result for such challenging MIQCQP problem. The CL approach also vastly outperforms both ANTIGONE (2.634 MMUSD/day, 32% optimality gap) and BARON (2.687 MMUSD/day, 40% optimality gap). The second main contribution is a spatial Lagrangean decomposition, which entails decomposing the IRPC short-term planning problem into a collection of smaller subproblems that can be solved independently to determine an upper bound on the maximal profit. One advantage of this strategy is that each sub-problem can be solved to global optimality, potentially providing good initial points for the monolithic problem itself. It furthermore creates a virtual market for trading crude blends and intermediate refined–petrochemical streams and seeks an optimal trade-off in such a market, with the Lagrange multipliers acting as transfer prices. A decomposition over two to four is considered, which matches the crude management, refinery, petrochemical operations, and fuel blending sections of the IRPC. An optimality gap below 4% is achieved in all four scenarios considered, which is a significant improvement over the cluster decomposition algorithm.Open Acces

    Single Allocation Hub Location with Heterogeneous Economies of Scale

    Get PDF
    We study the single allocation hub location problem with heterogeneous economies of scale (SAHLP-h). The SAHLP-h is a generalization of the classical single allocation hub location problem (SAHLP), in which the hub-hub connection costs are piecewise linear functions of the amounts of flow. We model the problem as an integer nonlinear program, which we then reformulate as a mixed integer linear program (MILP) and as a mixed integer quadratically constrained program (MIQCP). We exploit the special structures of these models to develop Benders-type decomposition methods with integer subproblems. We use an integer L-shaped decomposition to solve the MILP formulation. For the MIQCP, we dualize a set of complicating constraints to generate a Lagrangian function, which offers us a subproblem decomposition and a tight lower bound. We develop linear dual functions to underestimate the integer subproblem, which helps us obtain optimality cuts with a convergence guarantee by solving a linear program. Moreover, we develop a specialized polynomial-time algorithm to generate enhanced cuts. To evaluate the efficiency of our models and solution approaches, we perform extensive computational experiments on both uncapacitated and capacitated SAHLP-h instances derived from the classical Australian Post data set. The results confirm the efficacy of our solution methods in solving large-scale instances

    Optimal Antibody Purification Strategies Using Data-Driven Models

    Get PDF

    Optimal Antibody Purification Strategies Using Data-Driven Models

    Get PDF
    This work addresses the multiscale optimization of the purification processes of antibody fragments. Chromatography decisions in the manufacturing processes are optimized, including the number of chromatography columns and their sizes, the number of cycles per batch, and the operational flow velocities. Data-driven models of chromatography throughput are developed considering loaded mass, flow velocity, and column bed height as the inputs, using manufacturing-scale simulated datasets based on microscale experimental data. The piecewise linear regression modeling method is adapted due to its simplicity and better prediction accuracy in comparison with other methods. Two alternative mixed-integer nonlinear programming (MINLP) models are proposed to minimize the total cost of goods per gram of the antibody purification process, incorporating the data-driven models. These MINLP models are then reformulated as mixed-integer linear programming (MILP) models using linearization techniques and multiparametric disaggregation. Two industrially relevant cases with different chromatography column size alternatives are investigated to demonstrate the applicability of the proposed models
    • …
    corecore