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This work addresses the multiscale optimization of the purification processes of antibody fragments.
Chromatography decisions in the manufacturing processes are optimized, including the number of
chromatography columns and their sizes, the number of cycles per batch, and the operational flow
velocities. Data-driven models of chromatography throughput are developed considering loaded mass,
flow velocity, and column bed height as the inputs, using manufacturing-scale simulated datasets based
on microscale experimental data. The piecewise linear regression modeling method is adapted due to
its simplicity and better prediction accuracy in comparison with other methods. Two alternative
mixed-integer nonlinear programming (MINLP) models are proposed to minimize the total cost of goods
per gram of the antibody purification process, incorporating the data-driven models. These MINLP models
are then reformulated asmixed-integer linear programming (MILP) models using linearization techniques
and multiparametric disaggregation. Two industrially relevant cases with different chromatography
column size alternatives are investigated to demonstrate the applicability of the proposed models.

� 2019 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The global industry has been experiencing accelerating changes
during the recent transformation of traditional manufacturing into
smart manufacturing [1,2]. During the conversion process, indus-
tries face a number of challenges posed by smart manufacturing,
which have attracted great attention in both academic and practi-
tioner communities [3], particularly in the process industry [4].
Some of the challenges to be covered in this work include:

� The use and analysis of data, with a particular focus on the
development of data-driven surrogate/metamodels to simplify
complex processes and to enable manufacturing intelligence;

� The implementation of multiscale modeling and optimization
to integrate strategic and planning decisions with operations
in order to support enterprise-wide coordination and
optimization;

� The development of computationally efficient models, algo-
rithms, and tools in order to find global optimal solutions
for smart manufacturing decision-making and to enable
large-scale optimization.
In this work, we aim to develop optimization-based decision-
making models for optimal purification strategies in the manufac-
turing process of an antibody product based on simple data-driven
models, in an attempt to cope with the above challenges in the bio-
pharmaceutical industry. In order to achieve better control of the
processes and improve production efficiency, biopharmaceutical
manufacturing process optimization problems have been investi-
gated using different modeling and solution techniques, such as
metaheuristic [5], dynamicoptimization [6], evolutionary algorithm
[7–9], Markov decision method [10], and mixed-integer program-
ming [11–22]. Data-driven models—also known as surrogate mod-
els or metamodels—refer to models that are built on the basis of
data, but are not dependent on theoretical knowledge of the con-
cerned processes or systems. Data-driven models of complex pro-
cesses and systems provide model simplicity and computational
efficiency [23], and their integrationwith optimization requires less
computational effort and has a broad application in the engineering
field [24,25]. In particular, suchmodels have demonstrated research
benefits in the modeling and optimization of chromatography
purification operations [26–29]. However, only a few attempts have
been made to integrate data-driven models into optimizationmod-
els for biopharmaceutical purification processes. Nagrath et al. [30]
developed an artificial neural network (ANN)-based hybrid model
for the optimization of preparative chromatographic processes.
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Pirrung et al. [31] developed ANNs from detailed mechanistic mod-
els and integrated them into the optimization of biopharmaceutical
downstream processes for the maximum yield of a process with
three different chromatographic columns.

Antigen-binding fragment (Fab) products are regarded as the
next generation of protein-based biotherapeutics after monoclonal
antibody (mAb) products, and offer many advantages due to their
simpler and smaller structure [32]. There is a need to develop a
cost-efficient process for Fab production in industrial practice
[33], but few works on this topic exist in the literature. In this
work, the multiscale optimization of the purification process of a
Fab product is addressed, using microscale column chromatogra-
phy experiment data for manufacturing-scale chromatography
optimization. In order to achieve the most cost-efficient process,
besides considering chromatography column-sizing strategies at
the design level, operational decisions are taken into account—
particularly the flow velocity at chromatography steps. Data-
driven models are developed to estimate the chromatography
throughput. When incorporating the developed data-driven mod-
els, a number of mixed-integer programming models are proposed
to find the optimal Fab purification strategies, and are examined
through case studies. To the best of our knowledge, this is the first
work in the literature on the multiscale optimization of the purifi-
cation process of Fab using data-driven models.

The rest of this paper is organized as follows: The optimization
problem is described in Section 2. The data-driven models of the
chromatography operations are developed in Section 3, while the
proposed mathematical programming optimization models are
described in Section 4. Section 5 presents industrially relevant case
studies, followed by the computational results and discussion in
Section 6. Finally, concluding remarks are provided in Section 7.
2. Problem statement

This work investigates the optimization of the manufacturing
processes of a Fab product. Fig. 1 shows the Fab manufacturing
process flowsheet studied in this work. Initially, the mammalian
cells expressing the Fab are cultured in bioreactors in the upstream
processing (USP) before entering into the downstream processing
(DSP). In the DSP, the Fab protein product is purified by a number
of operations, including centrifugation, homogenization, filtration,
ultrafiltration/diafiltration (UF/DF), and three packed-bed chro-
matography steps, which include affinity, cation-exchange, and
anion-exchange chromatography steps.

The chromatography column-sizing strategies are important to
the efficiency of the whole purification process. These strategies
include the number of parallel columns at each step, diameter and
bed height of the columns, and number of cycles per batch, which
significantly affect the cost, time, and output of the wholemanufac-
turing process. In real practice, there are standard columnswith dif-
ferent diameter sizes, and the bed height are set to a range of typical
integer values. Thus, in this work, the column diameter and bed
height are optimized from a given set of discrete alternative values.
Fig. 1. A Fab manufacturing process. Orange boxes represent chromatography
ultrafiltration/diafiltration.
Chromatography operations are complex process with chal-
lenges in modeling their behaviors. To optimize the chromatogra-
phy operational strategies, metamodeling techniques are used in
this work tomimic and predict the chromatography process perfor-
mance, particularly the chromatography throughput, indicating the
rate of the product output of one column within a given period,
which is an important metric of the chromatography operation. To
develop manufacturing-scale data-driven models, data from a
microscale column chromatography laboratory experiment are col-
lected and then fitted to obtain isothermparameters. First-principle
chromatography models are also created with scale-related
parameters to capture challenges on scaling [34]. First-principle
models with isotherm parameters are solved, followed by simula-
tion runs to generate manufacturing-scale datasets using COMSOL
Multiphysics simulation software [35]. The datasets include the
throughput output under different input conditions of loadedmass,
flow velocity, and column bed height at the two chromatography
steps in the binding and elution mode—namely, the affinity and
cation-exchange chromatography steps. The datasets are then used
to derive data-driven models, which are incorporated into the pro-
posed optimization models in order to reach optimal
manufacturing-scale chromatography decisions. The whole proce-
dure of the multiscale optimization approach is presented in
Fig. 2; the steps presented in the last three tan-colored boxes in
the figure will be described in detail in the following sections. Note
that it is assumed that the considered input conditions do not affect
other chromatography parameters, such as the resin’s yield, binding
capacity, and lifetime,which are knownparameters in this problem.

In summary, the optimization problem considered in this work
is described as follows:

Given:
� The process flowsheet of a Fab product;
� The number of bioreactors and their volumes, along with the
bioreactor titer;

� The chromatography operation parameters, including the
yield, buffer and eluent usage, dynamic binding capacity, life-
time, etc.;

� The non-chromatography operation parameters, including the
yield, processing rate, buffer usage, etc.;

� Time-related data, including the processing rate, bioreaction
time, annual operating time, etc.;

� Cost-related data, including the labor wage and the costs of
the resin, buffer, media, equipment, etc.;

� Chromatography data from simulations based on first-
principle models and microscale column experiment data;

� The candidate column diameter and bed height, and the max-
imum number of cycles and columns.

Determine:
� Chromatography column-sizing strategies, such as the column
diameter, bed height, and number of columns at each chro-
matography step;

� Operational strategies, such as the liner velocities, loaded pro-
duct mass, and number of cycles at the affinity and cation-
exchange chromatography steps;
operations. USP: upstream processing; DSP: downstream processing; UF/DF:



Fig. 2. Procedure for the multiscale optimization of chromatographic strategies.
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� The number of total completed batches;
� The annual total processing time;
� The annual total production output;
� The annual total cost.
So as to minimize the cost of goods (COG) per gram of the Fab

product—that is, the ratio of the annual total cost to the annual
total production output.
Table 1
MAE comparison of different methods.

Method Affinity
chromatography

Cation-exchange
chromatography

Linear regression 121.40 777.26
SVR 111.31 700.98
Kriging 115.39 720.67
Pace regression 115.50 712.93
RSM 90.45 527.31
Piecewise linear regression 34.68 233.39
3. Data-driven models

In this section, simple data-driven models are developed for
chromatography performance based on simulation datasets. In this
work, as a key performance criterion, the chromatography
throughput is considered as the output of the models. Only the
affinity and cation-exchange chromatography steps are modeled,
due to the limited available data. Both the datasets for the affinity
and cation-exchange chromatography steps are based on a single
chromatography column with a diameter of 1 m. Three key vari-
ables influencing the chromatography throughput are considered
in the datasets as the inputs of the data-driven models, namely:
the loaded mass, flow velocity, and column bed height.

A number of widely used methods are implemented in order to
achieve accurate and simple models, including linear regression,
support vector regression (SVR) [36], kriging [37], pace regression
[38], response surface methodology (RSM) [39], and piecewise lin-
ear regression [40]. To estimate the prediction accuracy of these
methods, cross-validation is performed. Given a dataset, n-fold
cross-validation randomly splits the samples into n subsets of
equal size. Then (n – 1) subsets of samples are used in the training,
and the remaining set is used to validate the prediction accuracy of
the obtained data-driven models. In this work, 10 rounds of five-
fold cross-validation are performed by generating random sample
splits, and the mean absolute error (MAE) over all 50 testing sets is
used as the final error metric for comparison of the prediction
accuracy. Linear regression, SVR, kriging, and pace regression are
implemented in WEKA machine learning software [41] with
default settings, while RSM and piecewise linear regression are
run in GAMS [42] using the CPLEX mixed-integer linear program-
ming (MILP) solver. Table 1 presents the prediction error results
obtained after running the cross-validation on the datasets for
affinity chromatography with 3081 samples, and for cation-
exchange chromatography with 2847 samples.

Table 1 shows that the piecewise linear regression method gives
the best prediction accuracy among all the tested methods. The
piecewise linear regression method creates a model to separate
samples into multiple complementary intervals on one input vari-
able,with theflexibility of each interval beingfittedby its own linear
regression function. Considering its ease of modeling and under-
standing, the piecewise linear regressionmethod is chosen to create
thefinal data-drivenmodel for chromatography throughput estima-
tion, where all samples are used in the training process. In the pro-
cedure of the piecewise linear regression [40], each input variable
in turn serves once as the partition variable. For each partition vari-
able, anMILPmodel is solved todetermine thebreakpoint of thepar-
tition variable between only two intervals, and the variable
corresponding to theminimumtraining error is kept as the partition
variable. Until the termination criterion is met, the number of inter-
vals is increased and MILP models are solved iteratively with the
same partition variable. Following this procedure, the following
twomodels are obtained to estimate throughput, TP1

s , at chromatog-
raphy step s (af for affinity and ce for cation-exchange):

TP1
af ¼

0:1914 �LM1
af þ0:3570 �Vaf �12:0477 �Haf þ230:1318; if 654< LM1

af �1643

�0:003294 �LM1
af þ0:008982 �Vaf þ43:5598 �Haf �649:3012; if 1643< LM1

af �2629

0; if 2629< LM1
af �7069

8>><>>:
ð1Þ



1080 S. Liu, L.G. Papageorgiou / Engineering 5 (2019) 1077–1092
TP1
ce ¼

0:1287 �LM1
ceþ2:3940 �Vce�51:4883 �Hceþ895:2814; if 3142<LM1

ce �12242

�0:002489 �LM1
ceþ0:05041 �Vceþ260:5745 �Hce�3890:1058; if 12242<LM1

ce �19698

0; if 19698<LM1
ce �28274

8>><>>:
ð2Þ

where the superscript 1 of the variables refers to the column with a
diameter of 1 m. In the obtained models, the loaded mass, LM1

s , at
chromatography step s is determined to separate three intervals
by the procedure given in Ref. [40], which provides a smaller pre-
diction error than the other two variables, Vs and Hs, which are
the linear velocity and the column bed height, respectively.

In order to incorporate the above obtained data-driven models
into the optimization models for decision-making, they need to be
reformulated by introducing a binary variable. The binary variable,
Os;r , is defined to be equal to 1 if the loadedmass at chromatography
step s lies within interval r; the throughput output is then obtained
from the corresponding liner function. As there is only one interval
to be selected, the binary variable should satisfy Eq. (3):X
r

Os;r ¼ 1; 8s 2 af ; cef g ð3Þ

The value of the separate input, LM1
s , in this model should be

between the two breakpoints (bps;r) of the selected interval, which
can be formulated as the following linear equation:X
r

bps;r�1 � Os;r þ e � LM1
s �

X
r

bps;r � Os;r ; 8s 2 af ; cef g ð4Þ

where e is a small number to separate two successive intervals at
the breakpoints. The general expression of the throughput output
is as follows:

TP1
s ¼

X
r

bLM
s;r � LM1

s þ bV
s;r � Vs þ bH

s;r � Hs þ b0
s;r

� �
� Os;r ;

8s 2 af; cef g
ð5Þ

where bLM
s;r , b

V
s;r , b

H
s;r , and b0

s;r are parameters in the function. When
interval r0 is selected at step s, that is, Os;r0 ¼ 1, Eq. (4) becomes

bps;r0�1 < LM1
s � bps;r0 . In this case, the loaded mass lies in the inter-

val r0; Eq. (5) then ensures that the throughput is equal to the out-
put of the linear function on the selected interval r0:

TP1
s ¼bLM

s;r0 �LM1
s þbV

s;r0 �VsþbH
s;r0 �Hsþb0

s;r0 ; if bps;r0�1�LM1
s �bps;r0 ð6Þ

The above throughput regression model will be incorporated
into the optimization models of Fab manufacturing processes in
the next section.

4. Optimization models

In this section, we will use the above data-driven models to
develop two mixed-integer nonlinear programming (MINLP) mod-
els of the purification processes of a Fab product, using different
modeling methods of alternative column sizes. These MINLP mod-
els are then reformulated as MILP models using exact linearization
techniques and multiparametric disaggregation.

4.1. MINLP model A

MINLP model A is formulated based on the model provided in
Ref. [16] for a mAb manufacturing process. In this model, a number
of alternative column volume sizes are first generated from combi-
nations of the given discrete column diameter and bed height. The
column volume size i at chromatography step s (cv s;i) corresponds
to a specific diameter size (dms;i) and bed height (hs;i) among the
given alternatives.
4.1.1. Column volume
The total column volume (TCVs) at chromatography step s 2 CS

(CS is the set of chromatography steps, CS ={af, ce, ae}, ae stands
for anion-exchange) is determined by the number of columns
(CNs;i) in the selected size multiplied by the corresponding column
volume:

TCVs ¼
X
i

cv s;i � CNs;i; 8s 2 CS ð7Þ

By introducing a binary variable, Xs;i, for the selection of column
size i at chromatography step s, the following constraints can
ensure that only one column size can be selected:X
i

Xs;i ¼ 1; 8s 2 CS ð8Þ

CNs;i � maxCNs � Xs;i; 8s 2 CS; i ð9Þ
where maxCNs refers to the maximum allowed number of columns.

In each batch, the available resin volume at a chromatography
step s—that is, the total column volume (TCVs) multiplied by the
number of cycles per batch (CYNs)—must be sufficient to process
all protein mass entering into that step (Ms�1), and the required
resin volume (RVs) is determined by the dynamic binding capacity
(dbcs) and resin utilization factor (l).

CYNs � TCVs � RVs; 8s 2 CS ð10Þ

RVs ¼ Ms�1

dbcs � l ; 8s 2 CS ð11Þ
4.1.2. Product mass
The initial product mass (M0) entering into the DSP process is

equal to the bioreaction titer (titer) multiplied by the bioreactor
working volume—that is, the bioreactor volume (brv) times the
working volume ratio (a).

M0 ¼ titer � a � brv ð12Þ
The product protein mass going out from step s is equal to the

mass from the previous one, step (s – 1), multiplied by the corre-
sponding yield of step s, yds.

Ms ¼ yds �Ms�1; 8s ð13Þ
The annual product output (AP) is the product mass after the

bulk fill step (s ¼ bf):

AP ¼ r � BN �Mbf ð14Þ
where BN is the number of completed batches, upper bounded by
the maximum allowed batch number, and r is the batch success
rate.

4.1.3. Product volume
The initial product volume entering into the DSP (PV0) is equal

to the working volume of the bioreactor, formulated as follows:

PV0 ¼ a � brv ð15Þ
For the first four steps of the process, including the first cen-

trifugation (s ¼ ct1), homogenization (s ¼ ho), second centrifuga-
tion (s ¼ ct2), and filtration (s ¼ fi) steps, the product volume
remaining after step s (PVs) is equivalent to the product volume
entering into this step:

PVs ¼ PVs�1; 8s 2 ct1;ho; ct2; fif g ð16Þ
At the affinity (s ¼ af) and cation-exchange chromatography

(s ¼ ce) steps, the product volume is equal to the eluent volume,
while at the anion-exchange chromatography (s ¼ ae) step, the
product volume does not change.
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PVs ¼ ecv s � CYNs � TCVsjs–ae þ PVs�1js¼ae; 8s 2 CS ð17Þ
where ecv s is the eluent volume to column volume ratio.

At the first UF/DF step (s ¼ uf1), the flush volume is added to the
product volume entering the step:

PVuf1 ¼ fvr þ 1ð Þ � PVce ð18Þ
where fvr is the flush volume ratio at this step. At the second UF/DF
step (s ¼ uf2), the remaining product volume is the mass divided by
the filling concentration, fconc:

PVuf2 ¼
Muf2

fconc
ð19Þ
4.1.4. Buffer volume
The buffer volume added in each step (BVs) is defined as

follows:

BVs ¼ bvrs � PVs�1; 8s 2 ct1; ct2f g ð20Þ

BVs ¼ 0; 8s 2 ho; fif g ð21Þ

BVs ¼ bcvs � CYNs � TCVs; 8s 2 CS ð22Þ

BVuf1 ¼ fvr � PVce ð23Þ

BVuf2 ¼ dvr � PVuf2 ð24Þ
where bvrs is the buffer volume ratio at centrifugation step s and
bcvs is the buffer volume to column volume ratio at chromatogra-
phy step s, and fvr and dvr are the flush volume ratio and diafiltra-
tion volume ratio at the first and second UF/DF steps, respectively.

The total required buffer volume in each batch (BBV) is the sum
of the buffer volume at all steps, and the annual buffer volume
(ABV) is the total buffer volume of all the completed batches.

BBV ¼
X
s

BVs ð25Þ

ABV ¼ BN � BBV ð26Þ
4.1.5. Processing time
The processing times (Ts) at the affinity and cation-exchange

chromatography steps are determined by the mass output of each
column divided by its throughput (TPs):

Ts ¼ Ms

TPs �
P

iCNs;i
; 8s 2 af ; cef g ð27Þ

At the anion-exchange chromatography step, the processing
times for the loading product (PLT) and adding buffer (BAT) are cal-
culated separately using the volumetric flow rate (VFR) to obtain
the processing time at the step.

Tae ¼ PLT þ BAT ð28Þ

PLT ¼ PVuf1

VFR �PiCNae;i
ð29Þ

BAT ¼ CYNae � bcvae �
P

icvae;i � Xae;i

VFR
ð30Þ

VFR ¼ 1
1000

� vel � p �
X
i

dmae;i

2

� �2

� Xae;i ð31Þ

where vel is the linear velocity of flow at the anion-exchange chro-
matography step. The processing time at the bulk fill step is
assumed to be constant, while at the other non-chromatography
steps, the process time is equal to the corresponding product vol-
ume divided by the processing rate (prs):

Ts ¼ PVs

prs
; 8s 2 ct1;ho; ct2; fi;uf1;uf2f g ð32Þ

The processing time of one batch, BT , is the total processing
time for all steps, divided by the shift duration (sfd) and the num-
ber of shifts per day (sfn):

BT ¼
P

sTs

sfd � sfn ð33Þ

The annual processing time (AT) is the total processing time of
all batches:

AT ¼ BN � BT ð34Þ
which is limited by the annual operating time (aot) minus the seed
train bioreaction time (st) and the bioreaction time (brt) of a single
batch, aot � st � brt.

4.1.6. Data-driven model
The throughput of the 1 m-diameter column is calculated from

the piecewise linear regression model obtained in the previous sec-
tion, including Eqs. (3) and (4). As the selected bed height at chro-
matography step s is expressed as

P
i
hs;i � Xs;i in this model, Eq. (5)

is modified as follows:

TP1
s ¼

X
r

bLM
s;r � LM1

s þ bV
s;r � Vs þ bH

s;r �
X
i

hs;i � Xs;i þ b0
s;r

 !
� Os;r ;

8s 2 af ; cef g ð35Þ
Considering that the throughput of a chromatography column

could be regarded as the product of the protein density, linear
velocity of flow, and column area, it is assumed that the through-
put is proportional to the column area. Thus, it is also proportional
to the column diameter squared. In this case, the relationship
between the throughput of the selected column and that of the
1 m-diameter column (TP1

s ) is formulated as follows:

TPs ¼
P

i dms;i
� �2 � Xs;i

refDMð Þ2
� TP1

s ; 8s 2 af ; cef g ð36Þ

where refDM refers to the reference diameter, which is 100 cm in
this work.

In the data-driven regression model, the mass loaded to the
1 m-diameter column is used to proportionally calculate the actual
loaded mass to the selected column (LMs).

LMs ¼
P

i dms;i
� �2 � Xs;i

refDMð Þ2
� LM1

s ; 8s 2 af ; cef g ð37Þ

where the loaded mass, LMs, is defined as the product mass entering
each column in each cycle, defined as follows:

LMs ¼ Ms�1

CYNs �
P

iCNs;i
; 8s 2 af ; cef g ð38Þ
4.1.7. Objective function
In this work, the objective is to minimize COG per gram, which

equals the annual total cost (AC) divided by the annual total pro-
duction output (AP). All cost terms included in the annual total cost
calculation and the related constraints are presented in Supple-
mentary data. The objective function is as follows:

COG ¼ AC
AP

ð39Þ
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Thus, the proposed MINLP model A minimizes Eq. (39), subject
to the constraints of Eqs. (3), (4), and (7–38), and Eqs. (S1–S19) in
Supplementary data.

4.2. MILP model A*

Next, the obtained MINLP model is reformulated as an MILP
model for ease of computation. The new linear constraints are pre-
sented below.

4.2.1. Integer variable discretization
Similar to the work in Refs. [17–19], in order to facilitate the lin-

earization of nonlinear terms in other constraints, the integer vari-
ables CNs;i, CYNs, and BN are discretized and expressed by binary
variables, as shown in Eqs. (40–44).

CNs;i ¼
XmaxCNs

j¼1

j �Ws;i;j; 8s 2 CS; i ð40Þ

XmaxCNs

j¼1

Ws;i;j ¼ Xs;i; 8s 2 CS; i ð41Þ

CYNs ¼
XmaxCYNs

k¼1

k � Ys;k; 8s 2 CS ð42Þ

XmaxCYNs

k¼1

Ys;k ¼ 1; 8s 2 CS ð43Þ

BN ¼
Xlog2maxBN

n¼1

2n�1 � Zn ð44Þ

whereWs;i;j, Ys;k , and Zn are binary variables introduced for discreti-
sation of the above integer variables, and j and k are the indices of
column number and cycle number, respectively.

4.2.2. Column volume linearization
Based on Eqs. (42) and (43), the nonlinear constraint Eq. (10)

can be reformulated as follows:

XmaxCYNs

k¼1

k � YVs;k � RVs; 8s 2 CS ð45Þ

YVs;k � maxTCVs � Ys;k; 8s 2 CS; k ¼ 1; . . . ;maxCYNs ð46Þ

XmaxCYNs

k¼1

YVs;k ¼ TCVs; 8s 2 CS ð47Þ

where an auxiliary variable YVs;k � Ys;k � TCVs is introduced and
defined, and maxTCVs is the maximum total column volume at
chromatography step s.

4.2.3. Annual production linearization
By introducing another auxiliary variable, ZMs;n � Zn �Ms, to

express the bilinear term in Eq. (14), this constraint can be refor-
mulated by the following equations [43]:

AP ¼
Xdlog2maxBNe

n¼1

r � 2n�1 � ZMbf;n ð48Þ

ZMbf;n � titer � a � brv � Zn; 8n ¼ 1; . . . ; dlog2maxBNe ð49Þ

ZMbf;n � Mbf ; 8n ¼ 1; . . . ; dlog2maxBNe ð50Þ
ZMbf ;n � Mbf � titer � a � brv � 1� Znð Þ;
8n ¼ 1; . . . ; dlog2maxBNe ð51Þ
4.2.4. Product and buffer volume linearization
According to Eqs. (46) and (47), Eqs. (17) and (22) can be rewrit-

ten as the following two linear equations, respectively:

PVs ¼ ecvs �
XmaxCYNs

k¼1

k � YVs;k

�����
s–ae

þ PVuf 1

��
s¼ae; 8s 2 CS ð52Þ

BVs ¼ bcv s �
XmaxCYNs

k¼1

k � YVs;k; 8s 2 CS ð53Þ

ZVn � Zn � BBV is defined using the following equations:

ZVn � maxBBV � Zn; 8n ¼ 1; . . . ; dlog2maxBNe ð54Þ

ZVn � BBV ; 8n ¼ 1; . . . ; dlog2maxBNe ð55Þ

ZVn � BBV �maxBBV � 1� Znð Þ; 8n ¼ 1; . . . ; dlog2maxBNe ð56Þ
Thus, Eq. (26) can be rewritten as follows:

ABV ¼
Xdlog2maxBNe

n¼1

2n�1 � ZVn ð57Þ
4.2.5. Processing time linearization
Eq. (27) can be reformulated to include a nonlinear term of the

product of one integer variable, CNs;i, and two continuous variables,
Ts and TPs. Two auxiliary variables are introduced: TTPs � Ts � TPs

and WTTPs;i;j � Ws;i;j � Ts � TPs. WTTPs;i;j can be determined by TTPs

using the following equations:X
i

XmaxCNs

j¼1

j �WTTPs;i;j ¼ Ms; 8s 2 af ; cef g ð58Þ

WTTPs;i;j � maxTPs �maxTs �Ws;i;j;

8s 2 af ; cef g; i; j ¼ 1; . . . ;maxCNs
ð59Þ

X
i

XmaxCYNs

j¼1

j �WTTPs;i;j ¼ TTPs; 8s 2 af ; cef g ð60Þ

Next, TTPs is reformulated using multiparametric disaggrega-
tion [44–46], where the throughput, TPs, is expressed as a multi-
parametric sum of active decimal powers determined by binary
variable BTPs;d;q and continuous variable CTPs;q 2 0;1½ �, where d is
the digit position ranging from p to maxp, and q is the number
for power d.

TPs ¼
Xmaxp

d¼p

X9
q¼0

10d � q � BTPs;d;q þ
X1
q¼0

10p � q � CTPs;q;

8s 2 af ; cef g
ð61Þ

X9
q¼0

BTPs;d;q ¼ 1; 8s 2 af ; cef g; d ¼ p; . . . ;maxp ð62Þ

X1
q¼0

CTPs;q ¼ 1; 8s 2 af ; cef g ð63Þ

Based on the above equations, variable TTPs is disaggregated
into a number of non-negative continuous variables BTTPs;d;q and

CTTPs;q:



S. Liu, L.G. Papageorgiou / Engineering 5 (2019) 1077–1092 1083
TTPs ¼
Xmaxp

d¼p

X9
q¼0

10d � q � BTTPs;d;q þ
X1
q¼0

10p � q � CTTPs;q;

8s 2 af ; cef g
ð64Þ

BTTPs;d;q � maxTs � BTPs;d;q;

8s 2 af ; cef g; d ¼ p; . . . ;maxp; q ¼ 0; . . . ;9
ð65Þ

CTTPs;q � maxTs � CTPs;q; 8s 2 af ; cef g; q ¼ 0;1 ð66Þ

X9
q¼0

BTTPs;d;q ¼ Ts; 8s 2 af ; cef g; d ¼ p; . . . ;maxp ð67Þ

X1
q¼0

CTTPs;q ¼ Ts; 8s 2 af ; cef g ð68Þ

Note that multiparametric disaggregation is a relaxation
method, and the above reformulation provides a close approxima-
tion of the original equations, and generates a lower bound of the
optimum.

By defining WTs;i;j � Ws;i;j � PLT using the following constraints:

WTae;i;j 6 maxTae �Wae;i;j; 8i; j ¼ 1; . . . ;maxCNae ð69Þ

X
i

XmaxCNae

j¼1

WTae;i;j ¼ PLT ð70Þ

The following linear constraint replaces Eq. (29):

1
1000

�
X
i

XmaxCNae

j¼1

j � vel � p � dmae;i

2

� �2

�WTae;i;j ¼ PVuf1 ð71Þ

Using another auxiliary variable, XYs;i;k � Xs;i � Ys;k, and the fol-
lowing constraints are equivalent to Eq. (30):

BAT ¼
X
i

XmaxCYNae

k¼1

bcvae � CVae;i � k � XYae;i;k

ð1=1000Þ � vel � p � dmae;i=2
� �2 ð72Þ

X
i

XYae;i;k ¼ Yae;k; 8k ¼ 1; . . . ;maxCYNae ð73Þ

XmaxCYNae

k¼1

XYae;i;k ¼ Xae;i;8i ð74Þ

Based on Eq. (44), Eq. (34) can be rewritten as follows:

AT ¼
Xdlog2maxBNe

n¼1

2n�1 � ZTn ð75Þ

where ZTn � Zn � BT, satisfying:

ZTn � aot � st � brtð Þ � Zn; 8n ¼ 1; . . . ; dlog2maxBNe ð76Þ

ZTn � BT; 8n ¼ 1; . . . ; dlog2maxBNe ð77Þ

ZTn � BT � aot � st � brtð Þ � 1� Znð Þ;
8n ¼ 1; . . . ; dlog2maxBNe ð78Þ
4.2.6. Data-driven model reformulation
The bilinear terms of the regression models in Eqs. (4) and (35)

can be rewritten as the following linear constraints [47]:

bps;r�1 þ e�maxLMs � 1� Os;rð Þ � LM1
s

� bps;r þmaxLMs � 1� Os;rð Þ; 8s 2 af; cef g; r ð79Þ
bLM
s;r � LM1

s þ bV
s;r � Vs þ bH

s;r �
X
i

hs;i � Xs;i

þ b0
s;r �maxTPs � 1� Os;rð Þ � TP1

s � bLM
s;r � LM1

s

þ bV
s;r � Vs þ bH

s;r �
X
i

hs;i � Xs;i þ b0
s;r þmaxTPs � 1� Os;rð Þ;

8s 2 af ; cef g; r

ð80Þ

Eq. (36) can be linearized using a new auxiliary variable,
XTPs;i � Xs;i � TP1

s , and the following constraints:

TPs ¼
P

i dms;i
� �2 � XTPs;i

refDMð Þ2
; 8s 2 af; cef g ð81Þ

XTPs;i � maxTPs � Xs;i; 8s 2 af ; cef g; i ð82ÞX
i

XTPs;i ¼ TP1
s ; 8s 2 af; cef g ð83Þ

Similarly, using the auxiliary variable XLMs;i � Xs;i � LM1
s , Eq. (37)

is equivalent to:

LMs ¼
P

i dms;i
� �2 � XLMs;i

refDMð Þ2
; 8s 2 af ; cef g ð84Þ

XLMs;i � maxLMs � Xs;i; 8s 2 af; cef g; i ð85ÞX
i

XLMs;i ¼ LM1
s ; 8s 2 af ; cef g ð86Þ

Eq. (38) includes a nonlinear term involving two integer vari-
ables and one continuous variable, which can be linearized as
follows:XmaxCNs

j¼1

XmaxCYNs

k¼1

j � k �WYLMs;i;j;k ¼ Ms�1; 8s 2 af; cef g; i ð87Þ

XmaxCYNs

k¼1

WYs;i;j;k ¼ Ws;i;j; 8s 2 af ; cef g; i; j ¼ 1; . . . ;maxCNs ð88Þ

X
i

XmaxCNs

j¼1

WYs;i;j;k ¼ Ys;k; 8s 2 af ; cef g; k ¼ 1; . . . ;maxCYNs ð89Þ

WYLMs;i;j;k � maxLMs �WYs;i;j;k;

8s 2 af ; cef g; i; j ¼ 1; . . . ;maxCNs; k ¼ 1; . . . ;maxCYNs ð90Þ

X
i

XmaxCNs

j¼1

XmaxCYNs

k¼1

WYLMs;i;j;k ¼ LMs; 8s 2 af ; cef g ð91Þ

where there are two auxiliary variables, WYs;i;j;k � Ws;i;j � Ys;k; and

WYLMs;i;j;k � Ws;i;j � Ys;k � LMs.

4.2.7. Objective function linearization
The calculation of consumables cost in Eq. (S9) in Supplemen-

tary data involves nonlinearities. By introducing auxiliary variable
ZYVs;k;n � Zn � YVs;k, Eq. (S9) can be reformulated as follows:

CC ¼
X
s2CS

Xlog2maxBN

n¼1

XmaxCYNs

k¼1

2n�1 � k � of � rpcs � ZYVs;k;n

ls
ð92Þ

where of refers to the resin overpacking factor.

ZYVs;k;n � maxTCVs � Zn; 8s 2 CS; k ¼ 1; . . . ;maxCYNs;

n ¼ 1; . . . ; dlog2maxBNe ð93Þ

ZYVs;k;n � YVs;k; 8s 2 CS; k ¼ 1; . . . ;maxCYNs;

n ¼ 1; . . . ; dlog2maxBNe ð94Þ
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ZYVs;k;n � YVs;k �maxTCVs � 1� Znð Þ; 8s 2 CS;

k ¼ 1; . . . ;maxCYNs;n ¼ 1; . . . ; dlog2maxBNe ð95Þ

where rpcs and ls are the resin price and resin lifetime at chromatog-
raphy step s, respectively.

In the objective function Eq. (39), the annual cost can be
expressed as the product of COG per gram and the annual produc-
tion, which can be written as follows:

COGAP ¼ AC ð96Þ

where auxiliary variable COGAP � COG � AP. Using multiparametric
disaggregation and introducing new auxiliary variables
BCOGAPd;q � COG � BAPd;q and CCOGAPq � COG � CAPq, the variables

AP and COGAP can be disaggregated as follows:

AP ¼
Xmaxp

d¼p

X9
q¼0

10d � q � BAPd;q þ
X1
q¼0

10p � q � CAPq ð97Þ

COGAP ¼
Xmaxp

d¼p

X9
q¼0

10d � q � BCOGAPd;q þ
X1
q¼0

10p � q � CCOGAPq ð98Þ

X9
q¼0

BAPd;q ¼ 1; 8d ¼ p; . . . ;maxp ð99Þ

X1
q¼0

CAPq ¼ 1 ð100Þ

BCOGAPd;q � maxCOG � BAPd;q;

8d ¼ p; . . . ;maxp; q ¼ 0; . . . ;9 ð101Þ

CCOGAPq � maxCOG � CAPq; 8q ¼ 0;1 ð102Þ

X9
q¼0

BCOGAPd;q ¼ COG; 8d ¼ p; . . . ;maxp ð103Þ

X1
q¼0

CCOGAPq ¼ COG ð104Þ

Thus, the reformulated MILP model A* includes the constraints
shown in Eqs. (3), (7–9), (11–13), (15), (16), (18–21), (23–25), (28),
(32), (33), and (40–104); and Eqs. (S1–S8) and (S10–S19) in
Supplementary data, with the variable COG as the objective.

4.3. MINLP model B

In this section, an alternative MINLP model B is introduced. By
generating a set of column volume sizes, the models A and A*
result in a large number of variables and equations, which hinder
the computation of the proposed models. To overcome this short-
coming, in the new MINLP model B, we get rid of the discrete col-
umn volume sizes, and introduce an integer variable, Hs, for the
bed height, and a binary variable, Es;m, to indicate whether diame-

ter size, gdmm, is selected. In addition, the subscript i is removed
from the chromatography column number variable, and variablefCNs expresses the number of columns at chromatography step s,
which is upper bounded by maxCNs. Thus, the number of discrete
variables in model B is reduced with improved computational effi-
ciency. Based on the proposed MINLP model A presented above, a
number of new variables and constraints are developed for the
MINLP model B, as introduced below.
4.3.1. Column volume
In model B, the total column volume is calculated using the

variables of bed height (Hs), diameter selection (Es;m), and number

of columns (fCNs).

TCVs ¼ 1
1000

� p �
X
m

gdmm

2

 !2

� Es;m � Hs � gCNs ; 8s 2 CS ð105Þ

In addition, only one diameter size can be selected at each chro-
matography step.X
m

Es;m ¼ 1; 8s 2 CS ð106Þ
4.3.2. Processing time

By replacing
P
i
CNs;i by fCNs in Eqs. (27) and (29), the following

constraint can be obtained:

Ts � TPs � fCNs ¼ Ms; 8s 2 af ; cef g ð107Þ

PLT ¼ PVuf1

VFR � fCNae

ð108Þ

Similarly, BAT and VFR are formulated using the new integer
variable, Hs, and the binary variable, Es;m:

BAT ¼
CYNae � bcvae � ð1=1000Þ � p �Pm

gdmm=2
� �2

� Eae;m � Hae

VFR
ð109Þ

VFR ¼ 1
1000

� vel � p �
X
m

gdmm

2

 !2

� Eae;m ð110Þ
4.3.3. Data-driven model
Eq. (38) can be written using the new column number variable

as follows:

LMs ¼ Ms�1

CYNs � fCNs

; 8s 2 af ; cef g ð111Þ

Similar to Eqs. (36) and (37), the throughput and loaded mass of
the selected columns can be calculated from those of the 1 m-
diameter columns.

TPs ¼
P

m
gdmm

� �2
� Es;m

refDMð Þ2
� TP1

s ; 8s 2 af; cef g ð112Þ

LMs ¼
P

m
gdmm

� �2
� Es;m

refDMð Þ2
� LM1

s ; 8s 2 af ; cef g ð113Þ
4.3.4. Cost
In the cost calculation, Eq. (S13) for fixed capital investment

(FCI) in Supplementary data should be replaced by the following
nonlinear constraint:

FCI¼ lang � 1þgefð Þ � brc �brnþ
X
s2CS

X
m

eccs;m � fCNs �Es;mþoek �brc �brn
 !

ð114Þ
where lang is the Lang factor; gef is the general equipment factor;
brn is the number of bioreactors; brc is the cost of one bioreactor;
oek is the ratio of other equipment cost to the bioreactor cost;eccs;m is the chromatography column cost of diameter size m at
chromatography step s.
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Thus, the proposedMINLPmodel Bminimizes Eq. (39), subject to
the constraints shown in Eqs. (3–5), (10–26), (28), (32–34), and
(105–114); andEqs. (S1–S12) and (S14–S19) in Supplementarydata.

4.4. MILP model B*

In MILP model B*, all nonlinear constraints of MINLP model B
are linearized. Besides the linear constraints presented in MILP
model A*, the newly developed ones are given below.

4.4.1. Integer variable discretization

At first, integer variable fCNs is discretized using binary variable
Fs;j, which represents whether or not j columns are used at chro-
matography step s, as follows:

fCNs ¼
XmaxCNs

j¼1

j � Fs;j; 8s 2 af ; cef g ð115Þ

XmaxCNs

j¼1

Fs;j ¼ 1; 8s 2 af ; cef g ð116Þ
4.4.2. Column volume linearization
In order to linearize Eq. (105), an auxiliary variable,

EFHs;m;j � Es;m � Fs;j � Hs, is introduced, with the following
constraints:

EFHs;m;j � maxHs � EFs;m;j; 8s 2 CS;m; j ¼ 1; . . . ;maxCNs ð117Þ

X
m

XmaxCNs

j¼1

EFHs;m;j ¼ Hs; 8s 2 CS ð118Þ

where EFs;m;j � Es;m � Fs;j is defined as follows:X
m

EFs;m;j ¼ Fs;j; 8s 2 af; cef g; j ¼ 1; . . . ;maxCNs ð119Þ

XmaxCNs

j¼1

EFs;m;j ¼ Es;m; 8s 2 af ; cef g;m ð120Þ

Therefore, Eq. (105) is reformulated to the following linear
constraint:

TCVs ¼
X
m

XmaxCNs

j¼1

j � p �
gdmm

2

 !2

� EFHs;m;j; 8s 2 af ; cef g ð121Þ
4.4.3. Processing time linearization
According to Eqs. (61–68), the term Ts � TPs can be expressed by

TTPs. Therefore, FTTPs;j is introduced to express Fs;j � TTPs, with the
following constraints:

FTTPs;j � maxTPs �maxTs � Fs;j; 8s 2 af ; cef g;
j ¼ 1; . . . ;maxCNs ð122Þ

XmaxCNs

j¼1

j � FTTPs;j ¼ TTPs; 8s 2 af ; cef g ð123Þ

Thus, Eq. (107) is rewritten as follows:XmaxCNs

j¼1

j � FTTPs;j ¼ Ms; 8s 2 af; cef g ð124Þ

Based on the introduction of auxiliary variable
EFTs;m;j � EFs;m;j � PLT and Eqs. (119) and (120), Eq. (108) can be lin-
earized as follows:
1
1000

�
X
m

XmaxCNae

j¼1

j � vel � p �
~dmm

2

 !2

� EFTae;m;j ¼ PVuf1 ð125Þ

EFTae;m;j � maxTae � EFae;m;j; 8m; j ¼ 1; . . . ;maxCNae ð126Þ

X
m

XmaxCNae

j¼1

EFTae;m;j ¼ PLT ð127Þ

In addition, with YHs;k � Ys;k � Hs, the following constraints can
replace Eq. (109) in the MILP model:

BAT ¼
XmaxCYNae

k¼1

bcvae � k � YHae;k

vel ð128Þ

YHae;k � maxHae � Yae;k; 8k ¼ 1; . . . ;maxCYNs ð129Þ

XmaxCYNs

k¼1

YHae;k ¼ Hae ð130Þ
4.4.4. Data-driven model reformulation
Similar to Eq. (80), the data-driven model constraint given in

Eq. (5) can be reformulated to linear constraints [47], as follows:

bLM
s;r � LM1

s þ bV
s;r � Vs þ bH

s;r � Hs þ b0
s;r �maxTPs � 1� Os;rð Þ

� TP1
s � bLM

s;r � LM1
s þ bV

s;r � Vs þ bH
s;r � Hs þ b0

s;rþ
maxTPs � 1� Os;rð Þ; 8s 2 af ; cef g; r

ð131Þ

Eq. (111) is linearized to Eq. (132) by introducing auxiliary vari-
ables FYLMs;j;k � Fs;j � Ys;k � LMs and FYs;j;k � Fs;j � Ys;k.XmaxCNs

j¼1

XmaxCYNs

k¼1

j � k � FYLMs;j;k ¼ Ms�1; 8s 2 af ; cef g ð132Þ

XmaxCYNs

k¼1

FYs;j;k ¼ Fs;j; 8s 2 af ; cef g; j ¼ 1; . . . ;maxCNs ð133Þ

XmaxCNs

j¼1

FYs;j;k ¼ Ys;k; 8s 2 af ; cef g; k ¼ 1; . . . ;maxCYNs ð134Þ

FYLMs;j;k ¼ maxLMs � FYs;j;k; 8s 2 af; cef g;
j ¼ 1; . . . ;maxCNs; k ¼ 1; . . . ;maxCYNs

ð135Þ

XmaxCNs

j¼1

XmaxCYNs

k¼1

FYLMs;j;k ¼ LMs; 8s 2 af ; cef g ð136Þ

In Eqs. (112) and (113), the nonlinearities involve the product of
Es;m and a continuous variable. With the introduction of the auxil-
iary variables, ETPs;m and ELMs;m, the following linear equations are
used instead as linear constraints:

TPs ¼
P

m
gdmm

� �2
� ETPs;m

refDMð Þ2
; 8s 2 af; cef g ð137Þ

ETPs;m � maxTPs � Es;m; 8s 2 af ; cef g;m ð138ÞX
m

ETPs;m ¼ TP1
s ; 8s 2 af ; cef g ð139Þ

LMs ¼
P

m
gdmm

� �2
� ELMs;m

refDMð Þ2
; 8s 2 af ; cef g ð140Þ
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ELMs;m � maxCLMs � Es;m; 8s 2 af ; cef g;m ð141ÞX
m

ELMs;m ¼ LM1
s ; 8s 2 af ; cef g ð142Þ
4.4.5. Cost linearization
At last, in order to reformulate the fixed capital investment for-

mula, EFs;m;j can be used to linearize Eq. (114) as follows:

FCI ¼ lang � 1þ gefð Þ�

brc � brnþ
X
s2CS

X
m

XmaxCNs

j¼1

eccs;m � k � EFs;m;j þ oek � brc � brn
 !

ð143Þ
Overall, MILP model B* includes constraints shown in Eqs. (3),

(11–13), (15), (16), (18–21), (23–25), (28), (32), (33), (42–57),
(61–68), (75–79), (92–104), (106), and (115–143); and Eqs.
(S1–S8), (S10–S12), and (S14–S19) in Supplementary data.

In summary, the equations of all four proposed models are sum-
marized in Table 2.

5. Case study

In this section, the four proposed optimization models are
applied to industrially relevant case studies to examine their per-
formances. The process flowsheet of this example is shown in
Fig. 1, where there are one bioreactor and three chromatography
steps: affinity, cation-exchange, and anion-exchange chromatogra-
phy steps. For the chromatography column-sizing decisions, the
number of columns utilized at each chromatography step is limited
to four, while a maximum of 10 cycles are allowed in each batch.
Two cases with different alternatives of chromatography column
diameter and bed height are considered. Case 1 includes 10 alter-
native discrete diameters varying from 50 to 200 cm and 11 alter-
native discrete bed height between 15 and 25 cm, while Case 2 has
Table 2
Model summary.

Constraints MINLP A MILP A* MIN

Integer variable
discretization

— Eqs. (40–44) —

Column volume Eqs. (7–11) Eqs. (7–9), (11), (45–47) Eqs.
Product mass Eqs. (12–14) Eqs. (12), (13), (48–51) Eqs.
Product volume Eqs. (15–19) Eqs. (15), (16), (18), (19), (52) Eqs.
Buffer volume Eqs. (20–26) Eqs. (20), (21), (23–25), (53–57) Eqs.
Processing time Eqs. (27–34) Eqs. (28), (32), (33), (58–78) Eqs.
Data-driven model Eqs. (3), (4), (35–38) Eqs. (3), (79–91) Eqs.
Cost and objective Eqs. (39), (S1–S19) Eqs. (92–104), (S1–S8), (S10–S19) Eqs.

Table 3
Alternatives of chromatography column sizes in two cases.

Step Case 1

Diameter (cm) 50, 60, 70, 80, 90, 100, 120, 160
Bed height (cm) 15 to 25 with a step size of 1

Table 4
Parameters of chromatographic operations.

Step Affinity chromatography

Yield, yds 95%
Dynamic binding capacity, dbcs (g�L�1) 15
Eluate volume to column volume ratio, ecvs 2
Buffer volume to column volume ratio, bcvs 15
Resin lifetime, ls (cycle) 100
Resin price, rpcs (GBP�L�1) 60 000
26 alternative discrete diameters between 50 and 300 cm and 21
alternative discrete bed height taking integer values ranging from
10 to 30 cm. In models A and A*, where discrete column volume
sizes are used, there are 110 alternatives in Case 1 and 546 alterna-
tives in Case 2. The detailed alternative column diameters and bed
height are given in Table 3.

The chromatography resin utilization factor l is 0.95. The linear
velocity of the flows at the affinity and cation-exchange chro-
matography steps is limited between 200 and 600 cm�h�1, while
the linear velocity of the flows at the anion-exchange chromatog-
raphy step is fixed at 300 cm�h�1. Other parameters for the three
chromatography steps are given in Table 4.

The aot of the process is 340 d, and the batch success rate r is
90%. Process parameters of the non-chromatography steps are pro-
vided in Table 5. The cost-relevant data can be found in Supple-
mentary data (Table S1).

The proposed optimization models were implemented in GAMS
24.7 [42] on a 64-bit Windows 7-based machine with an Intel Core
i5-3330 3.00 GHz processor and 8.0 GB RAM, using BARON as the
MINLP solver and CPLEX as the MILP solver. The central processing
unit (CPU) time for each model was limited to 1 h.

6. Results and discussion

The proposed models were applied to the above two cases with
different column size alternatives. The computational results are
presented and discussed in this section.

6.1. Case 1

The model statistics and computational results of the four pro-
posed models for Case 1 are presented in Table 6, in which all four
models reach their global optimal solutions. Note that although the
reported optimal objectives of all four models are the same to the
first decimal place, the solutions of the MILP models are actually
very close approximations of the global optima of the correspond-
LP B MILP B*

Eqs. (42–44), (115), (116)

(10), (11), (105), (106) Eqs. (11), (45–47), (106), (117–121)
(12–14) Eqs. (12), (13), (48–51)
(15–19) Eqs. (15), (16), (18), (19), (52)
(20–26) Eqs. (20), (21), (23–25), (53–57)
(28), (32–34), (107–110) Eqs. (28), (32), (33), (61–68), (75–78), (122–130)
(3–5), (111–113) Eqs. (3), (79), (131–142)
(114), (S1–S12), (S14–S19) Eqs. (92–104), (143), (S1–S8), (S10–S12), (S14–S19)

Case 2

, 180, 200 50 to 300 with a step size of 10
10 to 30 by with a step size of 1

Cation-exchange chromatography Anion-exchange chromatography

95% 98%
50 100
3 0
22 18
100 100
1 200 1 400



Table 5
Parameters of non-chromatographic unit operations.

Unit operation parameter Value

Cell culture
Titer, titer (g�L�1) 2
Bioreaction time, brt (d) 4
Seed train bioreaction time, st (d) 2
Number of bioreactors, brn 1
Bioreactor working volume ratio, a 75%
Bioreactor volume, brv (L) 20 000

Centrifugation 1
Yield, yds 95%
Buffer volume ratio, bvrs 0.9
Processing rate, prs (L�h�1) 250

Homogenization
Yield, yds 100%
Processing rate, prs (L�h�1) 143

Centrifugation 2
Yield, yds 95%
Buffer volume ratio, bvrs 0.1
Processing rate, prs (L�h�1) 250

Filtration
Yield, yds 98%
Processing rate, prs (L�h�1) 125

UF/DF 1
Yield, yds 98%
Flush volume ratio, fvr 6
Processing rate, prs (L�h�1) 40

UF/DF 2
Yield, yds 98%
Defiltration volume ratio, dvr 7
Processing rate, prs (L�h�1) 40

Bulk fill
Yield, yds 98%
Filling time, Ts (h) 6
Final concentration, fconc (g�L�1) 10
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ingMINLPmodels with the same column sizing and key operational
decisions. They are about 1 	 10�4 lower than the optimal objective
values of theMINLPmodels, being lower bounds as indicated by the
theory of multiparametric disaggregation. The MINLP model A is
able to achieve the optimum of 201.7 GBP�g�1 within 494 s. After
linearization, the MILP model A* takes a slightly shorter time
(381 s) to find the optimal solution, despite having an increased
number of equations and variables in the model. Meanwhile, as
shown in Table 6, theMINLPmodel B has the same continuous vari-
ables as theMINLPmodel A, but significantly reduces the number of
equations and discrete variables by one order of magnitude. As a
result, the model is able to find the optimal solution within 47 s.
The MINLP model B*, which results from linearizing the MINLP
model B, involves much fewer equations and variables than the
MILP model A*, and takes only 5 s to find the optimal solution, sav-
ing CPU by two orders ofmagnitude. From the comparison, it can be
concluded that among the four proposed models, the models B and
B* show obvious computational advantages over the other two
models. In particular, the MILPmodel B* requires the smallest com-
putational effort and has the most potential for larger scale prob-
lems, which also becomes evident from the larger example (Case
2) discussed in the next subsection. Note that the predication errors
of the resulting piecewise linear regressionmodels have veryminor
effects on the optimal objective values of the optimization models;
for example, a 17% shift of the estimated throughput output results
Table 6
Statistics and computational performance of the proposed models for Case 1.

Model No. of equations No. of continuous variables N

MINLP A 423 85
MILP A* 13 646 11 092 1
MINLP B 93 85
MILP B* 1508 700
in only a 0.1% difference in the optimal objective value. A similar
observation is made for Case 2.

Next, the detailed optimal solutions of Case 1 are discussed. The
optimal chromatography column-sizing strategies are given in
Fig. 3, where the diameters of the chromatography columns are
proportional to the widths of the shapes plotted, while the bed
heights are proportional to the shapes’ heights. The dashed-line
shapes represent the cycles needed in each batch. At each chro-
matography step, only one column is utilized. The column at the
affinity chromatography step has a diameter of 180 cm and a bed
height of 15 cm, while the cation-exchange chromatography step
uses a smaller column with a diameter of 90 cm and a bed height
of 21 cm. The chromatography column at the anion-exchange
chromatography step has the smallest diameter, 80 cm, but the lar-
gest bed height, 25 cm.

Here, the performance of the throughput regression models and
operational decisions are examined. In the optimal solution, the
throughput output of the metamodel is 1869.8 g�h�1 at the affinity
chromatography step and 1823.9 g�h�1 at the cation-exchange
chromatography step. As shown in Fig. 3, five and four cycles per
batch are required at these two chromatography steps, respec-
tively. The resulting product masses loaded to each column in each
cycle are 5306.7 and 6301.7 g, receptively. After converting to the
values for a 1 m-diameter column, the loaded mass falls into the
first interval in the piecewise linear regression model at the affinity
chromatography step, and the corresponding function is used to
estimate the throughput, as given below:

TPaf ¼0:1914 �LMaf þ1:82 � 0:3570 �Vaf �12:0477 �Haf þ230:131ð Þ
ð146Þ

where 1.82 is added to convert the performance of the 1 m-diameter
column to that of the selected 1.8 m-diameter column, and
LMaf ¼ 1:82 � LM1

af , according to Eq. (37). At the cation-exchange
chromatography step, the first interval in the regression model is
also selected. Similarly, the regression model used is as follows:

TPce ¼0:1287 �LMceþ0:92 � 2:3940 �Vce�51:4883 �Hceþ895:2814ð Þ
ð147Þ

In both of the above functions, the linear velocity variable con-
tributes to the throughput positively; therefore, the linear velocity
of the flows at both steps reaches its upper bound, 600 cm�h�1.

At last, from the optimal cost distribution shown in Fig. 4, the
consumables cost—that is, the resin cost in this problem—repre-
sents the largest portion, over 30%, due to the high price of the
affinity resin used. Also, the capital cost of the equipment, chemical
reagents (buffer and media) cost, and labor cost all make a signifi-
cant contribution to the total cost.

6.2. Case 2

In Case 2, a larger number of alternative diameter and bed height
are considered, resulting in larger scale optimization models, as
indicated in Table 7. Compared with Case 1, MINLP model B has
slightly more discrete variables, while the other models involve
an increased number of both equations and variables. It is worth
noting that models A and A* fail to terminate before the computa-
tional time limit of 3600 s, although the gaps to the best possible
o. of discrete variables Optimal objective (GBP�g�1) CPU (s)

670 201.7 494
2 097 201.7 381

46 201.7 47
595 201.7 5



Fig. 4. Optimal cost distribution of Case 1.

Fig. 3. Optimal chromatography column-sizing strategies of Case 1. AFF: affinity chromatography; CEX: cation-exchange chromatography; AEX: anion-exchange
chromatography; D: diameter; H: bed height.
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solutions are only 0.6% and 0.4%, respectively. According to the
solution process of the two models shown in Fig. 5, the MILP model
A* finds a good feasible solution at around 220 s, and actually
achieves the optimum within 10 min. However, the lower bound
of the solution in the branch and bound process converges so slowly
that the optimum of the obtained objective, 200.3 GBP�g�1cannot
be proven within the given time limit. Meanwhile, the MINLP
model A is relatively much slower, only reaches the first feasible
solution after around 1000 s, and obtains a good feasible solution
at nearly 30 min. Compared with the models A and A*, models B
and B* show significantly improved computational performance
Table 7
Statistics and computational performance of the proposed models for Case 2.

Model No. of equations No. of continuous variables N

MINLP A 1 731 85
MILP A* 63 350 52 948 5
MINLP B 93 85
MILP B* 1 972 828

a
Obtained solution has an optimility gap of 0.6% when the CPU limit is reached.

b
Obtained solution has an optimility gap of 0.4% when the CPU limit is reached.
and achieve the optimal solutions within 4 min. The MINLP model
B takes around 1 min for a close feasible solution and 192 s for
the optimum. TheMILPmodel B* achieves a CPU saving of one order
of magnitude, with only 24 s for its optimum, which is also a very
close lower bound of the MINLP model B* due to multiparametric
disaggregation. For a good feasible solution within 1% of the opti-
mum, only 6 s is needed for the model B*. Thus, the computational
advantage of the MILP model B* is demonstrated.

Regarding the column-sizing decisions, Case 2 has more possi-
ble column size options. Fig. 6 shows that in comparison with
the optimal decisions of Case 1, a column with a larger diameter
but smaller bed height is installed at the first two chromatography
steps. The selected bed heights (11 and 14 cm) are beyond the bed
height range allowed in Case 1 (15–25 cm). In addition, the
selected diameters (190 and 110 cm) are not available in Case 1.
With more possible alternatives, the optimal solution of Case 1 is
only a feasible solution of Case 2, and there is an improvement of
1.4 GBP�g�1 in the optimal COG per gram of Case 2. Meanwhile,
the same column (80 cm diameter and 25 cm bed height) is
selected at the anion-exchange chromatography step. The selected
larger diameter columns result in higher cost in equipment invest-
ment, while the smaller bed heights lead to less resin and relevant
cost. The differences in these costs are relatively very small; there-
fore, the cost distribution is very similar to that of Case 1, which is
not discussed further here.

At both the affinity and cation chromatography steps, the high-
est allowed flow velocity, 600 cm�h�1, is implemented. The actual
throughput regression models at the two steps are slightly differ-
ent from those in Case 1, due to the differences in the selected
diameter sizes:

TPaf ¼ 0:1914 � LMaf þ 1:92�
0:3570 � Vaf � 12:0477 � Haf þ 230:131ð Þ ð148Þ
o. of discrete variables Optimal objective (GBP�g�1) CPU (s)

3 286 200.5a 3600a

9 185 200.3b 3600b

94 200.3 192
1 027 200.3 24



Fig. 5. Solution process of the four proposed models for Case 2.

Fig. 6. Optimal chromatography column-sizing strategies for Case 2.
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TPce ¼ 0:1287 � LMce þ 1:12�
2:3940 � Vce � 51:4883 � Hce þ 895:2814ð Þ ð149Þ

As shown in Fig. 6, one more cycle is used at the affinity chro-
matography step than in Case 1, and therefore less mass
(4422.3 g) is loaded in each cycle. However, due to the smaller
bed height and larger diameter, the throughput increases to
1972.0 g�h�1. For the cation-exchange chromatography step,
although the same number of cycles and loaded mass as Case 1
are obtained, a higher throughput of 2760.2 g�h�1 is achieved,
due to the chosen larger diameter and smaller bed height.
7. Concluding remarks

In this work, the multiscale optimization of an antibody manu-
facturing process has been investigated. At the operational level, to
mimic the complex behavior of the chromatography process, data-
driven models were developed to estimate the chromatography
throughput, using manufacturing-scale simulated datasets based
on microscale experimental data. Through a comparison of a num-
ber of methods for metamodeling, piecewise linear regression
models were developed based on the simulated datasets.

At the process design level, in order to determine the optimal
chromatography column-sizing strategies, two alterative MINLP
models were proposed to minimize the COG per gram. Adopting
linearization techniques, two MILP models were developed. The
throughput regression models were incorporated into the opti-
mization models to determine the optimal operational deci-
sions—that is, the flow velocity and the number of cycles per batch.
By studying two industrially relevant cases with different col-
umn size alternatives, the computational performance of the four
proposed optimization models were compared. In conclusion,
models B and B* demonstrated more efficient computational per-
formances. In particular, the second MILP model was shown to
be the most computationally efficient, and can thus be recom-
mended for large-scale optimization studies. In addition, optimal
solution details were discussed, and the data-driven models were
shown to work well to achieve optimal throughput.

A future research direction of this work could be the develop-
ment of data-driven metamodels for anion-exchange chromatog-
raphy, and for more chromatography parameters, such as yield
and binding capacity, with more input variables, such as pH
value and temperature. In addition, other performance criteria
of the purification process, such as impurity removal capacity,
could be taken into account for multi-objective optimization
[9,21,22]. The uncertainty of the parameters, such as yield and
titer, could also be considered [19,22]. Finally, single-use chro-
matography could be considered in the purification process as
an important direction in smart biopharmaceutical manufactur-
ing [48].
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Nomenclature

Indices

d
 Position in multiparametric disaggregation = p, . . .,

maxp

i
 Column volume size

j
 Column number = 1, . . .,maxCNs
k
 Cycle number = 1, . . .,maxCYNs
m
 Diameter size

n
 Digit of the binary representation = 1,

. . .,dlog2maxBNe

q
 Integer number in multiparametric disaggregation

r
 Interval in piecewise regression function

s
 Downstream step = ct1 (centrifugation 1), ho

(homogenization), ct2 (centrifugation 2), fi
(filtration), af (affinity chromatography), ce (cation-
exchange chromatography), uf1 (UF/DF 1), ae (anion-
exchange chromatography), uf2 (UF/DF 2), bf (bulk
fill)
Sets

CS
 Set of chromatography steps = {af, ce, ae}
Parameters

a, b, c
 Utilities cost coefficients

aot
 Annual operating time, d

bcvs
 Buffer volume to column volume ratio at

chromatography step s

bps;r
 Breakpoint of loaded mass between intervals r and

(r + 1) at chromatography step s, g

bpc
 Buffer price, GBP�L�1
brc
 Bioreactor cost, GBP

brn
 Number of bioreactors

brt
 Bioreaction time, d

brv
 Bioreactor volume, L

bvrs
 Buffer volume ratio at centrifugation step s

ccs;i
 Column cost of size i at chromatography step s, GBP
eccs;m
 Column cost of diameter size m at chromatography

step s, GBP

cvs;i
 Volume of column size i at chromatography step s, L

dbcs
 Dynamic binding capacity at chromatography step s,

g�L�1
dms;i
 Diameter of column size i at chromatography step s,
cm
gdmm

Diameter of size m at chromatography step s, cm
don
 Number of operators for downstream processing

dvr
 Diafiltration volume to column volume ratio at the

second UF/DF step

ecvs
 Elute volume to column volume ratio at

chromatography step s

el
 Equipment lifetime, yeara

fconc
 Final concentration of product, g�L�1
fvr
 Flush volume ratio at the first UF/DF step

gef
 General equipment factor

gu
 General utility unit cost, GBP�L�1
hs;i
 Bed height of column size i at chromatography step s,
cm
ir
 Interest rate

ik
 Ratio of insurance cost to fixed capital investment
ls
 Lifetime of resin at chromatography step s, cycle

lang
 Lang factor

maxBBV
 Maximum buffer volume per batch, L

maxBN
 Maximum number of batches

maxCNs
 Maximum number of columns at chromatography

step s

maxCOG
 Maximum COG per gram, GBP�L�1
maxCYNs
 Maximum number of cycles at chromatography step s

maxHs
 Maximum column bed height size at

chromatography step s, cm

maxLMs
 Maximum product mass loaded at chromatography

step s, g

maxp
 Maximum position in multiparametric

disaggregation

maxTs
 Maximum processing time per batch at

chromatography step s, h

maxTCVs
 Maximum total column volume at chromatography

step s, L

maxTPs
 Maximum throughput at chromatography step s,

g�L�1
mak
 Maintenance cost ratio to the fixed capital
investment
mepc
 Media price, GBP�L�1
mik
 Miscellaneous material cost ratio to chemical
reagent and consumable costs
mk
 Management cost ratio to direct labor cost

oek
 Other equipment cost ratio to the bioreactor cost

of
 Resin overpacking factor

prs
 Processing rate of step s, L�h�1
qk
 Ratio of QCQA cost to direct labor cost

rpcs
 Resin price at chromatography step s, GBP�L�1
refCC
 Reference cost of a chromatography column, GBP

refDM
 Reference diameter of a chromatography column, cm

sfd
 Duration per shift, h

sfn
 Number of shifts per day, d�1
st
 Seed train bioreaction time, d

sk
 Supervisors cost ratio to direct labor cost

titer
 Upstream product titer, g�L�1
tk
 Tax cost ratio to the fixed capital investment

uon
 Number of operators per bioreactor in USP

uot
 USP operating time per day

vel
 Linear velocity of flow at the anion-exchange

chromatography step, cm�h�1
w
 Wage of an operator, GBP�L�1
yds
 Product yield at step s

a
 Bioreactor working volume ratio

b0s;r
 Constant coefficient in interval r at chromatography

step s
bHs;r
 Coefficient for bed height in interval r at
chromatography step s
bLMs;r
 Coefficient for loaded mass in interval r at
chromatography step s
bVs;r
 Coefficient for velocity in interval r at
chromatography step s
e
 A small number to separate two successive intervals
at the breakpoint s
h
 Media overfill allowance

l
 Chromatography resin utilization factor

r
 Batch success rate
Continuous variables

ABV
 Annual buffer volume, L

AP
 Annual product output, g
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AT
 Annual downstream processing time, d

BAT
 Time for adding buffer per batch at anion-exchange

chromatography step, h

BBV
 Buffer volume added per batch, L

BC
 Buffer cost, GBP

BRC
 Bioreactor cost, GBP

BT
 Downstream processing time per batch, d

BVs
 Buffer volume per batch in chromatography step s, L

CAC
 Capital cost, GBP

CC
 Consumables cost, GBP

COG
 Annual cost of goods, GBP

CRC
 Chemical reagents cost, GBP

CAPq
 Continuous variable for annual production in

multiple disaggregation at digit q

CTPs;q
 Continuous variable for throughput in multiple

disaggregation at digit q, step s

DLC
 Direct labor cost, GBP

FCI
 Fixed capital investment, GBP

GUC
 General utility cost, GBP

IC
 Insurance cost, GBP

LC
 Labor cost, GBP

LMs
 Mass loaded to single column at chromatography

step s, g
LM1
s

Mass loaded to single 1 m-diameter column at
chromatography step s, g
M0
 Initial product mass entering downstream processes
per batch, g
Ms
 Product mass per batch after step s, g

MAC
 Maintenance cost, GBP

MC
 Management cost, GBP

MEC
 Media cost, GBP

MIC
 Miscellaneous material cost, GBP

OIC
 Other indirect costs, GBP

PLT
 Time for loading product per batch at anion-

exchange chromatography step, h

PV0
 Initial product volume entering downstream

processes per batch, L

PVs
 Product volume per batch after step s, L

QC
 QCQA cost, GBP

RVs
 Resin volume required at chromatography step s, L

SC
 Supervisors cost, GBP

Ts
 Processing time per batch of step s, h

TC
 Tax cost, GBP

TCVs
 Total column volume at chromatography step s, L

TPs
 Throughput of single column at chromatography

step s, g�h�1
TP1
s

Throughput of single 1 m-diameter column at
chromatography step s, g�h�1
UC
 Utilities cost, GBP

Vs
 Linear velocity of flow at chromatography step s,

cm�h�1
VFR
 Volumetric flow rate at anion-exchange
chromatography step, L�h�1
Binary variables

BAPd;q
 1 if digit q for power d is selected for annual

production output; 0 otherwise

BTPs;d;q
 1 if digit q for power d is selected for throughput at

chromatography step s; 0 otherwise

Es;m
 1 if diameter size m is selected at chromatography

step s; 0 otherwise

Fs;j
 1 if there are j columns at chromatography step s; 0

otherwise
Os;r
 1 if the function at interval r is selected at
chromatography step s; 0 otherwise
Ws;i;j
 1 if there are j columns of size i at chromatography
step s; 0 otherwise
Xs;i
 1 if column size i is selected at chromatography step
s; 0 otherwise
Ys;k
 1 if there are k cycles at chromatography step s; 0
otherwise
Zn
 1 if the nth digit of the binary representation of
variable BN is equal to 1; 0 otherwise
Integer variables

BN
 Number of completed batches

CNs;
 Number of columns of size i at chromatography step

s
fCNs

Number of columns at chromatography step s
CYNs
 Number of cycles per batch at chromatography step s

Hs
 Bed height of column at chromatography step s, cm
Auxiliary variables

BCOGAPd;q � COG � BAPd;q

BTTPs;d;q � Ts � BTPs;d;q

CCOGAPq � COG � CAPq

COGAP � COG � AP
CTTPs;q � Ts � CTPs;q

EFs;m;j � Es;m � Fs;j
EFHs;m;j � Es;m � Fs;j � Hs

EFTs;m;j � Es;m � Fs;j � PLT
ELMs;m � Es;m � LM1

s

ETPs;m � Es;m � TP1
s

FTTPs;j � Fs;j � Ts � TPs

FYs;j;k � Fs;j � Ys;k

FYLMs;j;k � Fs;j � Ys;k � LMs

TTPs � Ts � TPs

WTs;i;j � Ws;i;j � PLT
WTTPs;i;j � Ws;i;j � Ts � TPs

WYs;i;j;k � Ws;i;j � Ys;k

WYLMs;i;j;k�Ws;i;j �Ys;k �LMs

XLMs;i � Xs;i � LM1
s

XTPs;i � Xs;i � TP1
s

XYs;i;k � Xs;i � Ys;k

YHs;k � Ys;k � Hs

YVs;k � Ys;k � TCVs

ZMs;n � Zn �Ms

ZTn � Zn � BT
ZVn � Zn � BBV
ZYVs;k;n � Zn � Ys;k � TCVs
Appendix A. Supplementary data

Supplementary data to this article can be found online at
https://doi.org/10.1016/j.eng.2019.10.011.
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