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We study the single allocation hub location problem with heterogeneous economies of scale (SAHLP-h). The

SAHLP-h is a generalization of the classical single allocation hub location problem (SAHLP), in which the

hub-hub connection costs are piecewise linear functions of the amounts of flow. We model the problem as an

integer non-linear program, which we then reformulate as a mixed integer linear program (MILP) and also as a

mixed integer quadratically constrained program (MIQCP). We exploit the special structures of these models

to develop Benders type decomposition methods with integer subproblems. We use an integer L-shaped

decomposition to solve the MILP formulation. For the MIQCP, we dualize a set of complicating constraints

to generate a Lagrangian function, which offers us a subproblem decomposition and a tight lower bound. We

develop linear dual functions to underestimate the integer subproblem, which helps us obtain optimality cuts

with a convergence guarantee by solving a linear program. Moreover, we develop a specialized polynomial-

time algorithm to generate enhanced cuts. To evaluate the efficiency of our models and solution approaches,

we perform extensive computational experiments on both uncapacitated and capacitated SAHLP-h instances

derived from the classical Australian Post dataset. The results confirm the efficacy of our solution methods

in solving large-scale instances.

Key words : Single allocation, hub location, economies of scale, quadratic program, Benders decomposition,

Lagrangian relaxation
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1. Introduction

The purpose of this paper is to study the single allocation hub location problem (SAHLP) with het-

erogeneous economies of scale. Economies of scale in the hub location literature have traditionally

been modeled by multiplying the hub-hub connection costs by a fixed parameter α∈ (0,1] (Alumur

and Kara 2008, Campbell and O’Kelly 2012, Contreras 2015). Even though the economies are due

to the amalgamation of flows, this fact is not taken into account when the discount factor is fixed.

In our study, we develop a SAHLP formulation with a piecewise linear cost function for each arc,

hence the name heterogeneous economies of scale. Based on the structure of this formulation, we

also develop advanced decomposition methods with efficiently solvable separation subproblems.

The hub-and-spoke network structure is pervasive in several important applications including

telecommunication systems (Klincewicz 1998, Carello et al. 2004), airline services (Jaillet et al.

1996, Eiselt and Marianov 2009, Dukkanci and Kara 2017), liner shipping (Imai et al. 2009, Gelareh

and Pisinger 2011), postal delivery services (Ernst and Krishnamoorthy 1996, Çetiner et al. 2010),

and public transportation (Nickel et al. 2001, Mahéo et al. 2019). Given a hub-and-spoke network

with origin-destination commodity flows, a node is either a hub or is assigned to a hub to route

its commodities. Hubs are used to sort, consolidate, and redistribute flows. This way, the flows are

routed in a network of hubs and are shipped to their destinations. The main purpose of opening

hubs is to benefit from the economies of scale. Whereas opening and operating hubs imply extra

costs, the increased amounts of flows between hubs decrease the unit costs. Therefore the location

of hubs is an important factor in cost minimization. The hub location problem minimizes the total

cost of hub setup and flow transportation by selecting the hub nodes, and allocating the origin and

destination nodes to the selected hubs.

Hub location problems can be classified as either single allocation hub location problems (O’Kelly

1987, Ernst and Krishnamoorthy 1996) or multiple allocation problems (Campbell 1996, Ernst and

Krishnamoorthy 1998, Contreras et al. 2011a, 2012). In the first case, all flows to and from a spoke

are forced onto a single access arc, while in the multiple allocation case, the flows to and from

a spoke may be divided among the incident access arcs. In addition, each of these problems can

be classified as capacitated or uncapacitated, depending on various types of capacity restrictions.

In particular, there can be limitations on the total flow routed on a hub-hub link (Labbé and

Yaman 2004) or on the amount of flow into the hub nodes (Ernst and Krishnamoorthy 1999). Other

constraints can be taken into account such as hub congestion (Elhedhli and Hu 2005), stochasticity

(Contreras et al. 2011b, Rostami et al. 2018, 2020), and timing considerations (Kara and Tansel

2001, Yaman et al. 2012). For overviews of hub location problems, we refer the reader to Alumur

and Kara (2008), Campbell and O’Kelly (2012), and Contreras (2015).



Rostami et al.: SAHLP with Heterogeneous Economies of Scale
Article submitted to Operations Research; manuscript no. OPRE-2019-07-345.R1 3

From a methodological perspective, different models and algorithms have been developed for the

uncapacitated SAHLP (USAHLP) and the capacitated SAHLP (CSHALP). The first mathematical

model for the uncapacitated USAHLP was proposed by O’Kelly (1987) as a quadratic integer

program. The quadratic structure has led to the development of various linearization techniques

(see for instance, Campbell 1994). Skorin-Kapov et al. (1996), Ernst and Krishnamoorthy (1996)

proposed mixed integer linear programming (MILP) formulations for the USAHLP based on a path

and on a flow representation, respectively. These models have been extensively used in the SAHLP

literature. In the CSAHLP, a capacity on the flow transiting through a hub was considered by

Ernst and Krishnamoorthy (1999). Contreras et al. (2011c) proposed a branch-and-price algorithm

based on the Ernst and Krishnamoorthy (1999) formulation, in which lower bounds were computed

through Lagrangian relaxation. Correia et al. (2010b) extended the CSAHLP by also considering

the hub capacities as decision variables. In addition to these two basic MILP reformulations, one

of the recent advances in the solution of the SAHLP is the study by Meier and Clausen (2018),

in which Euclidean distances in the data sets are exploited to yield a new linearization of the

quadratic formulation. Meier and Clausen (2018) applied this linearization to both the capacitated

and uncapacitated versions of the SAHLP, and solved instances with up to 200 nodes taken from

the well-known Australian Post (AP) data set (Ernst and Krishnamoorthy 1996).

Hub location problems can also be classified according to how economies of scale are modeled. In

the first class, which we refer to as homogeneous economies of scale, the discount factor α between

all hub-hub connections is fixed, i.e., it is flow-independent. This assumption builds on the fact

that increased amounts of flow between hub-hub connections lead to cheaper unit transportation

costs. This assumption was relaxed by O’Kelly and Bryan (1998) who considered a different dis-

count factor depending on the amount of flow on a connection. We refer to this second class as

heterogeneous hub location problems. Campbell and O’Kelly (2012) argue that even though a flow-

dependent cost structure has been recognized in early works, it has not attracted much attention

and the mainstream of research has employed computationally attractive homogeneous economies

of scale ideas. O’Kelly and Bryan (1998) assumed the cost function to be a piecewise linear function

of the flow, each flow segment having different fixed and variable costs. Furthermore, the discount

factor α is parameterized by an arc index. The authors developed a model based on path-based

variables for a multi-allocation hub location problem (MAHLP). To obtain a tighter formulation,

de Camargo et al. (2009) built a model containing variables associated with each cost segment and

path combination. Due to the large size of the model, the authors developed a Benders decompo-

sition algorithm. Podnar et al. (2002), Cunha and Silva (2007) propose a different flow-dependent

economies of scale in which the fixed cost discount factor α applies only when flow on the link

exceeds a given threshold. This will allow either large or small vehicles to be used on any link,
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based on the level of flow on that link. Vehicle-based and modular arc capacities are alternative

approaches (see, for instance, Rostami et al. 2015, Tanash et al. 2017) in hub networks that model

the economies of scale based on the number of used vehicles and installed links on all spoke-hub

and hub-hub connections. For an overview on modeling economies of scale in hub location problem,

we refer the reader to Alumur et al. (2020) and references therein.

1.1. Scientific Contributions

We introduce, model and solve the SAHLP with heterogeneous economies of scale (SAHLP-h),

which is a generalization of the classical SAHLP. Heterogeneous economies of scales yield cost

matrices that do not satisfy triangular inequality. Therefore the classical flow-based formulation of

Ernst and Krishnamoorthy (1996), which is typically considered as the most effective formulation

from a computational point of view (see, e.g., Correia et al. 2010a) cannot be applied for the

SAHLP-h.

Our main contributions are summarized as follows:

• We present a non-linear model for the SAHLP-h that can handle heterogeneous economies of

scale. We reformulate this non-linear model into a MILP with the same structure as the classical

flow-based formulation of Ernst and Krishnamoorthy (1996). We exploit the special structure of

the MILP to develop an integer L-shaped decomposition method (Laporte and Louveaux 1993) to

solve the MILP reformulation, embedded within a branch-and-bound (B&B) framework.

• We reformulate the MILP into a mixed integer quadratically constrained program (MIQCP)

model and implement a Benders type decomposition scheme. We dualize a set of complicating

constraints in the resulting integer subproblem and generate a Lagrangian function, which yields

a tight lower bound and an effective decomposition of the subproblem. We develop linear dual

functions to underestimate the integer subproblem, which helps us obtain optimality cuts with a

convergence guarantee by solving a linear program. We also develop specialized polynomial-time

algorithms to generate enhanced cuts.

The remainder of the paper is organized as follows. Section 2 presents the problem statement

and previous formulations. Section 3 outlines our new MILP formulation and describes the integer

L-shaped algorithm. Section 4 details the MIQCP model and presents Lagrangian-based Benders

decomposition. To evaluate the efficiency of our models and algorithms, we perform extensive

computational experiments on both USAHLP and CSAHLP instances derived from the classical AP

dataset. Section 5 presents the results of our computational experiments, and Section 6 concludes

the paper.
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2. Problem Statement

Consider a directed graph G= (N,A), where N = {1, . . . , n} is the set of nodes representing the

origins and destinations, which can also be possible hub locations, and A is the set of arcs consisting

of direct links between node pairs. From this point on, we use indices i, j, k, ` ∈N for nodes and

drop the set notation for convenience. Let wij be the amount of flow to be transported from node i

to node j, and let dij be the distance from node i to node j. We define Oi =
∑

j wij and Di =
∑

j wji

as the total outgoing flow from node i and the total incoming flow to node i, respectively. For

each k, fk represents the fixed setup cost for locating a hub at node k.

We define a path p = (i, k, `, j) from an origin node i to a destination node j passing through

hubs k and ` in that order. We assume that at most one hub arc will be used in each path (see

Campbell et al. (2005)). In other words, for each path p= (i, k, `, j) with k 6= `, the traffic wij is

sent on arc (i, k), is then routed through on the inter-hub connection (k, `), and is finally delivered

on arc (`, j). If k = `, the traffic wij flows on arc (i, k) and then on arc (k, j). There are three

types of cost associated with each path p: the collection cost χik, the transfer cost Fk`, and the

distribution cost δ`j. We assume that χik, Fk`, and δ`j are concave functions of the total flow on

arcs (i, k), (k, `), and (`, j), respectively. Note that because of the single allocation assumption, the

values of the collection and distribution functions χik, and δ`j depend only on the flows Oi and

Dj, and hence can be determined a priori. For notational convenience, let cik = χik + δki be the

total collection and distribution cost between node i and hub k. The amount of flow routed on

the inter-hub connection (k, `) is an output of the model. Let vk` be the amount of flow routed

on the inter-hub connection (k, `) with k 6= ` and vkk = 0 for all k since the cost associated with

the flow between two spoke nodes that are assigned to the same hub node are captured by the cik

parameters. Fk` is then a concave function over the finite interval [ak`, bk`], where ak` and bk` are

the lower and upper bounds on the flow variable vk`.

Following O’Kelly and Bryan (1998), Klincewicz (2002) and de Camargo et al. (2009), for each

k and `, we define the cost function Fk` :
⋃
s∈S Is −→R with Is = [Lsk`,U

s
k`] as

Fk`(vkl) = min
s∈S

(βsk` +αsk` vk`), (1)

where βsk` and αsk` are the intercept and the slope of an affine function. In other words, βsk` and αsk`

are the fixed and variable costs of operating in segment s on arc (k, l), respectively. Note that the

coefficients βskl are increasing with s and the coefficient αskl are decreasing with s. Figure 1 depicts

the function on three segments of an arc (k, l), showing the fixed and variable costs.
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Figure 1 Example of a cost function on arc (k, `) with three segments, showing the fixed and variable costs.

The purpose of the SAHLP-h is to select a subset of nodes as hubs and to assign the remaining

spoke nodes to these hubs so that each spoke node is assigned to exactly one hub while minimiz-

ing the sum of fixed setup, collection, distribution, and inter-hub connection costs. To formulate

SAHLP-h, we introduce the variables

xik =

{
1 if node i is allocated to a hub located at k

0 otherwise.

For every node k, xkk indicates whether k is a hub (xkk = 1) or not (xkk = 0). We also define a

binary variable zsk` for each k, ` and s∈ S as follows:

zsk` =

{
1 if the amount of flow between hubs k and ` falls in the interval Is
0 otherwise.

For convenience, we refer to x as hub location variables and to z as flow segment variables. We

use an s index for the flow segment variables. Consequently, vk` and Fk`(vk`) can be expressed as

vk` =
∑
i

∑
j

wijxikxj` ∀ k, `, k 6= `, (2)

Fk`(vk`) =
∑
s

zsk`(β
s
k` +αsk` vk`) =

∑
s

zsk`(β
s
k` +αsk`

∑
i

∑
j

wijxikxj`) ∀ k, `, k 6= `, (3)

where (2) follows from the single allocation assumption, and (3) follows from the definition of the z

variable by which at most single flow segment variable can be non-zero on any hub-hub connection.

The SAHLP-h can then be formulated as the following integer non-linear program:

SAHLP-h :
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minimize
∑
k

fkxkk +
∑
i

∑
k

cik xik +
∑
k

∑
`

∑
s

dk` β
s
k` z

s
k` +

∑
i

∑
j

∑
k

∑
`

∑
s

dk`α
s
k`z

s
k`wijxikxj`

(4)

subject to ∑
k

xik = 1 ∀ i (5)

xik ≤ xkk ∀ i, k (6)∑
i

Oixik ≤ Γk xkk ∀ k (7)∑
i

∑
j

wijxikxj` ≥
∑
s

Lsk` z
s
k` ∀ k, `, k 6= ` (8)∑

i

∑
j

wijxikxj` ≤
∑
s

U s
k` z

s
k` ∀ k, `, k 6= ` (9)∑

s

zsk` ≥ xkk +x``− 1 ∀ k, `, k 6= ` (10)

xik ∈ {0,1} ∀ i, k (11)

zsk` ∈ {0,1} ∀ k, `, s. (12)

The objective is to minimize the total cost which includes three components: the cost of setting

up the hubs, the cost of assigning the spoke nodes to the hub nodes, and the cost of transporting

goods on hub-hub lines. Constraints (5) stipulate that each node i is allocated to precisely one

hub, while (6) enforce the condition that node i is allocated to node k only if k is selected as a hub

node. Constraints (7) restrict the total flow incoming to hubs. Constraints (8) and (9) ensure that

the flow on each inter-hub arc (k, `) lies within the interval Is if zsk` = 1. Constraints (10) force the

activation of one segment s for each arc (k, `)∈A if both nodes k and ` are selected as hub nodes.

The domain restrictions are enforced by Constraints (11) and (12).

Such piecewise linear functions are represented using three main models, namely incremental,

multiple choice and convex combination models (Croxton et al. 2003a). From a theoretical point

of view, their LP relaxations are the same. However, the multiple choice model has been demon-

strated to be computationally more efficient, particularly when the number of polytopes defining

the piecewise linear function is small (Vielma et al. 2010). Therefore, the multiple choice model

attracted greater attention in the literature (Croxton et al. 2003b, 2007, Frangioni and Gendron

2009). In Section EC.1 of the e-companion, we present the incremental and convex combination

models and compare their computational performance with the multiple choice model, which is

presented in Section 3.1. In the remainder, we use the multiple choice modeling framework.

For conciseness, we also define X = {x∈ {0,1}n2 : (5), (6), (7)} to be the set of solutions satisfying

the location-allocation and the capacity constraints. If the problem is uncapacitated, we can simply

relax (7).
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3. A Linear Reformulation and an Integer L-shaped Method

The objective function of SAHLP-h is to minimize a cubic function over a non-convex set, which

makes the problem intractable for any of the available solvers. In this section, we introduce a

linearization of the SAHLP-h model and a Benders decomposition scheme as an exact solution

technique.

The non-linearity of SAHLP-h stems from the quadratic terms xikxj`, i, j, k, `, k 6= ` in (8) and (9),

and from the cubic terms zsk`xikxj`, s, i, j, k, ` in the third term in the objective function. In order

to linearize the quadratic terms, one can apply a standard linearization technique by introducing

new non-negative binary variables rikj` = xikxj` for i, j, k, `, and appending the following set of

constraints to the model:

rikj` ≤ xik, rikj` ≤ xj`, and rikj` ≥ xik +xj`− 1 ∀ i, j, k, `.

The same procedure can be repeated to linearize the new quadratic terms rikj`z
s
k` in the objective

function, which yields five-index variables. This standard linearization, however, does not take the

problem structure into account and yields a weak reformulation. To overcome this difficulty, two

main linearization techniques for the classical SAHLP were presented by Skorin-Kapov et al. (1996)

and Ernst and Krishnamoorthy (1996, 1999). The resulting linearization models are known as the

“path-based” and as the “flow-based” formulations, respectively. The path-based formulation uses

O(|V |4) additional variables and O(|V |3) additional constraints to linearize the quadratic terms

xikxj`, while the flow-based model adds only O(|V |3) variables and O(|V |2) constraints. The flow-

based formulation is widely considered as the most effective model for the classical SAHLP (see,

for instance, Correia et al. 2010a). A crucial assumption for the validity of this linearization is

that the triangle inequality for the transportation costs holds (Correia et al. 2010a). Considering

the fact that the inter-hub connection costs are flow-dependent in our application, the triangular

inequality for costs does not generally hold and therefore the classical flow-based technique cannot

be applied to linearize the SAHLP-h. In what follows, we present a new flow-based model that

always provides a valid linearization regardless of the underlying cost structure.

3.1. A new flow-based reformulation

To linearize the non-linearities in SAHLP-h, we define a new variable ysik` for each i, k, `, s as the

total amount of flow originating at node i and routed via hubs located at nodes k and ` using

segment s. We refer to these variables as flow variables. Our linearization strategy relies on the

following new equation ∑
s

ysik` = xik
∑
j

wijxj` ∀ i, k, ` (13)
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that links the flow variables to the original x variables. It is clear that ysik` = 0 if node i is not

assigned to hub k (i.e., xik = 0) and
∑

s y
s
ik` is the total flow emanating from node i and using

hubs k and ` (i.e.,
∑

j wijxj`) otherwise. We now present the necessary and sufficient conditions to

linearize (13) in the following theorem.

Theorem 1. For x∈X , the following two statements are equivalent:

(i)
∑
s

ysik` = xik
∑
j

wijxj` ∀ i, k, `

(ii)


∑
s

∑
`

ysik` =Oixik, ∀ i, k (14)∑
s

∑
`

ysi`k =
∑
j

wijxjk, ∀ i, k. (15)

Proof For sufficiency, summing
∑

s y
s
ik` over ` and k and using

∑
k xik = 1, for all i, implies (14)

and (15), respectively. For necessity, we assume (ii). Using the fact that
∑

k xik = 1, for all i, let

a(i) = k if xik = 1. Now (14) implies∑
s

∑
`

ysia(i)` =Oi ∀ i, (16)∑
s

ysik` = 0 ∀ k 6= a(i), i, `. (17)

Then, (15) and (17) imply
∑

s y
s
ia(i)k =

∑
j wijxjk. Summing over k ensures that (16) also holds.

Therefore, ∑
s

ysik` =

{ ∑
j wijxj` if xik = 1

0 otherwise,

which can also be expressed as
∑

s y
s
ik` = xik

∑
j wijxj`, as desired. �

Remark 1. With the introduction of the y variables, constraints (8) and (9) can be disaggregated

to yield the inequalities ∑
i

ysik` ≤U s
k`z

s
k` ∀ s, k, `, k 6= ` (18)∑

i

ysik` ≥Lsk`zsk` ∀ s, k, `, k 6= `, (19)

which ensure that the flow and segment variables are connected at the segment level.

Note that this disaggregation was not possible in (8) and (9). Introducing the ysik` variables enabled

us to disaggregate these constraints. This disaggregation not only provides a strengthened formu-

lation, but also leads to the following remark.

Remark 2. In any feasible solution of the model obtained by appending (13) and (18) to SAHLP-

h, we have zsk` y
s
ik` = ysik`, for all i, k, `, s.
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Furthermore, due to the concave cost structure, constraints (19) are not required. Then, SAHLP-

h can be reformulated as the following flow-based MILP:

MILP-flow:

minimize
∑
k

fkxkk +
∑
i

∑
k

cik xik +
∑
s

∑
k

∑
`

dk` β
s
k` z

s
k` +

∑
s

∑
k

∑
`

∑
i

dk`α
s
k` y

s
ik`

subject to x∈X

(10)−(12), (14), (15), (18)

ysik` ≥ 0 ∀ i, k, `, s, (20)

where Constraints (14) and (15) are due to Theorem 1. Note that the MILP-flow model contains

a polynomial number of variables and constraints and, hence, it can be solved directly through a

MILP solver.

Remark 3. Note that for |S| = 1, βk` = 0, and αk` = α, for all k, `, MILP-flow reduces to the

classical SAHLP. Therefore, MILP-flow can also be considered as a new flow-based reformulation

for the classical SAHLP regardless of the cost structure, and is valid for data that do not satisfy

the triangular inequality.

3.2. Integer L-shaped Method

We now show how to exploit the special structure of MILP-flow which lends itself to decomposition

techniques. The MILP-flow formulation naturally admits a Benders decomposition. In a classical

application, we can project out the flow variables ysikl from the formulation and add Benders cuts

to correctly estimate the distribution costs. However, one major drawback of such a procedure is

that it requires feasibility as well as optimality cuts for convergence. Disconnecting the information

exchange between the segment variables zskl and the flow variables ysikl by splitting them into a

master problem and a subproblem results in a poor computational performance, as we observed

in our preliminary implementations (see e-companion, Section EC.2). Keeping both the segment

and flow variables in the subproblem, on the other hand, avoids feasibility cuts; however, the

subproblem in that case is an integer linear programming model. To this end, we introduce an

L-shaped method based on the MILP-flow.

We now partition the MILP-flow into an integer master problem and mixed-integer linear sub-

problems that are more manageable in size and computationally easier to solve with respect to

the original model MILP-flow. The location-allocation variables x are incorporated into the master

problem, while the flow and segment variables (y, z) are projected out and replaced by a single
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variable ξ representing the hub-hub transportation cost. The resulting master problem, which we

refer to as MP1, is then given by

[MP1] minimize
∑
k

fkxkk +
∑
i

∑
k

cik xik + ξ

subject to x∈X

ξ ≥ψ(x) (21)

xik ∈ {0,1} ∀ i, k,

where ψ(x) represents the hub-hub transportation cost for a given design x ∈ X , provided by

solving MILP slave problems. The decomposition idea is based on successively adding cuts in the

(x, ξ)-space to approximate ψ(x) until an optimal solution (x∗, y∗, z∗) with ξ = ψ(x∗) has been

identified.

For a given x̂ ∈ X , the slave problem, which we refer to as SP1(x̂), is obtained by fixing the x

variables to x̂ in the MILP-flow formulation:

[SP1(x̂)] ψ(x̂) = min
∑
s

∑
k

∑
`

dk` β
s
k` z

s
k` +

∑
s

∑
k

∑
`

∑
i

dk`α
s
k` y

s
ik` (22)

subject to
∑
s

∑
`

ysik` =Oix̂ik ∀ i, k (23)∑
s

∑
`

ysi`k =
∑
j

wijx̂jk ∀ i, k (24)∑
i

ysik` ≤U s
k` z

s
k` ∀ k, `, k 6= `, s (25)∑

s

zsk` ≥ x̂kk + x̂``− 1 ∀ k, `, k 6= ` (26)

zsk` ∈ {0,1} ∀ k, `, s (27)

ysik` ≥ 0 ∀ i, k, `, s. (28)

This subproblem is a MILP due to the integrality requirement of z variables, which only admits

integer L-shaped cuts (see Laporte and Louveaux 1993). Note that we do not explicitly need to

add
∑

s z
s
kl ≤ 1 constraint due to the sense of the objective function. Solving SP1 exactly provides

us with a valid lower bound on ξ that can be iteratively imposed by means of integer L-shaped

cuts and the following integer optimality cut can be added to the MP1:

ξ ≥ψ(x̂)
(

1 +
∑

(i,k)∈Â

(xik− 1)−
∑

(i,k)∈A\Â

xik

)
, (29)

where Â = {(i, k) ∈ A : x̂ik = 1}. Given that the cuts (29) are usually not strong, one can solve

the linear programming (LP) relaxation of SP1(x̂) and add Benders optimality cuts to improve



Rostami et al.: SAHLP with Heterogeneous Economies of Scale
12 Article submitted to Operations Research; manuscript no. OPRE-2019-07-345.R1

the global lower bound on ψ(x). As in Angulo et al. (2016), we implement a hybrid method, in

which we first add Benders optimality cuts associated with the LP relaxation of SP1 to improve

the bounds and resort to (29) to ensure optimality.

We have reformulated the SAHLP-h into a MILP model and we have developed an integer L-

shaped method, which helped us transform a highly non-linear model into a more manageable

one. These solution techniques constitute a basis for a Lagrangian-based Benders decomposition

methodology, which we present in the following section. These techniques also serve as a basis for

a computational comparison in our experiments in Section 5.

4. A quadratic reformulation and a Lagrangian-based Benders decomposition

We now develop a generalized Benders decomposition based on an extended reformulation and on

a Lagrangian relaxation.

4.1. A New Reformulation and Decomposition

We append two sets of constraints to MILP-flow formulation to convert it into a mixed integer

quadratically constrained programming model, which we refer to as MIQCP-flow:

MIQCP-flow:

minimize
∑
k

fkxkk +
∑
i

∑
k

cik xik +
∑
s

∑
k

∑
`

dk` β
s
k` z

s
k` +

∑
s

∑
k

∑
`

∑
i

dk`α
s
k` y

s
ik`

subject to x∈X

(8)−(12), (14), (15), (18), (20).

In this model, the quadratic constraints (8) and (9) are inherited from the SAHLP-h model

for reasons that will become clear in Section 4.2. Our methodology relies on partitioning of

MIQCP-flow, similar to what was done in Section 3.2, into an integer master problem and mixed

integer subproblems. We introduce the variable η to represent the hub-hub transportation cost.

The resulting master problem, which we refer to as MP2, is then

[MP2] minimize
∑
k

fkxkk +
∑
i

∑
k

cik xik + η

subject to x∈X

η≥ φ(x) (30)

xik ∈ {0,1} ∀ i, k,
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where φ(x) represents the hub-hub transportation cost for a given design x∈X , provided by solving

MILP slave problems. For a given x̂∈X , the slave problem, which we refer to as SP2(x̂), is obtained

by fixing the x variables to x̂ in MIQCP-flow formulation:

[SP2(x̂)] φ(x̂) = min
∑
s

∑
k

∑
`

dk` β
s
k` z

s
k` +

∑
s

∑
k

∑
`

∑
i

dk`α
s
k` y

s
ik` (31)

subject to (23)−(28)∑
i

∑
j

wijx̂ikx̂j` ≤
∑
s

U s
k` z

s
k` ∀ k, `, k 6= ` (32)∑

i

∑
j

wijx̂ikx̂j` ≥
∑
s

Lsk` z
s
k` ∀ k, `, k 6= `. (33)

This subproblem is a MILP due to the integrality requirement of the z variables. In the following

section, we show that dualizing a set of complicating constraints yields a tight Lagrangian relaxation

and a generalized Benders decomposition.

4.2. A Tight Lagrangian Relaxation of the Subproblem

Here we provide an alternative method based on Lagrangian relaxation to obtain a tight approxima-

tion of φ(x). The idea of Lagrangian relaxation is to transfer one or more complicating constraints

to the objective function as a penalty term, so that the resulting problem is an easier one or splits

into a set of easier problems. We apply a Lagrangian relaxation of constraints (25) in SP2(x̂) using

Lagrangian multipliers πsk` ≤ 0, s, k, `, k 6= `. The resulting Lagrangian function is:

L(x̂, π) = min
∑
s

∑
k

∑
`

(dk` β
s
k` +U s

k`π
s
k`)z

s
k` +

∑
s

∑
k

∑
`

∑
i

(dk`α
s
k`−πsk`)ysik`

subject to (23), (24), (26)−(28), (32), (33).

Due to the choice of the relaxed constraints, the problem decomposes, so that the Lagrangian

function can be written as L(x̂, π) =Lz(x̂, π) +Ly(x̂, π) with

Lz(x̂, π) = minz

{∑
s

∑
k

∑
`

(dk` β
s
k` +U s

k`π
s
k`)z

s
k` : (26), (27), (32), (33)

}
and

Ly(x̂, π) = miny

{∑
s

∑
k

∑
`

∑
i

(dk`α
s
k`−πsk`)ysik` : (23), (24), (28)

}
,

where Lz(x̂, π) and Ly(x̂, π) are independent subproblems in the z and y variables, respectively.

Observe that Lz(x̂, π) is an integer program while Ly(x̂, π) is a linear program in the y variables.

It is known that L(x̂, π) provides a lower bound on φ(x̂). The best lower bound on φ(x̂), which we

refer to as φLR(x), is obtained by solving the following Lagrangian dual problem:

φLR(x̂) = maxπ≤0L(x̂, π),
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which ensures that φLP (x̂)≤ φLR(x̂)≤ φ(x̂). There exist several schemes for determining an optimal

or a near-optimal solution π (see Fisher 2004). However, since our solution method is an iterative

procedure, solving the slave problem using such methods is computationally expensive. Instead, we

take advantage of the problem structure to obtain an optimal π, for which φLR(x̂) = φ(x̂). Before

we prove this strong result, we need a sequence of intermediate steps. Let us first consider the

subproblem Lz(x̂, π).

Lemma 1. For x ∈ X and π ≤ 0, the following conditions characterize the feasible solutions of

Lz(x̂, π):

(i) if x̂kk = 0 or x̂`` = 0, ⇒ zsk` = 0 ∀ k, `, s,
(ii) if x̂kk = 1, x̂`` = 1 and Lsk` <

∑
i,j∈N wijx̂ikx̂j` <U

s
k`, ⇒ zsk` = 1 ∀ k, `, s,

(iii) if x̂kk = 1, x̂`` = 1 and Lsk` =
∑

i,j∈N wijx̂ikx̂j`, ⇒ zsk` = 1 or zs−1k` = 1 ∀ k, `, s≥ 2,
(iv) if x̂kk = 1, x̂`` = 1 and

∑
i,j∈N wijx̂ikx̂j` =U s

k`, ⇒ zsk` = 1 or zs+1
k` = 1 ∀ k, `, s≤ |S| − 1.

Proof Observe that the subproblem Lz(x̂, π), can be decomposed into the following n2 subprob-

lems Lzk`(x̂, π), for each k, `∈N :

Lzk`(x̂, π) = min
∑
s

(dk` β
s
k` +U s

k`π
s
k`)z

s
k` (34)

subject to
∑
i

∑
j

wijx̂ikx̂j` ≤
∑
s

U s
k` z

s
k` (35)∑

i

∑
j

wijx̂ikx̂j` ≥
∑
s

Lsk` z
s
k` (36)∑

s

zsk` ≥ x̂kk + x̂``− 1 (37)

zsk` ∈ {0,1} ∀ s. (38)

When x̂kk = 0 or x̂`` = 0, we have ẑskl = 0 for all k, ` ∈N due to constraints (6), (35) and (36) as

in part (i)). When x̂kk = x̂`` = 1, we have
∑

s∈S z
s
kl ≥ 1 due to (37). Among s ∈ S, there can be

only one satisfying strictly the bound constraints (35) and (36) as given in part (ii). When we

have
∑

i

∑
j wijx̂ikx̂j` =Lsk` for s≥ 2, then segments s− 1 and s can satisfy the bound constraints,

which gives part (iii). The same argument can be used to part (iv), which completes the proof. �

Remark 4. The Lagrangian relaxation decomposes the slave problem into two independent sub-

problems, which in turn disconnects the relationship between ysikl and zskl variables. However, the

quadratic constraints that we have appended to the MIQCP-flow formulation ensure that the same

implications between variables are in place. In other words, the optimal values of the z variables

in both SP2(x̂) and the decomposed Lz(x̂, π) problems are the same.

We now turn to our main result:
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Theorem 2. The Lagrangian relaxation is tight (i.e., φLR(x̂) = φ(x̂)) for the following setting of

Lagrangian multipliers:

π̂sk` =

{
0 if ẑsk` = 1

−dk` otherwise
∀ k, `, s. (39)

Proof Consider Lz(x̂, π̂). Because of the parameter π as given in (39), of the fact that the

coefficients βskl are increasing with s, and due to Remark 4, the optimal solutions characterized by

Lemma 1 are also optimal for SP(x̂).

Now consider Ly(x̂, π̂), which can be decomposed into n subproblems Lyi (x̂, π̂) based on i ∈N .

According to constraints (23), (24) and Theorem 1, we have∑
s

ŷsik` = x̂ik
∑
j

wijx̂j` ∀ k, `, (40)

which holds for both SP?(x̂) and Lyi (x̂, π̂). Given the facts that 0≤ αsk` ≤ 1, the coefficients βskl are

increasing with s and the coefficient αskl are decreasing with s, the parameter π as given in (39)

ensures that solving Lyi (x̂, π̂) yields

ŷsik` =

{
x̂ik
∑

j wijx̂j` if ẑsk` = 1

0 otherwise
∀ k, `, s, (41)

which is also optimal for SP(x̂) according to the linking constraints (25). Hence, φ(x̂) = φLR(x̂) =∑
s

∑
k

∑
`
dk`(β

s
k` ẑ

s
k` +αsk`

∑
i ŷ

s
ik`). This completes the proof. �

Corollary 1. The two functions φ :X →R and φLR :X →R are equal, i.e., φ(x̂) = φLR(x̂), for

any x̂∈X .

Now that we have constructed the optimal π̂ values. From this point on, we can set φLR(x) =

φzLR(x) +φyLR(x) where φzLR(x) =Lz(x, π̂) and φyLR(x) =Ly(x, π̂). In the following, we show how to

underestimate function φ(x) = φLR(x) to compute optimality cuts.

4.3. New Optimality Cuts Based on Lagrangian Relaxation

In order to generate optimality cuts, we now describe a procedure to construct a lower approxima-

tion of φ(x). Let φz
LR

and φy
LR

be the lower approximating functions of φzLR and φyLR, respectively.

Replacing φ(x) in (30) with the function φz
LR

+φy
LR

, the optimality cut in the MP then becomes

η≥ φz
LR

(x) +φy
LR

(x) x∈X . (42)

Once φz
LR

(x) and φy
LR

(x) are computed for a given x ∈ X , one can generate the optimality cut

on the fly using callbacks when the MP is solved as a MILP by a branch-and-cut algorithm using

a state-of-the-art commercial MILP solver. In the following two subsections, we describe how to

find such the lower approximating functions.
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4.3.1. Computing φz
LR

(x) Corresponding to the Integer Subproblem Consider the

integer subproblem in the z variables. Due to its non-convexity, the subgradient information cannot

be used to find a valid approximation of φzLR(x). Instead, we use the concept of dual functions

(see, for instance, Wolsey 1981, Guzelsoy and Ralphs 2007, Ralphs and Hassanzadeh 2014). A dual

function φz
LR

(x) of φzLR is a function that bounds φzLR from below, that is φz
LR

(x) ≤ φzLR(x), for

each x∈X .

For x̂ ∈ X and π̂ as constructed in Theorem 2, consider solving the MILP Lzkl(x̂), which is

presented in the proof of Lemma 1, using a B&B algorithm. For each k, `, the B&B tree either

has one or two feasible nodes due to Lemma 1. Therefore, one needs to solve the LP relaxation

of the model corresponding to each leaf node of the B&B tree to compute the dual function.

In what follows, we derive the dual function corresponding to the B&B tree with single feasible

solution (when Lsk` <
∑

i,j∈N wijx̂ikx̂j` <U
s
k` in Lemma 1). We also discuss the case with two feasible

solutions in Remark 5, which does not impact the general method we present now.

Given k, `, we consider segment s for which Lsk` <
∑

i,j∈N wijx̂ikx̂j` < U s
k`. Due to part (ii) of

Lemma 1, there exists a single node in the branch-and-bound tree, which provides an integer

solution, and therefore the solution provided is optimal. We refer to this node as the optimal node,

in which zskl variables are fixed to their values as given in Lemma 1. Here, the ẑskl constants represent

the branching rules in the B&B tree. The LP relaxation associated with the optimal node, which

we refer to as L̂zkl(x̂)LP , is the following LP:

[L̂zkl(x̂)LP ] minimize
∑
s

(dk` β
s
k` +U s

k`π̂
s
k`)z

s
k`

subject to (35)−(37)

zsk` = ẑsk` ∀ s. (43)

Let uk`, ρk`,ψk` be the non-negative dual variables associated with (35)−(37), respectively and let

εsk` be the dual variable, unrestricted in sign, associated with constraints (43). The dual of the LP

at the optimal node, which we refer to as Dzk`(x̂)LP , is then given by

[Dzk`(x̂)LP ] maximize
∑
i,j

wijx̂ikx̂j`(uk`− ρk`) +ψk`(x̂kk + x̂``− 1) +
∑
s

εsk`ẑ
s
k`

subject to U s
k`uk`−Lsk`ρk` +ψk` + εsk` ≤ dk`βsk` +U s

k`π̂
s
k` ∀ s

uk`, ρk`,ψk` ≥ 0.

In the following theorem, we show that, using the optimal solution of Dzk`(x̂)LP , we can compute

a function φz
LR

(x), which is a lower approximating function of φzLR(x).
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Theorem 3. For a given x̂ ∈ X , let ûk`, ρ̂k`, ψ̂k`, and ε̂sk` be the optimal solution of Dzk`(x̂)LP .

Then, there exists a function φz
LR

(x) =
∑

k,` φ
z

k`
(x) such that φz

LR
(x) ≤ φzLR(x) for all x ∈ X and

φz
LR

(x̂) = φzLR(x̂), where

φz
k`

(x) =
∑
i,j

wijxikxj`(ûk`− ρ̂k`) + ψ̂k`(xkk +x``− 1) +
∑
s

ε̂sk`ẑ
s
k`, x∈X . (44)

Proof Theorem 3 directly follows from Theorem 2 of Ralphs and Hassanzadeh (2014), which is

a reformulation of a result in Wolsey (1981). We omit the proof for the sake of conciseness. �

Note that the dual function φz
LR

(x) is a quadratic function of x. However, the following propo-

sition shows how to reduce it to a linear function.

Proposition 1. Given k and `, an optimal solution of Dzk`(x̂)LP can be found as follows:
ûk` = ρ̂k` = εŝk` = 0

ψ̂k` = dk`β
ŝ
k`

ε̂sk` = dk`(β
s
k`−U s

k`)− ψ̂k` ∀ s 6= ŝ

if x̂kk = x̂`` = 1

and {
ûk` = ρ̂k` = ψ̂k` = 0

ε̂sk` = dk` β
s
k` +U s

k`π̂
s
k` ∀ s if x̂kk = 0 or x̂`` = 0.

Proof The optimality derives from the feasibility of the primal and dual solutions for their

problems and from the fact that the primal cost
∑

s dk`β
s
k` ẑ

s
k` = dk`β

ŝ
k` is equal to the dual cost

ψ̂k`(x̂kk + x̂``− 1) = dk`β
ŝ
k` for x̂kk = x̂`` = 1. �

Using this optimal dual solution in (44), we obtain a linear function φz
LR

(x) =
∑

k,` φ
z

k`
(x), which

is a lower approximation of the integer subproblem.

Remark 5. Note that, for each k, `, if the flow
∑

i,j∈N wijx̂ikx̂j` is equal to either bounds Lsk` or

U s
k` for some s, the MILP Lzkl(x̂) would have two feasible solutions due to Lemma 1. Therefore, one

needs to consider the LP relaxations in the nodes of the decision tree corresponding to both feasible

solutions (which we refer to as optimal and non-optimal nodes, respectively) to derive the dual

function (see Ralphs and Hassanzadeh 2014). However, the cut (42) we obtain from the optimal

node is dominated by the cut obtained from the non-optimal node. This is because of Lemma 1,

Theorem 2, and the fact that β ŝk` < β ŝ+1
k` . Therefore, considering (44) is satisfactory to guarantee

convergence of the algorithm.
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4.3.2. Computing φy
LR

(x) Corresponding to the Continuous Subproblem In order to

generate the function φy
LR

(x) in (42), let us consider the dual of the subproblem on y variables,

which we refer to as Dy(x̂). The dual subproblem Dy(x̂) can be decomposed to |N | subproblem

Dyi (x̂), for each i∈N described as follows:

[Dyi (x̂)] maximize
∑
k

Oix̂ikλik +
∑
k

∑
j

wijx̂jkµik (45)

subject to λik +µil ≤ dk`αsk`− π̂skl ∀ k, `, s (46)

λ,µ unrestricted. (47)

Due to construction of the π variables in Theorem 2, all constraints corresponding to segments

for which ẑskl = 0 are trivially satisfied. For each k, ` with x̂kk = 1, x̂`` = 1, there exists a single

constraint of type (46) associated with segment ŝ such that zŝkl = 1 and the corresponding π̂ŝk` = 0.

Let α̂kl = αŝkl. Then Dyi (x̂) is given by

[Dyi (x̂)] maximize
∑
k

Oix̂ikλik +
∑
k

∑
j

wijx̂jkµik (48)

subject to λik +µil ≤ α̂k`dk` ∀ k, ` (49)

λ,µ unrestricted. (50)

Let λ̂ik, µ̂ik be the optimal solution of Dyi (x̂). Then, by LP duality, we can set

φy
LR

(x) =
∑
k

Oixikλ̂ik +
∑
k

∑
j

wijxjkµ̂ik. (51)

4.4. Cut enhancement via a two-phase algorithm

We now present an enhancement of the generated cut. For x̂∈X , the optimal solution of Lyi (x̂) is

unique due to (41). However the dual problem can possibly have multiple optimal solutions due to

degeneracy. To this end, we further investigate the properties of the optimal solutions of the dual

subproblem. The following lemma and proposition formally presents the conditions, under which

a solution of Lyi (x̂) is optimal.

Lemma 2. For a given i, k, `∈N and x̂∈X , the following three statements are equivalent:

(i) x̂ik > 0 and
∑

j wijx̂j` > 0,

(ii) y
ŝk`
k` > 0 in an optimal solution of Lyi (x̂),

(iii) λik +µil = α̂k`dk` in an optimal solution of the Dyi (x̂).

Proof (i) ⇔ (ii) due to Equation (13). Due to complementary slackness conditions between

Lyi (x̂) and Dyi (x̂), we have (ii) ⇔ (iii). Hence the result follows. �
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Proposition 2. For a given i∈N and x̂∈X , (λ∗, µ∗)∈Ω is an optimal solution of Dyi (x̂) if and

only if the following conditions are satisfied:

(i) λ∗ik +µ∗i` = α̂k`dk` if x̂ik = 1 and x̂`` = 1,

(ii) λ∗ik +µ∗i` ≤ α̂k`dk` otherwise.

Proof (Sufficiency) Assume that the solution (λ∗, µ∗) is optimal for Dyi (x̂). Part (ii) follows

from the feasibility of the solution. Due to Lemma 2, we have λ∗ik + µ∗i` = α̂k`dk` for all k, ` ∈N ,

x̂ik > 0 and
∑

j wijx̂j` > 0. Because x̂ ∈ X , we have x̂ ∈ {0,1}|N |2 and therefore x̂ik > 0 implies

x̂ik = 1. Having
∑

j wijx̂j` > 0 also implies that ` is a hub node and hence x̂`` = 1. In other words,

the condition essentially translates into x̂ik = 1 and x̂`` = 1, as given in part (i).

(Necessity) Assume that conditions (i) and (ii) are satisfied in a solution. Such a solution is

trivially feasible for Dyi (x̂). Next, we show that all solutions satisfying these two conditions assume

the same objective function value, which is therefore the optimal value. First, we note that having

x̂ ∈ X requires
∑

k∈N x̂ik = 1, which implies that there exists an index a(i) with x̂ia(i) = 1. Put

differently, a(i) is the hub that node i is assigned to or i is a hub node (i.e., i= a(i)). Using this

notation, the terms in the objective function of Dyi (x̂) can be reorganized as follows:∑
k

Oix̂ikλik +
∑
`

∑
j

wijx̂j`µi` =
∑
j

wij
∑
k

x̂ikλik +
∑
j

wij
∑
`

x̂j`µi` =
∑
j

wij(λia(i) +µia(j))

Since xia(i) = 1 and having xia(j) = 1 requires xa(j)a(j) = 1 for all j ∈N , we have

λia(i) +µia(j) = α̂a(i)a(j)da(i)a(j)

due to (i). Hence, for any feasible solution of the ith subproblem Dyi (x̂), the objective function

value equals
∑

j wijα̂a(i)a(j)da(i)a(j), and therefore, any feasible solution for Dyi (x̂) is also optimal.

�

Proposition 2 characterizes the optimal solutions of the dual subproblem Dyi (x̂). It is therefore

crucial to select those that help generate ‘enhanced’ cuts to reduce the number of total iterations.

To this end, in the following we will describe an enhancement strategy inspired by Pareto-optimal

cut generation scheme of Magnanti and Wong (1981). The algorithm uses an interior point of

the feasible region of the master problem in contrast to Kelley’s cutting plane method, where the

solution provided by the master problem is an extreme point (see Kelley 1960). Moreover, it ensures

the optimality of the solution for the dual subproblem Dyi (x̂). Let us consider the subproblem

Dyi (x̂). Given x̄ ∈ ri(conv(X )), where ri(conv(X )) is the relative interior of the convex hull of the

feasible region of the master problem, we can solve the linear program below to generate alternative

optimal solution of Dyi (x̂):

[Diy(x̂, x̄)] maximize
∑
k

Oix̄ikλik +
∑
k

∑
j

wijx̄jkµik (52)
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subject to λik +µi` = α̂k`dk` ∀ k, ` : x̂ik = 1 and x̂`` = 1 (53)

λik +µi` ≤ α̂k`dk` ∀ k, ` : x̂ik 6= 1 or x̂`` 6= 1, (54)

where according to Proposition 2, constraints (53) and (54) ensure the feasibility and optimality

of (λ,µ). The Diy(x̂, x̄) model contains |N |2 constraints. Note that, differently from Diy(x̂), this

problem does not have the structure of the dual of the transportation problem. Explicitly building

and solving it for each i ∈N is costly in terms of solution times, especially for instances with a

large number of nodes. To avoid this, we devise a simple yet efficient algorithm with an O(n log n)

run time complexity that generates a feasible solution for Diy(x̂, x̄) without building and solving

an LP.

Algorithm 1: Two-phase Algorithm (2PA)

Input: w,d, x̂, x̄, i.

Output: A feasible solution for Diy(x̂, x̄)

1 Define variable(type, row idx, col idx, coreP t, value); // Initialization

2 Init L← new list();

3 for each k ∈N do
4 λik← new variable(λ, i, k,Oix̄ik, null);

5 µik← new variable(µ, i, k,
∑
j∈N

wijx̄jk, null);

6 L←L∪{λik, µik};
7 a(i)← Select k ∈N : x̂ik = 1; // Phase 1

8 λia(i).value← 0;

9 for each `∈N do
10 if x̂`` = 1 then µi`.value← α̂k`da(i)`;

11 L.sort(key = corePt); // Phase 2

12 while L 6= ∅ do
13 Set var=L.pop();

14 if var.value = null then
15 if var.type = µ then
16 i← var.row idx; `← var.col idx;

17 µil.value= min
k∈N:λik.value6=null

{α̂k`dk`−λik};
18 else
19 i← var.row idx; k← var.col idx;

20 λik.value= min
`∈N:µi`.value6=null

{α̂k`dk`−µi`};

21 Return (λ,µ)

The two-phase algorithm (2PA) is presented in Algorithm 1. The inputs of the algorithm are a

flow matrix w, a unit flow cost matrix d, a fixed solution x̂, core point x̄ and i∈N , and the output is



Rostami et al.: SAHLP with Heterogeneous Economies of Scale
Article submitted to Operations Research; manuscript no. OPRE-2019-07-345.R1 21

a feasible solution for Diy(x̂, x̄). The algorithm contains two phases and starts with an initialization

step which creates objects required for the two phase algorithm to run. First, we introduce a new

object called variable. It has the following properties: the variable type (type∈ {λ,µ}), the row and

column indices (row idx and col idx ), the objective function coefficient of the variable in Diy(x̂, x̄)

model (corePt) and the value of the variable when the algorithm terminates (value). This value is

initially set as null, implying that no value has yet been assigned. Lines 4 and 5 create the variables

which are added to a list called L. Phase 1 of the algorithm in lines 7−10 coincides with part (i) of

Proposition 2 and assigns dual variable values when x̂ik = 1 and x̂kk = 1. This assignment ensures

that λ∗ik +µ∗il = α̂k`dk`. Phase 2 in lines 11−20 coincides with part (ii) of Proposition 2. The while

loop assigns values in a greedy fashion to those variables that have not been considered in the first

phase by ensuring that λ∗ik + µ∗il ≤ α̂k`dk`, as required in part (ii) of Proposition 2. The following

proposition is an immediate result of this procedure:

Proposition 3. The solution returned by the two-phase algorithm is optimal for Dyi (x̂).

Proof Since the solution generated by the 2PA satisfies Proposition 2, it is optimal for Dyi (x̂).

�

The algorithm assigns values to the variables in a greedy fashion. Starting with the variable

having the largest objective function coefficient in Diy(x̂, x̄), the algorithm in Phase 2 always assigns

the maximum value that a variable can take. In this regard, even though the solution generated

by the algorithm is not guaranteed to be optimal for the Diy(x̂, x̄), our experimental results show

that the algorithm is highly effective in finding the optimal objective function value.

5. Computational experiments

In this section, we present the computational experiments we have carried out to evaluate the

empirical performance of the proposed methodology. The MILP-flow model developed in Section 3

is solved using Gurobi 8.0.1. For the Benders decompositions, we solve the MP-1 and MP-2 models

as MILPs using a branch-and-cut algorithm in which the optimality cuts are generated on the fly

using callbacks. We refer to the branch-and-cut algorithm based on hybrid method in Section 3.2

as BC-LS. We also denote the branch-and-cut algorithm based on Lagrangian relaxation based

cut (42) as BC-LR. When we use the cut enhancement using 2PA algorithm, we then refer to the

algorithm as BC-LR+.

We performed the experiments on the Calcul Québec computing infrastructure with Intel Xeon

X5650 @ 2.67 GHz processors and a memory limit of 90 GB. All experiments were executed in

sequential form using one thread with a time limit of 2 hours to solve each instance. All algorithms

were implemented in C++ using the Gurobi 8.0.1 callback library.
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Table 1 Characteristics of the hub-hub concave cost function as proposed in Klincewicz (2002)

Interval Flow on Modest scenario Median scenario Aggressive scenario

s link (k, `) αsk` βsk` αsk` βsk` αsk` βsk`

1 [0,50) 1.0 0.0 1.0 0.0 0.8 0.0
2 [50,100) 0.9 5.0 0.8 10.0 0.6 10.0
3 [100,200) 0.8 15.0 0.6 30.0 0.4 30.0
4 200≤ 0.7 35.0 0.4 70.0 0.2 70.0

In what follows, we first present test instances in Section 5.1. We provide the results of evaluating

the MILP-flow model in Section 5.2, the performance of the proposed algorithms in terms of

computational efforts in Section 5.3, and the detailed results of the BC-LR+ in Section 5.4.

5.1. Test instances

We tested the algorithms on a modified AP data set (Ernst and Krishnamoorthy 1996, 1999)

which consists of instances having between 10 and 200 nodes. Two types of instances denoted by

L and T were tested for the uncapacitated case with type T having a higher fixed costs for the

nodes with large flows, while type L do not exhibit this feature. For the capacitated case, four

types of instances denoted by LL, LT, TL, and TT were tested, where the first letter denotes the

fixed cost type similar to the uncapacitated case, while the second letter indicates tight (T) and

loose (L) node capacities. We used three piecewise linear concave cost functions as in Klincewicz

(2002) and de Camargo et al. (2009) each consisting of the lower envelope of four affine functions

with different intercepts and slopes. These three functions correspond to different levels of benefits

from the economies of scale: modest, median, and aggressive as shown in Table 1. In the following

subsections we denote by AP I, AP II, and AP III, the AP dataset under modest, median, and

aggressive scenarios, respectively.

5.2. Performance of MILP-flow formulation

This section provides detailed computational results of the MILP-flow model. Tables 2 and 3 report

the results for the uncapacitated SAHLP-h (USAHLP-h) and capacitated SAHLP-h (CSAHLP-h),

respectively. In Table 2, the first column provides the number of nodes (nodes). The second column

shows the cost structure (L/T). For each dataset AP I, AP II, and AP III, we report the best

upper bound (UB) found within the time limit, the solution time in seconds of the LP relaxation

(TLP ), as well as the total solution time of the model (TIP ). If the solver was not able to solve the

LP or IP models for a given instance within the time limit, the time limit in seconds is reported as

the solution time. Moreover, for each dataset, we also report the LP gap (GLP ) and the optimality

gap (GIP ) in percentage. The LP gap is calculated as GLP = (UB−LB)/UB× 100, where LB is
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Table 2 Performance of MILP-flow formulation on USAHLP-h instances

AP I AP II AP III

Time (s) Gap (%) Time (s) Gap (%) Time (s) Gap (%)

Nodes Cost UB TLP TIP GLP GIP UB TLP TIP GLP GIP UB TLP TIP GLP GIP

10 L 225928 0.1 0.4 1.94 0.00 220117 0.1 0.8 3.48 0.00 213652 0.1 0.7 3.67 0.00
10 T 264452 0.1 0.6 1.68 0.00 257614 0.1 0.4 2.43 0.00 251412 0.1 0.3 2.87 0.00

20 L 234585 1.1 3.3 0.55 0.00 228164 0.7 3.0 1.02 0.00 223111 1.0 3.2 1.04 0.00
20 T 271010 1.0 3.4 0.63 0.00 263845 1.0 3.5 1.08 0.00 258207 0.7 5.9 1.07 0.00

25 L 236650 1.4 8.4 0.82 0.00 230917 2.1 8.6 1.14 0.00 226155 2.1 15.5 1.05 0.00
25 T 295668 1.2 8.7 0.41 0.00 289172 1.1 14.7 1.09 0.00 283384 1.3 7.5 1.06 0.00

40 L 240934 6.9 96.6 1.21 0.00 234628 7.0 81.9 1.60 0.00 229500 5.6 62.9 1.67 0.00
40 T 293165 5.9 59.2 0.00 0.00 293165 7.0 106.1 0.12 0.00 290704 6.7 56.6 1.02 0.00

50 L 237478 28.6 348.9 0.73 0.00 231825 26.9 242.2 1.23 0.00 227204 24.2 241.9 1.72 0.00
50 T 300421 26.2 299.2 0.49 0.00 294551 14.3 216.7 1.29 0.00 288141 24.0 323.1 1.39 0.00

60 L 228885 31.4 521.2 0.88 0.00 222745 27.3 483.7 1.25 0.00 217723 44.1 753.0 1.21 0.00
60 T 264628 24.1 465.8 0.61 0.00 260273 27.2 935.7 1.06 0.00 255780 43.1 386.5 1.40 0.00

70 L 226181 56.1 2229.6 0.96 0.00 220060 45.8 1691.3 1.66 0.00 215019 46.6 1487.0 2.48 0.00
70 T 261295 42.8 1963.8 0.00 0.00 261295 38.8 2045.6 0.00 0.00 261295 41.7 1055.2 0.00 0.00

75 L 235756 87.4 3359.7 0.96 0.00 229630 118.4 2296.2 1.23 0.00 224719 67.8 2234.2 1.29 0.00
75 T 288778 107.1 1638.1 0.00 0.00 287687 60.8 2073.7 0.53 0.00 284805 59.7 3151.1 0.48 0.00

90 L 225512 178.3 5831.6 0.92 0.00 219494 143.8 7028.1 1.30 0.00 214440 223.6 6350.0 1.59 0.00
90 T 257477 117.0 5362.3 0.55 0.00 252975 113.8 4633.0 0.85 0.00 249242 196.2 5088.4 0.80 0.00

100 L N/A 427.9 7200.0 N/A N/A N/A 221.6 7200.0 N/A N/A N/A 186.6 7200.0 N/A N/A
100 T N/A 291.6 7200.0 N/A N/A N/A 167.2 7200.0 N/A N/A N/A 155.8 7200.0 N/A N/A

125 L N/A 1491.8 7200.0 N/A N/A N/A 657.1 7200.0 N/A N/A N/A 602.5 7200.0 N/A N/A
125 T N/A 441.4 7200.0 N/A N/A N/A 430.9 7200.0 N/A N/A N/A 416.5 7200.0 N/A N/A

150 L N/A 1585.2 7200.0 N/A N/A N/A 1271.8 7200.0 N/A N/A N/A 1058.3 7200.0 N/A N/A
150 T N/A 1005.8 7200.0 N/A N/A N/A 789.8 7200.0 N/A N/A N/A 838.2 7200.0 N/A N/A

175 L N/A 3786.1 7200.0 N/A N/A N/A 4540.9 7200.0 N/A N/A N/A 1790.3 7200.0 N/A N/A
175 T N/A 3386.1 7200.0 N/A N/A N/A 1635.1 7200.0 N/A N/A N/A 2931.2 7200.0 N/A N/A

200 L N/A 7200.0 7200.0 N/A N/A N/A 5082.0 7200.0 N/A N/A N/A 2560.8 7200.0 N/A N/A
200 T N/A 7200.0 7200.0 N/A N/A N/A 7200.0 7200.0 N/A N/A N/A 6637.5 7200.0 N/A N/A

Average 983.3 3364.3 0.74 0.00 808.3 3352.3 1.24 0.00 641.7 3329.4 1.43 0.00
Geometric mean 57.4 513.9 48.2 528.5 48.5 505.2

N/A: Not available due to time limit

the value of the LP relaxation. If a gap value is not obtained within the time limit, it is reported

as ‘N/A’. The average solution time and gaps are reported in the last two rows. The descriptions

are the same for Table 3.

As shown in Table 2, the MILP model can be solved for L and T instances having up to 90

nodes. The integrality gaps for AP I, AP II, and AP III datasets are on average 0.74%, 1.24%,

1.43%, respectively. The average solution times of the instances solved to optimality are 3364.3

seconds, 3352.3 seconds, and 3329.4 seconds, respectively. The solution times increase rapidly

with the size of the instances, and the instances with 100 or more nodes cannot be solved within

the time limit. In any of these unsolved instances, Gurobi could not identify an integer feasible

solution. Furthermore, for 200 nodes in AP I datase, the LP relaxation cannot even be solved. For

the capacitated instances, in Table 3, the general behavior of the model is similar to that of the
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Table 3 Performance of MILP-flow formulation on CSAHLP-h instances

AP I AP II AP III

Cost/ Time (s) Gap (%) Time (s) Gap (%) Time (s) Gap (%)

Nodes Capacity UB LP IP LP IP UB LP IP LP IP UB LP IP LP IP

10 LL 225928 0.1 0.4 1.94 0.00 220117 0.1 0.8 3.48 0.00 213652 0.1 0.7 3.67 0.00
10 LT 255755 0.1 1.0 3.67 0.00 248992 0.1 0.8 5.16 0.00 241356 0.1 0.6 5.60 0.00
10 TL 264452 0.1 0.5 1.68 0.00 257614 0.1 0.8 2.43 0.00 251412 0.1 0.6 2.87 0.00
10 TT 264452 0.1 0.4 1.68 0.00 257614 0.1 0.3 2.17 0.00 252218 0.1 0.5 2.53 0.00

20 LL 234585 1.1 2.7 0.55 0.00 228164 0.7 2.9 1.02 0.00 223111 0.7 5.3 1.04 0.00
20 LT 253352 0.5 24.1 2.96 0.00 249067 1.0 21.3 5.08 0.00 245480 0.6 27.8 6.35 0.00
20 TL 271010 0.6 3.4 0.63 0.00 263845 0.7 3.6 1.08 0.00 258207 1.0 5.9 1.07 0.00
20 TT 298498 0.7 23.9 3.50 0.00 292522 0.6 5.0 3.68 0.00 285770 0.5 6.1 3.30 0.00

25 LL 238797 1.6 14.2 0.80 0.00 231983 1.4 13.2 1.17 0.00 226677 1.4 7.2 1.11 0.00
25 LT 278288 2.4 79.5 3.90 0.00 270489 1.1 43.8 4.68 0.00 262717 2.0 17.6 5.12 0.00
25 TL 310264 2.2 12.5 0.71 0.00 303368 1.1 6.1 1.06 0.00 297465 1.1 5.9 0.89 0.00
25 TT 350285 1.1 78.7 5.13 0.00 342485 2.0 103.7 4.87 0.00 334713 1.3 35.0 4.19 0.00

40 LL 241905 6.2 50.3 1.04 0.00 236333 6.8 72.7 1.42 0.00 231725 6.8 69.1 1.40 0.00
40 LT 273558 6.2 106.8 2.59 0.00 267193 11.2 72.6 3.28 0.00 261029 5.5 58.2 3.10 0.00
40 TL 298863 6.4 38.3 0.29 0.00 294942 6.0 35.1 0.58 0.00 290704 5.5 28.7 1.02 0.00
40 TT 356250 6.3 310.8 3.74 0.00 349318 6.0 213.3 4.48 0.00 341032 10.4 125.5 4.13 0.00

50 LL 238551 25.1 82.5 0.75 0.00 232482 24.9 72.8 1.37 0.00 227602 13.8 97.5 1.89 0.00
50 LT 277268 18.0 3324.4 3.93 0.00 271889 25.7 4021.8 5.49 0.00 264800 23.1 5136.9 5.49 0.00
50 TL 319352 25.9 282.7 2.87 0.00 314931 26.5 166.8 2.30 0.00 308085 25.3 89.4 1.39 0.00
50 TT 420285 30.1 7200.0 6.23 1.06 415001 27.0 7200.0 7.11 1.38 408205 24.6 7200.0 7.10 1.75

60 LL 225967 48.2 151.7 0.84 0.00 220090 27.8 156.3 1.26 0.00 215070 48.5 221.2 1.14 0.00
60 LT 257983 60.8 5020.0 3.73 0.00 253689 55.2 7200.0 5.99 1.61 246271 48.0 7200.0 5.88 0.30
60 TL 252437 45.3 236.0 0.82 0.00 246404 26.3 155.3 1.05 0.00 241525 25.8 220.9 0.97 0.00
60 TT 352480 31.6 401.1 2.75 0.00 345384 69.4 698.3 3.26 0.00 337734 52.5 235.3 3.02 0.00

70 LL 236810 68.6 2290.9 1.59 0.00 230513 48.2 1074.9 2.09 0.00 225372 48.9 1391.8 2.48 0.00
70 LT 258805 75.1 7200.0 3.39 1.01 258442 95.0 7200.0 6.87 3.36 250383 51.4 7200.0 6.68 3.10
70 TL 271170 48.0 438.1 1.12 0.00 261812 41.7 215.6 1.47 0.00 254343 80.6 424.7 1.42 0.00
70 TT 390172 57.5 441.5 4.12 0.00 384757 47.8 804.7 5.10 0.00 378168 53.4 406.5 5.06 0.00

75 LL 238171 77.1 371.0 0.61 0.00 233202 66.3 448.2 1.17 0.00 228904 58.3 713.8 1.35 0.00
75 LT 257357 155.4 4447.0 2.62 0.00 252688 71.7 7200.0 3.78 1.05 248018 59.3 7200.0 4.24 1.26
75 TL 303354 72.2 425.8 1.06 0.00 297263 65.6 368.8 2.06 0.00 292167 60.6 690.4 2.70 0.00
75 TT 351008 74.2 893.1 5.70 0.00 344801 63.6 1175.5 6.68 0.00 336945 57.5 2002.3 6.54 0.00

90 LL 224255 138.3 873.4 0.98 0.00 217859 114.0 1173.0 1.22 0.00 212624 114.7 1218.4 1.19 0.00
90 LT 246946 251.2 7200.0 2.09 0.57 258583 341.1 7200.0 9.32 7.87 242328 265.5 7200.0 5.43 2.92
90 TL 283353 149.4 1189.1 2.41 0.00 277535 125.6 1686.2 3.54 0.00 271391 223.6 1675.6 3.60 0.00
90 TT 340394 141.2 1020.4 2.58 0.00 334119 214.5 1981.7 3.76 0.00 326545 111.9 1633.6 3.64 0.00

100 LL 248282 561.3 7200.0 2.40 1.89 242773 247.0 7200.0 3.29 1.57 236676 196.4 7200.0 3.03 1.24
100 LT 257579 679.4 7200.0 2.27 0.47 251508 280.0 7200.0 3.03 0.65 245493 261.2 6586.7 2.86 0.00
100 TL 362765 398.8 2917.8 5.54 0.00 355930 343.3 2751.1 5.69 0.00 350611 320.8 1803.6 5.84 0.00
100 TT 480693 760.7 6538.4 3.96 0.00 472964 493.1 7200.0 5.45 0.63 461158 198.5 7200.0 5.24 0.58

125 LL 241875 860.0 7200.0 2.88 2.36 236946 587.6 7200.0 4.12 3.81 237294 482.9 7200.0 7.12 6.73
125 LT 254320 1678.8 7200.0 2.44 1.45 250810 604.3 7200.0 4.72 4.28 252902 833.8 7200.0 8.38 7.88
125 TL 246470 456.8 2443.0 0.98 0.00 240320 413.0 2183.2 1.23 0.00 235225 692.3 4472.7 1.09 0.00
125 TT 296995 487.1 2576.4 3.12 0.00 290641 777.7 2300.9 5.37 0.00 281396 423.8 2154.7 5.41 0.00

150 LL 302264 3309.3 7200.0 23.15 23.05 228462 1354.0 7200.0 1.93 1.64 223084 2080.4 7200.0 2.42 2.08
150 LT 259217 4346.1 7200.0 5.82 5.66 249953 1747.5 7200.0 5.60 5.22 243482 1192.9 7200.0 5.63 5.20
150 TL 262388 1206.7 7200.0 2.03 1.44 254937 2038.8 6479.0 2.42 0.00 249068 997.7 6662.9 2.53 0.00
150 TT 337471 1752.3 7200.0 9.07 7.44 333165 1604.3 7200.0 10.66 8.82 316975 1123.4 7200.0 8.11 6.25

175 LL N/A 3000.9 7200.0 N/A N/A N/A 3367.4 7200.0 N/A N/A N/A 3201.6 7200.0 N/A N/A
175 LT N/A 5298.9 7200.0 N/A N/A N/A 4393.2 7200.0 N/A N/A N/A 3619.4 7200.0 N/A N/A
175 TL N/A 1846.7 7200.0 N/A N/A N/A 3250.1 7200.0 N/A N/A N/A 3023.5 7200.0 N/A N/A
175 TT 355056 4611.6 7200.0 14.88 14.75 N/A 5989.5 7200.0 N/A N/A 342868 3859.3 7200.0 15.15 14.85

200 LL N/A 7200.0 7200.0 N/A N/A N/A 4063.5 7200.0 N/A N/A N/A 6130.1 7200.0 N/A N/A
200 LT N/A 7200.0 7200.0 N/A N/A N/A 7200.0 7200.0 N/A N/A N/A 7200.0 7200.0 N/A N/A
200 TL N/A 7200.0 7200.0 N/A N/A N/A 5074.9 7200.0 N/A N/A N/A 3268.3 7200.0 N/A N/A
200 TT N/A 7200.0 7200.0 N/A N/A N/A 7200.0 7200.0 N/A N/A N/A 6429.7 7200.0 N/A N/A

Average 1101.5 3105.6 3.34 1.25 940.1 3209.1 3.63 0.87 839.7 3254.2 3.91 1.11
Geometric mean 64.0 519.3 57.0 505.7 52.2 497.9

N/A: Not available due to time limit
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uncapacitated case. The solver can identify integer feasible solutions for instances up to 150 nodes,

but there are unsolved instances even for 50 nodes. Moreover, the LP relaxation cannot be solved

for 200 nodes.

5.3. Algorithmic performance

This section provides computational results which illustrate the performance of the proposed

branch-and-cut algorithms BC-LS, BC-LR, and BC-LR+ for the solution of USAHLP-h and

CSAHLP-h. In Table 4, we compare the three algorithms in terms of computational times. Each

row of the table report the average results on six instances for the USAHLP-h and 12 instances for

the CSAHLP-h. For each algorithm, the ‘Time’ column provides the average computational time

and ‘#solved’ column shows the total number of instances solved to optimality within the time

limit.

For the USAHLP-h, the BC-LS algorithm, can solve only 25 of total 84 instances within an

average of 5207.5 seconds. The performance of the BC-LR is much better than that of the BC-LS

since it can solve instances with up to 200 nodes within an average solution time of 1550.6 seconds.

The total number of instances solved to optimality using the BC-LR is 69 out of 84. The BC-LR+

algorithm, on the other hand, has the best performance; it solves all instances to optimality within

an average time of 206.3 seconds. Of those 25 instances that could be solved to optimality by

all BC-LS, BC-LR and BC-LR+ algorithms, the average solution times are 505.3, 5.63 and 0.46

seconds, respectively. The acceleration factor is three orders of magnitude.

The performance of the algorithm is similar for CSAHLP-h and USAHLP-h. The BC-LR+ is

the best with average solution time of 822.9 seconds. Of the 40 instances that could be solved to

optimality by all BC-LS, BC-LR and BC-LR+ algorithms, the average solution times are 624.2,

9.0, 0.5 seconds, respectively. The acceleration factor is again three orders of magnitude. BC-LR+

solves 156 out of 168 instances, which is 25% and 74% more than BC-LR and BC-LS, respectively.

In Figure 2 we plot the behavior of the three algorithms on a sample CSAHLP-h instance of type

LT with n = 50 that can be solved by all algorithms within the time limit. The horizontal axis

represent the time in seconds on a logarithmic scale, whereas the vertical axis shows the lower bound

obtained by each algorithm. The figure shows how each algorithm converges to an optimal value as

a function of the computing time. The BC-LR+ algorithm can reach the optimal value in a portion

of the time needed by the other algorithms. The BC-LS algorithm has a poor performance, while

BC-LR reaches an optimum within a reasonable time. Overall, the results indicate the superiority

of BC-LR+.
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Table 4 Average solution time (seconds) of BC-LS, BC-LR, and BC-LR+ on USAHLP-h and CSAHLP-h

instances

USAHLP-h CSAHLP-h

BC-LS BC-LR BC-LR+ BC-LS BC-LR BC-LR+

Nodes Time (s) #solved Time (s) #solved Time (s) #solved Time (s) #solved Time (s) #solved Time (s) #solved

10 1.7 6 0.6 6 0.0 6 3.1 12 0.6 12 0.0 12
20 29.3 6 1.8 6 0.4 6 181.5 12 3.0 12 0.4 12
25 135.8 6 8.4 6 0.2 6 936.4 12 13.8 12 0.5 12
40 4710.2 3 10.1 6 1.0 6 5332.1 3 35.6 12 2.4 12
50 7200.0 0 43.7 6 1.8 6 6907.3 1 176.6 12 21.2 12
60 7200.0 0 99.5 6 3.1 6 7200.0 0 297.2 12 23.6 12
70 3615.4 3 67.4 6 10.3 6 7200.0 0 721.2 12 30.2 12
75 6813.0 1 166.4 6 9.4 6 7200.0 0 1841.1 10 169.0 12
90 7200.0 0 390.5 6 32.7 6 7200.0 0 4384.5 5 306.0 12

100 7200.0 0 562.8 6 25.5 6 7200.0 0 3684.1 8 821.1 11
125 7200.0 0 3164.3 4 107.7 6 7200.0 0 4575.4 6 576.2 12
150 7200.0 0 6439.0 1 332.6 6 7200.0 0 6728.2 1 3796.7 7
175 7200.0 0 6064.1 1 376.4 6 7200.0 0 6431.5 2 2146.1 11
200 7200.0 0 4689.6 3 1986.7 6 7200.0 0 7081.1 1 3627.2 7

Total 25/84 69/84 84/84 40/168 117/168 156/168
Average 5207.5 1550.6 206.3 5582.9 2569.6 822.9

Geometric mean 1856.9 132.7 9.5 2686.5 383.3 47.0
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Figure 2 Comparison of the BC-LS, BC-LR, and BC-LR+ on the sample CSAHLP-h instance of type LT from

the AP I dataset with n = 50. The time axis is in logarithmic scale.

5.4. Detailed performance of the BC-LR+ algorithm

We now evaluate in more detail the performance of BC-LR+ in solving SAHLP-h. In Tables 5

and 6, we report the results for USAHLP-h and CSAHLP-h, respectively. The first two columns of

these tables are the same as those of Tables 2 and 3. For every instance, we report the best upper

bound found by the algorithm (UB), the optimality gap in percentage (Gap (%)), the solution time

(Time), the number of nodes explored in the branch-and-cut tree (#bc), and the total number of

Bender cuts generated in the branch-and-cut tree (#cuts).
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For USAHLP-h in Table 5, the algorithm can solve all instances of each dataset to optimality

with average computing times of 452.8, 117.9, and 48.1 for the AP I, AP II, and AP III, respectively.

The AP I is the most difficult dataset, while AP III is the easiest. This is an expected behavior

since the discount factors α are the largest in AP I and the smallest in AP III. As can be seen from

Table 6, the algorithm has a similar performance on capacitated and uncapacitated instances. The

AP I dataset is again the most difficult one, while the AP III is the easiest of the three datasets.

The algorithm can solve instances with up to 200 nodes from each dataset. Instances with tight

capacities (types LT and TT) are more difficult than those with larger capacities.

Table 5 Performance of BC-LR+ on the USAHLP-h instances

AP I AP II AP III

Nodes Cost UB Gap (%) Time (s) #bc cuts UB Gap (%) Time (s) #bc cuts UB Gap (%) Time (s) #bc cuts

10 L 225928 0.00 0.0 37 21 220117 0.00 0.0 38 23 213652 0.00 0.0 5 4
10 T 264452 0.00 0.1 52 29 257614 0.00 0.0 39 20 251412 0.00 0.1 12 8

20 L 234585 0.00 0.5 21 13 228164 0.00 0.2 24 12 223111 0.00 0.1 15 7
20 T 271010 0.00 1.7 17 7 263845 0.00 0.1 19 9 258207 0.00 0.0 7 5

25 L 236650 0.00 0.5 62 34 230917 0.00 0.3 23 18 226155 0.00 0.1 13 11
25 T 295668 0.00 0.1 10 8 289172 0.00 0.2 11 9 283384 0.00 0.1 8 9

40 L 240934 0.00 1.7 174 41 234628 0.00 2.2 143 56 229500 0.00 0.9 77 23
40 T 293165 0.00 0.4 4 3 293165 0.00 0.2 4 3 290704 0.00 0.3 8 7

50 L 237478 0.00 3.9 104 28 231825 0.00 2.7 131 36 227204 0.00 1.8 81 24
50 T 300421 0.00 1.4 30 10 294551 0.00 0.3 3 3 288141 0.00 0.4 3 4

60 L 228885 0.00 4.3 142 39 222745 0.00 1.5 15 12 217723 0.00 0.9 7 6
60 T 264628 0.00 9.3 106 44 260273 0.00 1.7 23 15 255780 0.00 1.1 5 4

70 L 226181 0.00 41.9 445 115 220060 0.00 13.6 121 40 215019 0.00 4.6 24 12
70 T 261295 0.00 0.5 0 1 261295 0.00 0.5 0 1 261295 0.00 0.5 0 1

75 L 235756 0.00 37.5 290 84 229630 0.00 4.7 68 16 224719 0.00 3.0 19 12
75 T 288778 0.00 3.7 7 7 287687 0.00 3.0 5 6 284805 0.00 4.7 9 10

90 L 225512 0.00 77.4 1081 175 219494 0.00 51.4 415 115 214440 0.00 19.9 96 50
90 T 257477 0.00 22.3 216 59 252975 0.00 17.0 126 47 249242 0.00 8.4 16 11

100 L 238097 0.00 91.5 328 73 232477 0.00 26.8 188 37 227857 0.00 28.3 113 46
100 T 305098 0.00 2.4 0 2 305098 0.00 1.3 0 2 302775 0.00 2.4 4 4

125 L 227969 0.00 359.0 850 157 221732 0.00 116.8 412 86 216589 0.00 73.7 176 60
125 T 259065 0.00 67.0 231 61 252500 0.00 12.2 12 11 246993 0.00 17.6 9 8

150 L 225455 0.00 941.7 3395 405 218728 0.00 138.6 218 59 214684 0.00 136.3 203 62
150 T 234895 0.00 704.0 3379 353 228002 0.00 24.1 17 6 222629 0.00 50.5 41 26

175 L 227758 0.00 1469.8 3346 392 221122 0.00 272.1 344 69 215683 0.00 153.4 155 42
175 T 247539 0.00 160.1 466 51 240686 0.00 20.0 4 5 235928 0.00 183.1 36 28

200 L 233959 0.00 6548.6 8916 932 227880 0.00 2092.1 633 123 222838 0.00 196.9 101 32
200 T 272445 0.00 2128.4 3591 356 266077 0.00 497.3 432 85 259262 0.00 457.0 248 73

Average 0.00 452.8 975 125 0.00 117.9 124 33 0.00 48.1 53 21
Geometric mean 11.8 4.0 3.1

6. Conclusions

We have studied a practical generalization of the classical hub location problem with flow-based

discount factors for transportation costs, which we refer to as the single allocation hub location

problem with heterogeneous economies of scale (SAHLP-h). We have developed a non-linear pro-

gramming model which was reformulated as a MILP, and also a MIQCP with particular structures

that can be exploited to develop Benders type decomposition methods with integer subproblems.

Our models are independent of parameters and data specifications such as the triangle inequality.
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Table 6 Performance of BC-LR+ on the CSAHLP-h instances

Cost/ AP I AP II AP III

Nodes Capacity UB Gap (%) Time (s) #bc cuts UB Gap (%) Time (s) #bc cuts UB Gap (%) Time (s) #bc cuts

10 LL 225928 0.00 0.2 33 13 220117 0.00 0.0 38 23 213652 0.00 0.0 5 4
10 LT 255755 0.00 0.1 54 29 248992 0.00 0.0 62 34 241356 0.00 0.0 43 29
10 TL 264452 0.00 0.0 31 12 257614 0.00 0.0 36 20 251412 0.00 0.0 12 8
10 TT 264452 0.00 0.0 19 8 257614 0.00 0.0 18 11 252218 0.00 0.0 13 7

20 LL 234585 0.00 0.1 17 7 228164 0.00 0.1 14 5 223111 0.00 0.1 24 15
20 LT 253352 0.00 2.6 194 29 249067 0.00 0.3 152 24 245480 0.00 0.2 158 40
20 TL 271010 0.00 1.0 17 6 263845 0.00 0.1 7 3 258207 0.00 0.1 7 5
20 TT 298498 0.00 0.1 112 19 292522 0.00 0.3 75 9 285770 0.00 0.1 62 10

25 LL 238797 0.00 0.8 203 32 231983 0.00 0.7 166 24 226677 0.00 0.2 74 20
25 LT 278288 0.00 0.9 550 50 270489 0.00 0.5 253 36 262717 0.00 0.9 254 31
25 TL 310264 0.00 0.2 30 18 303368 0.00 0.2 19 12 297465 0.00 0.2 3 4
25 TT 350285 0.00 1.1 654 41 342485 0.00 0.6 440 34 334713 0.00 0.1 53 6

40 LL 241905 0.00 2.0 101 27 236333 0.00 2.3 85 32 231725 0.00 1.4 82 40
40 LT 273558 0.00 2.9 785 35 267193 0.00 2.6 671 28 261029 0.00 1.7 578 18
40 TL 298863 0.00 1.2 88 14 294942 0.00 0.4 32 10 290704 0.00 0.3 7 4
40 TT 356250 0.00 6.4 3079 83 349318 0.00 5.4 1163 46 341032 0.00 2.0 872 32

50 LL 238551 0.00 4.6 118 36 232482 0.00 2.8 74 21 227602 0.00 1.3 32 18
50 LT 277268 0.00 45.7 3322 151 271889 0.00 12.4 1802 51 264800 0.00 4.7 754 30
50 TL 319352 0.00 4.4 138 30 314931 0.00 4.1 204 51 308085 0.00 0.6 9 5
50 TT 419435 0.00 129.6 19120 233 414928 0.00 25.3 8210 117 407698 0.00 18.4 4345 77

60 LL 225967 0.00 9.7 346 74 220090 0.00 6.0 189 47 215070 0.00 3.3 65 25
60 LT 257983 0.00 56.3 6117 153 253403 0.00 106.2 4772 171 246245 0.00 15.2 1291 43
60 TL 252437 0.00 7.1 244 67 246404 0.00 2.3 33 19 241525 0.00 1.2 8 9
60 TT 352480 0.00 44.5 7759 194 345384 0.00 26.5 2287 76 337734 0.00 4.8 386 30

70 LL 236810 0.00 17.5 394 68 230513 0.00 19.5 274 40 225372 0.00 23.8 348 59
70 LT 258805 0.00 69.3 4013 104 253255 0.00 67.5 2822 110 247735 0.00 38.2 1156 34
70 TL 271170 0.00 15.3 478 78 261812 0.00 4.6 46 27 254343 0.00 2.2 18 12
70 TT 390172 0.00 73.2 9236 308 384757 0.00 24.8 1527 103 378168 0.00 6.3 172 10

75 LL 238171 0.00 11.6 217 42 233202 0.00 19.2 228 36 228904 0.00 16.0 189 32
75 LT 257357 0.00 24.4 1435 43 252688 0.00 41.5 1837 59 248007 0.00 31.6 884 27
75 TL 303354 0.00 22.4 813 91 297263 0.00 10.5 427 46 292167 0.00 4.6 319 19
75 TT 351008 0.00 1749.1 780711 467 344801 0.00 56.2 21445 133 336945 0.00 41.2 3415 72

90 LL 224255 0.00 24.1 243 60 217859 0.00 10.9 60 27 212624 0.00 4.6 5 5
90 LT 246946 0.00 1184.1 38822 507 242138 0.00 153.6 8400 144 237567 0.00 89.5 1141 47
90 TL 283353 0.00 145.2 19669 268 277535 0.00 45.8 4704 99 271391 0.00 13.7 925 24
90 TT 340394 0.00 1588.7 258808 792 334119 0.00 186.6 37768 228 326545 0.00 225.5 15298 82

100 LL 248282 0.00 209.4 1548 90 242773 0.00 92.6 1231 63 236676 0.00 43.6 612 22
100 LT 257579 0.00 389.9 7666 237 251508 0.00 149.8 2022 67 245493 0.00 50.5 744 41
100 TL 362765 0.00 183.5 4179 145 355930 0.00 50.7 1004 70 350611 0.00 29.1 538 38
100 TT 480693 0.22 7200.0 255115 1730 472964 0.00 1330.1 119683 609 461158 0.00 124.4 16728 131

125 LL 240450 0.00 416.3 2473 81 234728 0.00 457.5 3030 114 228022 0.00 145.9 956 52
125 LT 254320 0.00 2234.8 13646 469 250536 0.00 1078.4 5326 177 244991 0.00 181.3 1478 78
125 TL 246470 0.00 1041.0 3373 522 240320 0.00 114.8 355 107 235225 0.00 31.1 46 30
125 TT 296995 0.00 1043.3 16947 455 290641 0.00 150.2 3164 129 281396 0.00 19.2 467 9

150 LL 234844 0.00 1182.6 1476 214 228462 0.00 1543.5 1396 211 223084 0.00 225.0 481 75
150 LT 253905 1.59 7200.0 215471 174 249517 1.69 7200.0 302562 60 243482 1.54 7200.0 665118 30
150 TL 262388 0.00 1368.6 16129 588 254937 0.00 697.4 3323 161 249068 0.00 236.2 814 50
150 TT 327474 0.32 7200.0 77388 1109 323591 0.08 7200.0 160513 1589 315767 0.00 4307.0 153331 766

175 LL 228001 0.00 1716.9 7887 425 222226 0.00 902.0 2619 203 215802 0.00 125.5 509 25
175 LT 255214 0.00 3971.5 19475 337 250853 0.00 1432.9 9299 100 244415 0.00 2178.8 7412 118
175 TL 245016 0.00 594.8 1203 190 238548 0.00 196.3 237 57 232815 0.00 19.7 3 2
175 TT 315857 0.31 7200.0 172475 1096 311569 0.00 7200.0 128133 407 305466 0.00 354.5 12710 55

200 LL 232138 0.00 2578.3 5019 156 226507 0.00 921.2 2518 76 220363 0.00 716.0 1281 64
200 LT 272378 3.57 7200.0 20572 165 267396 4.76 7200.0 9779 118 259966 2.38 7200.0 17563 161
200 TL 274160 0.00 1148.2 1033 88 267006 0.00 427.0 967 64 259013 0.00 527.8 761 37
200 TT 295273 0.51 7200.0 119007 748 289606 0.17 7200.0 131982 736 281331 0.00 1207.6 22876 149

Average 0.00 1188.0 37858 236 0.00 828.3 17669 126 0.00 455.0 16740 51
Geometric mean 44.6 21.6 9.5

We have investigated an application of the integer L-shaped decomposition algorithm to solve the

MILP formulation, and we have developed a generalized Benders decomposition for the MIQCP.

The latter is based on a Lagrangian relaxation, which yields a subproblem decomposition and a

tight lower bound. We have used linear dual functions to underestimate the Lagrangian function

in order to generate optimality cuts. We have also developed an efficient algorithm to generate

enhanced cuts. We have performed extensive computational experiments on both uncapacitated

and capacitated SAHLP-h instances. Our results indicate the efficacy of our algorithms on large-
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scale instances derived from the classical Australian Post dataset. Our best algorithm was capable

of solving instances with up to 200 nodes within one hour of computing time.
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