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ABSTRACT 

This thesis is driven by an industrial problem arising in the short-term planning of an 

integrated refinery-petrochemical complex (IRPC) in Colombia. The IRPC of interest is 

composed of 60 industrial plants and a tank farm for crude mixing and fuel blending consisting 

of 30 additional units. It considers both domestic and imported crude oil supply, as well as 

refined product imports such as low sulphur diesel and alkylate. This gives rise to a large-scale 

mixed-integer quadratically constrained quadratic program (MIQCQP) comprising about 7,000 

equality constraints with over 35,000 bilinear terms and 280 binary variables describing 

operating modes for the process units. Four realistic planning scenarios are recreated to study 

the performance of the algorithms developed through the thesis and compare them to 

commercial solvers. 

Local solvers such as SBB and DICOPT cannot reliably solve such large-scale MIQCQPs. 

Usually, it is challenging to even reach a feasible solution with these solvers, and a heuristic 

procedure is required to initialize the search.  On the other hand, global solvers such as 

ANTIGONE and BARON determine a feasible solution for all the scenarios analysed, but they 

are unable to close the relaxation gap to less than 40% on average after 10h of CPU runtime. 

Overall, this industrial-size problem is thus intractable to global optimality in a monolithic way.  

The first main contribution of the thesis is a deterministic global optimisation algorithm based 

on cluster decomposition (CL) that divides the network into groups of process units according 

to their functionality. The algorithm runs through the sequences of clusters and proceeds by 

alternating between: (i) the (global) solution of a mixed-integer linear program (MILP), 
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obtained by relaxing the bilinear terms based on their piecewise McCormick envelopes and a 

dynamic partition of their variable ranges, in order to determine an upper bound on the maximal 

profit; and (ii) the local solution of a quadratically-constrained quadratic program (QCQP), after 

fixing the binary variables and initializing the continuous variables to the relaxed MILP solution 

point, in order to determine a feasible solution (lower bound on the maximal profit). Applied to 

the base case scenario, the CL approach reaches a best solution of 2.964 MMUSD/day and a 

relaxation gap of 7.5%, a remarkable result for such challenging MIQCQP problem. The CL 

approach also vastly outperforms both ANTIGONE (2.634 MMUSD/day, 32% optimality gap) 

and BARON (2.687 MMUSD/day, 40% optimality gap).  

The second main contribution is a spatial Lagrangean decomposition, which entails 

decomposing the IRPC short-term planning problem into a collection of smaller subproblems 

that can be solved independently to determine an upper bound on the maximal profit. One 

advantage of this strategy is that each sub-problem can be solved to global optimality, 

potentially providing good initial points for the monolithic problem itself. It furthermore creates 

a virtual market for trading crude blends and intermediate refined–petrochemical streams and 

seeks an optimal trade-off in such a market, with the Lagrange multipliers acting as transfer 

prices. A decomposition over two to four is considered, which matches the crude management, 

refinery, petrochemical operations, and fuel blending sections of the IRPC. An optimality gap 

below 4% is achieved in all four scenarios considered, which is a significant improvement over 

the cluster decomposition algorithm. 
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being carried through transportation mode 𝑚𝑡 

𝑈𝑃𝑅)*"  Subset of all units producing product pr, in subproblem 𝑖, regardless of the 

transportation mode used to move it out 

𝑈=?@ Petrochemical units 

𝑈<A0 Refinery units 

𝑈<> Units receiving raw materials 

𝑈𝑅𝑊!2
"  Subset of all raw material streams 𝑟𝑤, to raw material unit 𝑢𝑟𝑤, in 

subproblem 𝑖, being carried through transportation mode 𝑚𝑡 

𝑈𝑅𝑊*+"  Subset of all units receiving raw material 𝑟𝑤, regardless of the transportation 

mode used to move it in 

𝑈𝑆, Subset of upstream units connected to unit 𝑢 

𝑈/57 Vacuum distillation units 

𝑈𝑉𝐷𝑈, Subset of VDUs connected to atmospheric unit 𝑢 

𝑈𝑊+ Virtual units of real unit 𝑤 

𝑉" Set of complicating variables of subproblem 𝑖 

𝑊8A Real units with mutually exclusive operating modes 

𝑋"# Set of indexes of the complicating variables shared by subproblems 𝑖 and 𝑗 >

𝑖 

  

Indices 

e Intermediate streams between subproblems 

𝑚𝑡 Transport modes 

𝑝 Stream properties 

𝑟𝑤 Raw materials from external market 

𝑝𝑟 Final products to external market 

𝑠 Process streams 

𝑢 Logical process units 

𝑤 Real processing units 
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Parameters 

𝛼B
"# Maximal step-size for linking variables 𝑣 of the subproblems 𝑖 and 𝑗 > 𝑖 

𝛼, Selling price for product from unit 𝑢. ($/bbl or $/ton) 

𝛼)* Selling price for product pr ($/bbl or $/ton) 

𝛽*+ Purchasing cost for raw material 𝑟𝑤 ($/bbl, $/ton) 

𝛽,,. Purchasing cost for raw material 𝑠 coming from unit 𝑢. ($/bbl, $/ton) 

𝛾!2 Transportation cost of transport mode 𝑚𝑡. ($/bbl) 

𝜓,,) Cost for unit 𝑢 operating with feedstock quality 𝑝 ($/bbl) 

𝜆# Relaxation score for the partitioned variable 𝑥# 

𝜆L, 𝜆U Lower and upper bounds for Lagrange multiplier 𝜆 

𝛥B
"# Trust-region radius for linking variables 𝑣 of the subproblems 𝑖 and 𝑗 > 𝑖 

𝜌"#  Normalized gap between the bilinear term 𝑥"𝑥# and its relaxation 𝑤"# 

𝜏 Threshold for refining the partition size in piecewise McCormick relaxation 

𝜙,´,.,, Cost for unit 𝑢 operating with feedstock stream 𝑠 from unit 𝑢´. ($/bbl) 

𝜔, Operating cost for unit 𝑢. ($/bbl) 

𝑎"#! Scalar multiplying bilinear term 𝑥"𝑥# in function 𝑓! 

𝑎,,. Coefficient for predicting flow of output stream 𝑠 from conversion unit 𝑢 

𝐵! Vector multiplying variable 𝑥	in function 𝑓! 

𝑏,,.,) Coefficient for predicting flow of output stream 𝑠 from unit 𝑢 based on input 

property 𝑝 

𝐶! Vector multiplying variable 𝑦 in function 𝑓! 

𝑐,,.,) Coefficient for predicting property 𝑝 of output stream 𝑠 from conversion unit 

𝑢 

𝑑! Constant term in function 𝑓! 

𝑑,,.,)´,) Coefficient for predicting property 𝑝 of output stream 𝑠 from unit 𝑢 based on 

property 𝑝´ 

𝑐𝑎𝑝+4 , 𝑐𝑎𝑝+7 Lower and upper bounds on processing capacity for real unit 𝑤 (kbbl/day) 

𝑁# Partition size for variable 𝑥# 

𝑁F, 𝑁7 Initial and maximal partition size in piecewise McCormick relaxation 

𝑝𝑠,,. Property of raw-material stream 𝑠 going into unit 𝑢 

𝑝𝑟𝑜𝑝BG,,,.,) Crude assay characterization for the straight-run properties from the CDU 



26 Nomenclature 

 

 

𝑟"# Gap between the bilinear term 𝑥"𝑥# and its relaxation 𝑤"# 

𝑠𝑓+ Service factor for the real unit 𝑤 (between 0 and 1) 

𝑥L, 𝑥U Lower and upper bounds for variable 𝑥 

𝑥#14 , 𝑥#17  Lower and upper bounds for the partitioned variable 𝑥# in the partition 𝑛 

𝑦𝑖𝑒𝑙𝑑BG,,,. Crude assay yields for the straight-runs from CDU 

  

Binary variables 

𝑦 Binary variable indicating the selection of operating conditions 

𝑦"  Binary variable belonging to subproblem 𝑖 

𝑦+,, Binary variable indicating real unit 𝑤 is operating in the mode associated to 

unit 𝑢 

𝑦#1 Binary variable selecting partition 𝑛 in the variable 𝑥# 

  

Continuous positive variables 

𝑐𝑜𝑠𝑡" Cost of subproblem 𝑖 for buying linking streams from other subproblems 

𝑐𝑜𝑠𝑡_𝑙𝑔𝑠𝑡𝑐" Cost of subproblem 𝑖 for transportation of raw materials and products 

𝑐𝑜𝑠𝑡_𝑟𝑤" Cost of subproblem 𝑖 for buying raw materials from external market 

𝑃𝐹,,) Value of property 𝑝 in the input stream to unit 𝑢 

𝑃𝐹(,)"  Value of property 𝑝 in stream e, outgoing from or incoming to subproblem 𝑖 

𝑃𝑆,,.,) Value of property 𝑝 for the outlet stream 𝑠 from unit 𝑢 

𝑄𝐹(" Volume flowrate of stream e, outgoing from or incoming to subproblem 𝑖 

(kbbl/day). 

𝑄𝐹, Flowrate into unit 𝑢 (kbbl/day) 

𝑄𝑆,,. Flowrate of outlet stream 𝑠 from unit 𝑢 (kbbl/day) 

𝑄𝑇!2 Total flowrate delivered by transportation mode 𝑚𝑡 (kbbl/day) 

𝑄𝑇!2"  Total flowrate through transportation mode 𝑚𝑡	 ∈ 	𝑀𝑇" 

𝑄,´,.,, Flowrate of the outlet stream 𝑠 from unit 𝑢´ heading for unit 𝑢 (kbbl/day) 

𝑟𝑒𝑣𝑒𝑛𝑢𝑒" Revenue of subproblem 𝑖 for selling linking streams to other subproblems 

𝑟𝑒𝑣𝑒𝑛𝑢𝑒_𝑝𝑟" Revenue of subproblem 𝑖 for selling product streams to external market 

𝑇𝑜𝑡𝑎𝑙𝐶𝑜𝑠𝑡 Total cost of problem P for buying raw materials, transportation of raw 

materials and products, and operational costs. 
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𝑡𝑜𝑡𝑎𝑙𝑐𝑜𝑠𝑡" Total cost of subproblem 𝑖 for buying raw materials, incoming linking 

streams, transportation of raw materials and products, and operational costs 

𝑇𝑜𝑡𝑎𝑙𝑅𝑒𝑣𝑒𝑛𝑢𝑒 Revenue of problem P for selling products of the IRPC 

𝑡𝑜𝑡𝑎𝑙𝑟𝑒𝑣𝑒𝑛𝑢𝑒" Revenue of subproblem 𝑖 for selling product and outgoing linking streams 

𝑣" Relaxation of the bilinear terms 

𝑤"# Linearization of the bilinear term 𝑥"𝑥# 

𝑥 Flowrates and stream properties 

𝑥" Flowrates and streams properties belonging to subproblem 𝑖 

𝑥�"#1 Aggregated variable for 𝑥" present in the bilinear term 𝑥"𝑥# inside the partition 

𝑛 

𝑥�#1 Value of the partitioned variable 𝑥# inside the partition 𝑛 

𝑥B"  Linking variables 𝑣 of subproblem 𝑖 (e.g. 𝑄𝐹(" , 𝑃𝐹(,)" ) 

  

Free variables 

𝜆(
"#  Lagrange multiplier for linking flowrate of stream 𝑒 between subproblems 𝑖 

and 𝑗 

𝜆(,)
"#  Lagrange multiplier for linking property p of stream e between subproblems 𝑖 

and 𝑗 

𝜆B
"# Lagrange multiplier for linking variable 𝑣 between subproblems 𝑖 and 𝑗 

𝜂 Auxiliary cost variable in Lagrangean dual problem 𝐃𝐏𝐊 

𝑝𝑟𝑜𝑓𝑖𝑡 Profit obtained by the whole IRPC, maximized by problem P 

𝑝𝑟𝑜𝑓𝑖𝑡" Profit obtained by subproblem 𝑖 

𝑧∗ Optimal solution value for P 

𝑧JLR optimal solution value for the Lagrangean relaxation 𝐋𝐑𝛌 

𝑧<  Optimal solution value for PR 

𝑧=0  Optimal solution value for PF 

𝑧J
",LD Optimal solution value for the subproblem 𝑖 corresponding to 𝐋𝐃𝛌𝐢  

𝑧DP,N optimal solution value for the Lagrangean dual problem 𝐃𝐏𝐊 
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Chapter 1 INTRODUCTION 

1.1 Motivation 

Integrated operations of petrochemical plants and crude oil refineries are more resilient to 

fluctuations in the hydrocarbons market compared to independent businesses for petrochemical 

commodities and fuels production (Al-Qahtani and Elkamel, 2010, 2009, 2008; Jia and 

Ierapetritou, 2004; Ketabchi et al., 2019; Leiras et al., 2010; Méndez et al., 2006; Nasr et al., 

2011). Such integrated refinery-petrochemical complexes (IRPCs) benefit from synergies that 

lead to reduction of capital investments and operating costs (Ketabchi et al., 2019). This level 

of process integration and coordination facilitates the production of a wide range of marketable 

petroleum-based products such as fuels, petrochemicals, waxes, lubes, and industrial diluents. 

These commodities are required to supply almost all the needs of our modern societies.  

Without integration, intermediate refinery streams produced by the Fluid Catalytic Cracking 

(FCC), Delayed Coking (DC) and Catalytic Reforming (CR) units, such as off-gas, ethane, 

ethylene, propylene, butylene, naphtha and light cycle oil are burnt, sold as a low-valued 

product (liquefied petroleum gas, LPG), or blended as gasoline or diesel. Through process 

integration, ethane from FCC and naphtha produced by DC and FCC units can be used as 

feedstock for Steam Crackers to produce ethylene. A separation train after CR can also be 

utilized for recovering benzene-toluene-xylene (BTX) and its derivatives. In essence, the 

refinery provides olefins and aromatics as raw materials to the petrochemical plant. In return, 

the petrochemical facility improves gasoline quality by adding high-octane components, 
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supplying a fraction of the hydrogen needed by hydrotreating processes (Li et al., 2006). 

Moreover, a site-wide heat integration can reduce utility requirements for steam, electricity and 

water, thereby mitigating environmental impacts (De Oliveira Magalhães, 2009). 

Despite these advantages, the design and planning of an IRPC presents many challenges due 

to the complexity of the process network and intermediate streams connectivity, the large 

variety of fuels and petrochemical products, the fulfilment of fuel specifications, and the market 

fluctuations. Crude unloading and blending, crude separation trains and conversion processes, 

fuel blending, and petrochemical production all need to be coordinated for maximizing the 

overall benefit of an IRPC, instead of optimizing these operations separately (Jia and 

Ierapetritou, 2004; Méndez et al., 2006; Nasr et al., 2011). Both process synergies and 

competition for raw materials are important (Al-Qahtani and Elkamel, 2010, 2009; Al-Qahtani, 

2009; Leiras et al., 2010). Critical factors that might affect an IRPC’s profitability are 

environmental regulations on fuel quality, impact of geopolitics on crude oil supply and price, 

volume and quality of new crude oil discoveries in terms of sulphur content and API gravity, 

and reduction of fuel demand resulting from a petrochemical commodities boom (International 

Energy Agency, 2019; WEO/IEA, 2016). This inherent complexity and uncertainty call for 

advanced tools to assist with the decision-making. 

 

1.2 Research questions and thesis aims 

The IRPC short-term planning problem can be formulated as a large-scale mixed-integer 

quadratically constrained quadratic program (MIQCQP), whereby discrete decisions select 

operating modes for the process units and the entire process network is represented by input-

output relationships based on bilinear expressions describing yields and stream properties, 

pooling equations, fuel blending indices and cost indicators. A typical instance of such 

MIQCQP may contain several thousand equality constraints with tens of thousands of bilinear 
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terms and hundreds of binary variables. Local optimisation solvers fail to solve such large-scale 

MIQCQPs reliably due to their nonconvex nature, and even determining a feasible solution with 

these solvers is challenging. State-of-the-art global solvers, on the other hand, can determine 

feasible solutions of these MIQCQPs, but they struggle to close the optimality gap so these 

feasible solutions may end up being suboptimal by a large margin. By and large, short-term 

planning of real-life IRPC would therefore appear to be intractable to global optimality when 

tackled in a monolithic way. 

The main research objective of the thesis is to devise decomposition algorithms that can 

exploit an IRPC’s physical structure to determine near-optimal solutions within a 

tractable computational runtime of several hours. 

The specific research aims are as follows: 

• To derive the mathematical model for the optimal planning of a real-life IRPC and its 

associated supply chain and to devise realistic short-term planning scenarios. 

• To test the effectiveness of state-of-the-art deterministic global solvers at bracketing 

the optimal solutions of these IRPC planning scenarios and at identifying good 

feasible solutions. 

• To devise algorithms that decompose the IRPC into clusters or sections to reduce the 

optimality gap and determine near-globally optimal solutions. 

• To analyse in detail the strengths and weaknesses of these decomposition algorithms. 

 

1.3 Thesis outline 

Leading on from the current chapter outlining the motivation and broad aims of the thesis, 

the remaining chapters are structured as follows. Chapter 2 reviews the literature about the main 

algorithmic strategies developed to tackle short-term IRPC planning problems over the past few 
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decades, from the onset of linear programming and successive linear programming to modern 

algorithmic advances for tackling nonconvex and mixed-integer programming models.  

The novel algorithmic developments in the thesis are motivated by an industrial problem 

arising in the short-term planning of an existing IRPC in Colombia. Chapter 3 introduces this 

IRPC and details the corresponding short-term planning optimisation formulation, as well as 

four planning scenarios for benchmarking solution approaches. Formulation of relaxation of 

bilinear and trilinear terms and addition case study data are provided in Appendix B and 

Appendix C, respectively. 

Chapter 4 presents the first main clustering decomposition approach contribution of the 

thesis, a clustering decomposition approach tailored to global optimisation of large-scale 

MIQCQPs, which decomposes a large process network into smaller clusters according to their 

functionality. Then inside each cluster, a MILP relaxation based on piecewise McCormick 

envelopes is solved, which dynamically partitions the variables that belong to the cluster and 

their domains are reduced through optimality-based bound tightening. These algorithmic 

developments and results in are based on the following peer-reviewed open-access journal 

article: 

Uribe-Rodriguez, A., Castro, P.M., Guillén-Gosálbez, G., & Chachuat, B. (2020) Global 

optimization of large-scale MIQCQPs via cluster decomposition: Application to short-term 

planning of an integrated refinery-petrochemical complex. Computers & Chemical 

Engineering, 140, 106883. DOI: https://doi.org/10.1016/j.compchemeng.2020.106883  

Further results are presented in Appendix D, Appendix E and Appendix F.  

Chapter 5 presents the second main contribution of thesis, a tailored spatial Lagrangean 

decomposition algorithm, which subdivides an IPRC into two, three or four sections, namely 

crude management, refining, petrochemical operations, and fuel blending. This decomposition 

algorithm iterates between the solution of smaller optimisation subproblems for each section in 

https://doi.org/10.1016/j.compchemeng.2020.106883
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order to bracket the MIQCQP global solution value and determine good feasible solutions. 

These algorithmic developments and results build heavily on the following peer-reviewed open-

access journal article: 

Uribe-Rodriguez, A., Castro, P.M., Guillén-Gosálbez, G., & Chachuat, B. (2023) 

Assessment of Lagrangean decomposition for short-term planning of integrated refinery-

petrochemical operations. Computers & Chemical Engineering, 174, 108229. DOI: 

https://doi.org/10.1016/j.compchemeng.2023.108229 

It is complemented by Appendix G with further details about the subproblem formulations. 

Lastly, key thesis conclusions, as well as possible directions for future work, are discussed in 

Chapter 6. This is complemented with preliminary results on the normalized multiparametric 

disaggregation technique (NMDT) applied to the clustering decomposition in Appendix H. 

 

 

 

https://doi.org/10.1016/j.compchemeng.2023.108229
https://doi.org/10.1016/j.compchemeng.2023.108229
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Chapter 2 LITERATURE REVIEW 

2.1 Historical developments 

Large-scale formulations based on Linear Programming (LP) have been developing since the 

1950s (Adams and Griffing, 1972; Manne, 1958), with specific LP applications such as gasoline 

blending and optimal cut-point selection at fractionation units (Charnes et al., 1952; Garvin et 

al., 1957) highlighting the nonlinear response of the refining processes. Distributive Recursion 

(DR) (Haverly, 1980, 1979, 1978) and Successive Linear Programming (SLP) (Baker and 

Lasdon, 1985) enhanced the LP’s performance by minimizing the error between a stream 

property calculated by a linear expression and its value obtained using a nonlinear equation. 

DR is unstable for large-scale applications involving multiple refineries and multi-period 

optimisation, even with good initialization and tuning. SLP applies first-order Taylor expansion 

to linearize the nonlinear equations, with a good performance depending on the selection of an 

appropriate reference point. Advantages of DR and SLP are favourable solution times, easy 

model updating, flexibility to represent process units complexity and ability to handle large-

scale refinery networks, making them an industry standard for refinery planning (ASPEN 

Technology Inc, 2010; Bonner & Moore, 1979; Haverly, 2015; Kutz et al., 2014). 

Models of crude distillation units (CDUs) also have a large impact on the predictive capability 

of the planning model, since CDUs provide all the intermediate streams for further processing 

in the downstream units and fuel blending. In LP/DR/SLP formulations, CDUs and process 

units are modelled based on fixed yield representations. As a result, the predictions from 
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LP/DR/SLP formulations under/overestimate yields and stream properties, with the errors 

propagating to the pooling equations, process models, fuel blending and cost functions. Thus, 

formulating a nonlinear programming (NLP) model for a subset of or the whole process 

network, can improve the solution accuracy by enhancing the prediction of yields and outlet 

stream properties from refining and petrochemical units. 

In the case of CDUs, the laboratory crude oil assay can be transformed into a true boiling 

point (TBP) curve describing how yields and properties change as a function of temperature. 

The cut-points that predict yields and stream properties in a TBP curve are pre-defined. Other 

approaches to determine the optimal cut-points, include: swing-cuts, which are based on the 

TBP distribution (Kelly et al., 2014; Zhang et al., 2001); micro-cuts (Menezes et al., 2013); 

empirical correlations (Wenkai et al., 2007); surrogate models using polynomial 

approximations (López et al., 2012, 2013) and short-cut methods (Alattas et al., 2011). This 

latter approach (Alattas et al., 2011) incorporates the CDU short-cut model in a mixed-integer 

nonlinear programming (MINLP) planning model for determining crude oil sequencing, 

changeovers and processing time. 

Likewise, the accuracy of process unit models can be improved by formulating empirical 

correlations for other type of units. Li et al. (2005) integrated the CDU and FCC into a small-

scale refinery planning problem. Surrogate models based on rigorous simulations were used by 

Guerra and Le Roux (2011a) to optimize the same process network. Alhajri et al. (2008) 

employed polynomial approximation surrogates for the catalytic reformer, FCC, hydrotreating 

and hydrocracking units, within a more complex process topology. On the other hand, pooling 

equations representing mixing operations with bilinear and trilinear terms and nonlinear 

blending rules to compute fuel specifications, improve the predictive capability (Guerra et al., 

2010). Siamizade (2019) proposed a MINLP refinery planning model based on commercial 

empirical correlations for the process units (Baird, 1987) and the Geddes fractionation-index 
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method for the CDU (Geddes, 1958; Gilbert et al., 1966). The former manages operating 

conditions such as reaction temperatures and severities as continuous decision variables, whilst 

the latter uses binary variables to determine whether a component is in the stripping or 

rectifying section.  

Although these modelling frameworks provide an accurate description of the complex 

network of processes in an IRPC, their formulation leads to large-scale MINLP models that are 

challenging to solve (Neiro and Pinto, 2004). Nevertheless, researchers have achieved better 

solutions than those obtained with previous models and claimed significant profit 

improvements. 

Moro et al. (1998) increased profit for a real-world application by about $6 MM/year, in a 

facility producing three grades of diesel, considering nonlinear models for the heavy diesel 

hydrotreating and blending, delay coking and fluid catalytic cracking (FCC) units. López et al. 

(2012, 2013) integrated a system of three CDUs and its associated heat exchanger network 

(HEN) to account for the utilities cost in the profit calculation. Zhang et al. (2015) included the 

optimisation of the utilities network and hydrogen generation. Due to improved model 

accuracy, López et al. (2012, 2013) reported a profit increase of 13% in comparison with a base 

line, whereas Zhang et al. (2015) claimed a 24% improvement after using their MINLP planning 

model. 

 

2.2 Main solution methods 

Although they enable more accurate predictions, nonlinear models also introduce 

nonconvexities into refinery planning models. Local search algorithms have long been applied 

to solve NLP models of industrial-sized refinery planning problems, including successive linear 

programming (SLP) or successive quadratic programming (SQP) (ASPEN Technology Inc, 
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2010; Baker and Lasdon, 1985; Bonner & Moore, 1979; Haverly, 2015; Kutz et al., 2014) even 

finding a feasible solution can prove challenging with this approach. 

A multi-start strategy (MSS) by passing different initial points to a fast and robust local NLP 

solver can sometimes overcome such feasibility and local optimality issues (Guerra et al., 2010; 

Guerra and Le Roux, 2011b), but it does not compute a dual bound. And it does not offer any 

mathematical guarantees of reaching a global optimum either. Andrade et al. (2016) applied 

MSS to bilinear programming models and computed a dual bound by solving a linear 

programming (LP) relaxation based on the McCormick envelopes (McCormick, 1976), yet no 

procedure was implemented to refine this dual bound. 

Andrade et al. (2016) presented a heuristic approach based on solving LP relaxations. 

However, this approach does not guarantee global optimality either. A systematic procedure is 

needed to avoid sacrificing optimality and improve the total profit (Khor and Varvarezos, 

2017). 

Faria and Bagajewicz (2011a, 2011b, 2012) presented a deterministic global optimisation 

(DGO) algorithm by aggregating the decision variables into three groups: partitioning variables, 

which are discretized into several intervals and are used to formulate a linear relaxation of the 

bilinear terms; bound contracted variables are also partitioned but their bounds are updated 

following an interval elimination procedure relying on the solution of a MILP problem for each 

variable bound, selecting one variable at a time, and branch and bound variables, which are 

used to split the problem in two to apply a branch and bound search. The authors claimed that 

if the selected partitioned variable is different from the bound contracted variable, then the 

algorithm tends to reach a tighter lower bound, since the algorithm solves a MILP lower bound 

by partitioning the feasible space of the partitioned and bound contracted variables. However, 

a heuristic should be applied to classify the decision variables.  
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Castillo Castillo et al. (2017, 2018) considered a mixed-integer quadratically constrained 

quadratic program (MIQCQP) formulation of a large-scale refinery planning for profit 

maximization and solved it to global optimality with a DGO algorithm. This two-stage solution 

strategy proved to be competitive with the commercial solvers BARON (Sahinidis, 2004) and 

ANTIGONE (Misener and Floudas, 2014a). In the first stage, a mixed-integer linear 

programming (MILP) relaxation of the MIQCQP model was derived from piecewise 

McCormick envelopes (Castro, 2015; Castro et al., 2021; Gounaris et al., 2009; Karuppiah and 

Grossmann, 2006; McCormick, 1976; Misener et al., 2011; Wicaksono and Karimi, 2008) or 

from the multiparametric disaggregation technique (Andrade et al., 2018; Castro, 2016; Castro 

and Grossmann, 2014; Kolodziej et al., 2013; Teles et al., 2013). A quadratically constrained 

quadratic program (QCQP) model obtained by fixing the binary variables in the MIQCQP 

model to the values from the solution of the MILP relaxation, was then solved to local 

optimality in the second stage. In cases where fixing the binaries did not compromise feasibility, 

this decomposition procedure could find solutions that were close to the global optimum. Such 

an iterative procedure for reducing the dual gap works by increasing the number of intervals in 

the partition for one of the variables in every bilinear term. The algorithm also employed 

optimality-based bound tightening (OBBT) (Castro and Grossmann, 2014; Puranik and 

Sahinidis, 2017) for reducing the domain of nonlinearly appearing variables. A drawback with 

this approach was that the first-stage MILP relaxation could already be computationally 

demanding to solve with just a few intervals in the partition, leading to high dual gaps and poor 

initial points for the second-stage QCQP model. 

(Zhang et al., 2021) proposed a methodology to address refinery planning operations under 

uncertainty. The framework considers the development of surrogate models for the process 

units, aiming to obtain low-complexity, accurate and amenable models for process optimisation 

(Wilson and Sahinidis, 2017), the uncertainty is given by product demands and sale price, which 
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are represented by interval and interval plus ellipsoidal sets, leading  to a nonconvex MINLP 

problem, where the nonconvexities are present in the bilinear and quadratic terms to represent 

the process units. In addition, convex nonlinear expressions such as a polynomial function to 

represent the crude distillation unit and other nonlinearities arising from the uncertainty 

management are considered in the MINLP problem. Following the same idea of a two-stage 

strategy, a convex MINLP – NLP approach is applied by relaxing the nonconvex terms applying 

the enhanced normalized multiparametric technique (Andrade et al., 2018) and leveraging the 

solution of the convex MINLP problem to ANTIGONE. Moreover, OBBT is performed to the 

variables presented in the bilinear terms in order to enhance the quality of the relaxed model.     

Regarding model integration and coordination of IRPC operations, little research work has 

employed DGO to date. Li et al. (2016) obtained a mixed-integer quadratically constrained 

quadratic program (MIQCQP) from the data-driven approach to optimize an IRPC; with 

second-order polynomial correlations as submodels for various parts of a large-scale nonconvex 

MINLP model. This model was solved using ANTIGONE (Misener and Floudas, 2014a) and 

led to a profit improvement of 30–65% compared to current operation. A multiperiod extension 

to this problem was recently addressed by Demirhan et al. (2020). Zhao et al. (2017) presented 

an integrated model for fuels and olefins transformation that was solved by Lagrangean 

decomposition. They reported a profit increase between 14 – 53%, compared to a sequential 

optimisation process (first the refinery and then the ethylene unit). Siamizade (2019) solved the 

same model based on commercial empirical correlations and the Geddes fractionation-index 

method by using the state-of-the-art global optimizer BARON (Sahinidis, 2004), but they 

omitted to report the optimality gaps at termination.  

A hierarchical approach to solve an industrial multiperiod IRPC was proposed by Zhang et 

al. (2022). The refinery and petrochemical processes are represented by 24 and 15 process units 

respectively. Crude procurement and unloading operations were not considered in the model 
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formulation, as well as crude blending, processing one crude at a time. The nonconvexities 

arises from the yields prediction and blending operations, leading to a large-scale MINLP 

model. Instead of solving this challenging problem upfront, it is proposed an iterative 

procedure, first solving one of the subproblems to optimality, then the optimal value of the 

intermediated streams to be exchange between the refinery and petrochemical is added as 

equality constraints to the other subproblem. Thus, the second subproblem is solved with extra 

constraints. If both subproblems converge, the optimal solution of the IRPC is given by the 

summation of the optimal objective function of each subproblem. Even though this 

decomposition decreases the complexity of the original MINLP, the authors reported that first 

solving the refinery and then the petrochemical was successfully applied to short-term planning 

scenarios. The hierarchical approach fails when the petrochemical is first solved and then the 

refinery for the same short-term planning instances. Moreover, medium-term planning 

scenarios did not converge for any sequence refinery – petrochemical or petrochemical – 

refinery. These findings highlighted that more investigation is required to improve the 

performance of Lagrange decomposition strategies to solve large-scale IRPC planning 

problems.   

 

2.3 Conclusions 

This literature review reveals that much progress has been made on solving short-term IRPC 

planning problems over the past few decades, especially in terms of leveraging algorithmic 

advances for tackling nonconvex and mixed-integer programming models. However, much 

remains to be done before real-life problems can be solved reliably to guaranteed global 

optimality in a daily routine. The focus of this thesis, therefore, shall be on the deterministic 

global optimisation of large-scale MIQCQP formulations. The main case study is inspired by 

an industrial problem arising in the short-term planning of an existing IRPC in Colombia. The 
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following Chapter 3 describes the IRPC and presents a formulation of the short-term planning 

model, before showcasing the performance of state-of-the-art global optimisation solvers 

through four planning scenarios. 
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Chapter 3 INTEGRATED REFINERY-

PETROCHEMICAL OPERATIONS: CASE 

STUDY 

3.1 Description of integrated refinery-petrochemical complex 

The integrated refinery-petrochemical complex (IRPC) under consideration corresponds to 

one of the main facilities operating in the Colombian refining industry. It is composed of 60 

industrial plants, represented by 125 models, and two tank farms, one for crude mixing and the 

other for fuel blending, consisting of 30 additional units. 

This IRPC is composed of a medium conversion refinery, producing several grades of 

gasoline, diesel and fuel oil, and a set of petrochemical processes producing BTX, polyethylene, 

propylene, waxes and specialty solvents (Figure 3.1). The synergy between the refinery and 

petrochemical plants is enabled by the olefins production at the fluidized catalytic cracking 

(FCC) units, the hydrogen generation for diesel hydrotreating (HDT), and the platforming route 

for improving octane number in gasoline blending. Competition for raw materials arises from 

the routing of: (i) naphtha from the atmospheric crude distillation unit (CDU) to either gasoline 

blending or the production of aromatics, which are petrochemical precursors; (ii) atmospheric 

gasoil (distillates, LVGO and HVGO streams) from the vacuum distillation unit (VDU), to 
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produce waxes, improve the FCC feedstock quality, or complete the processing capacity of 

diesel HDT. Coordination of the entire IRPC is thus crucial to exploit this process flexibility 

and manage feedstock competition between the refinery, petrochemical and fuel blending 

operations. 

 

Figure 3.1. Diagram of the full integrated refining-petrochemical complex (IRPC). 

The raw material to the IRPC (crude oil and refined products) is supplied by both domestic 

production and imports. We assume that the national petroleum production in Colombia 

amounts to 297 kbbl/day and is aggregated into 17 types of crude oil distributed over 8 

geographical regions (R1-R8). It is complemented with 7 types of imported crude, with a 

maximum availability of 15 kbbl/day/crude. The crude assay provides the detailed 

characterization in terms of yields and properties for each region. The total refining capacity is 

248 kbbl/day. Besides crude, refined products such as naphtha, low sulphur diesel and olefins 

may be imported to complement the feedstock of certain process units or be used for fuel 

blending. Demand is represented by 22 grades of fuels and petrochemical requirements imposed 

by the domestic and export markets. Meeting the demand for petrochemicals entails the 
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production of up to 27 commodities, divided into BTX, propylene, polyethylene, specialty 

solvents and waxes. 

The logistic system comprises multimodal transport for the delivery and reception of 

commodities from the IRPC to the markets, and from the production wells, local market and 

importation ports to the IRPC. In particular, 4 river fleet routes (RF1-RF4) and a system of 9 

pipelines (PL1-PL9) are available for the exchange of commodities. 

Crude oil refinery operations can be classified into crude oil unloading and blending, unit 

operations that include separation and reaction processes, products blending and delivery (Jia 

and Ierapetritou, 2004; Méndez et al., 2006). Thus, the IRPC can be divided into four sections, 

which can be independent business units: crude management (CM), refinery (REF), 

petrochemical (PTQ), and fuel blending (FB). A brief description of each section is provided 

below. 

 

3.1.1  Crude management 

Crude management (CM) involves procurement, transportation and blending of crude oils to 

produce streams with suitable bulk properties, such as sulphur content, API gravity and total 

acid number (TAN), for feeding into the CDUs (Guyonnet et al., 2009; Oddsdottir et al., 2013; 

Zhang et al., 2012). Crude oil characterization provides insight into potential economic and 

operational benefits. The gravity and sulphur content determine the market price, as crudes with 

low gravity and high sulphur content are cheaper than their high-density and low-sulphur 

counterparts. Thus, the crude oil management problem involves a trade-off between the cost 

and quality of the blends. 

Accounting for transportation enables a more realistic crude management operation. The 

logistic involves delivering batches of crude oil by pipelines and multimodal transport from oil 

fields, transport stations, and import ports to the refineries. As seen in Figure 3.2, supply is 
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given by domestic production of 17 different types of crude oil (𝐷𝐶 = {𝐷𝐶1,… , 𝐷𝐶17})  

geographically distributed across 8 regions in the country (𝑅 = {𝑅1,… , 𝑅8}). Domestic crude 

production ranges between 10 - 100 kbbl/day, for a total national production of 297 kbbl/day. 

A total of 7 imported crudes (𝐼𝐶 = {𝐼𝐶1,… , 𝐼𝐶7}), up to a maximum of 15 kbbl/day/crude, 

complete the market availability. Domestic and imported crudes are delivered in batches 

through pipelines (𝑃𝐿 = {𝑃𝐿3,… , 𝑃𝐿8}). Then, at the refinery, the 24 qualities of crude 

(specifications are shown in Table 3.1) are combined into 9 crude blends (𝐸CB =

{𝐶𝐵1,… , 𝐶𝐵9}). For instance, 𝐶𝐵7 is obtained from domestic crudes 𝐷𝐶1, 𝐷𝐶4, 𝐷𝐶7 −

𝐷𝐶9, 𝐷𝐶12, 𝐷𝐶16 − 𝐷𝐶17 and imported crudes 𝐼𝐶1 − 𝐼𝐶7. Note that crude blend 𝐶𝐵9 was 

excluded from Table 3.1, since as it is produced from crude blends 𝐶𝐵1 − 𝐶𝐵7. 

 

 

 
Figure 3.2. Crude oil production and pipeline transportation network. 
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Table 3.1. Bulk properties and prices of domestic and imported crudes, and their incorporation into crude blends. 

Crude 
Oil 

Crude Blends Bulk properties Supply 

CB1 CB2 CB3 CB4 CB5 CB6 CB7 CB8 API Sulphur  
(%wt) 

TAN 
(mg KOH/g 

crude) 

Price* 
(USD/bbl) 

Available 
(kbbl/day) 

DC1 x        24 1.218 1.135 39.50 2.1 

DC2  x       29 0.515 0.097 49.70 31.1 

DC3   x     x 32 0.812 0.168 49.68 3.4 

DC4 x        20 1.934 0.528 35.43 2.2. 

DC5     x    28 0.642 1.494 45.27 5.6 

DC6    x     23 0.929 2.139 41.26 24.2 

DC7 x        22 1.008 2.300 40.28 12.6 

DC8 x        19 0.957 3.126 38.50 5.8 

DC9 x        20 1.129 3.341 34.57 71.7 

DC10      x   26 1.223 1.680 42.49 3.3. 

DC11      x   23 1.239 2.642 40.13 3.7 

DC12 x        19 1.848 0.122 40.86 32.0 

DC13       x  44 0.306 0.093 52.00 24.1 

DC14        x 45 0.048 0.070 52.11 26.7 

DC15      x   24 0.984 0.468 42.78 13.5 

DC16 x        18 1.140 0.137 30.77 16.5 

DC17 x        20 1.139 2.381 35.08 18.9 

IC1 x     x   39 0.156 0.629 52.23 15.0 

IC2 x     x   39 0.921 0.060 52.30 15.0 

IC3 x     x   29 0.246 0.590 49.28 15.0 

IC4 x     x   29 0.690 1.266 49.17 15.0 

IC5 x     x   29 0.605 0.470 49.15 15.0 

IC6 x     x   40 0.482 0.043 52.37 15.0 

IC7 x     x   34 0.158 0.605 50.64 15.0 

*Low pre-pandemic crude oil prices scenario 

 

3.1.1.1 Crude allocation 

Crude allocation provides the feedstock to the crude distillation units. The network in Figure 

3.3 illustrates how the 17 domestic crude oils (𝐷𝐶1,… , 𝐷𝐶17) are delivered to the refinery via 

5 pipelines (𝑃𝐿3,… , 𝑃𝐿7). A system of 9 mixing tanks (𝑇𝑘1,… , 𝑇𝑘9) are then used to obtain 

homogeneous crude blends (𝐶𝐵1,… , 𝐶𝐵9) with given quality properties (specific gravity, 

sulphur content and total acid number) for further processing by the CDUs. 
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Figure 3.3. Crude allocation network. 

 

3.1.2 Refinery 

The refinery (REF) has a total capacity of 248 kbbl/day, distributed over 6 crude distillation 

units (𝑅𝐶𝐷𝑈 = {𝑅𝐶𝐷𝑈1,… , 𝑅𝐶𝐷𝑈6}) that can operate in different campaigns during the 

planning horizon. Each campaign is represented by a logical unit (CDU), leading to 13 such 

logical CDUs (𝐶𝐷𝑈 = {𝐶𝐷𝑈1,… , 𝐶𝐷𝑈13}), each described by a specific set of constraints. As 

an example, 𝑅𝐶𝐷𝑈1 has a processing capacity of 38 kbbl/day and can operate in 4 campaigns 

(𝐶𝐷𝑈1,… , 𝐶𝐷𝑈4). 
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Table 3.2. Set of logical units associated to each distillation column and corresponding crude blends processed by 
each logical unit. 

 RCDU1 RCDU2 RCDU3 RCDU4 RCDU5 RCDU6 
Blend/CDU 1 2 3 4 5 6 7 8 9 10 11 12 13 

CB1 x      x x  x x  x 
CB2 x   x   x x x x x x x 
CB3  x x x   x  x x  x x 
CB4 x  x    x x  x x   
CB5 x  x    x x     x 
CB6 x      x x   x   
CB7 x      x x   x   
CB8 x  x    x x  x x   
CB9     x x        

Capacity (kbbl/day) 38 52 27 39 55 37 
 

The CDUs produce intermediate streams such as light ends (C1 – C3), light and heavy 

naphtha, jet fuel, light and heavy diesel, atmospheric gas oil and reduced crude, which are either 

processed by the refining downstream units or routed to fuel blending. Commodities such as 

alkylate and gasoil (𝐼𝑅 = {𝐴𝑙𝑘𝑦𝑙𝑎𝑡𝑒, 𝐺𝑎𝑠𝑂𝑖𝑙})  can be imported as feedstock to certain refining 

units. The refinery also produces natural gas, ethane, olefins, virgin naphtha, and raw materials 

for petrochemical production. 

 

3.1.2.1 Crude fractionation system 

The crude fractionation system provides all the intermediate streams for further processing 

in the refinery, petrochemical and fuel blending units. This separation train comprises 6 units 

operating in a total of 13 operating modes (logic units 𝑐𝑑𝑢1,… , 𝑐𝑑𝑢13). For instance, the first 

distillation unit has four operating modes (𝑐𝑑𝑢1,… , 𝑐𝑑𝑢4). A process model is developed for 

each operating mode, which is characterized by crude quality and straight-run cut-points. The 

feedstock is determined by routing the crude blend to the CDUs (Figure 3.3). For example, 

𝑐𝑑𝑢4 is fed by a crude mix composed of 𝑐𝑏7 and 𝑐𝑏8. 

The pool of light components produced at the CDUs, such as methane, ethane and propane, 

is sent to the turbo expander unit to separate methane from the C2-C3 blend (Figure 3.1). 



Integrated Refinery-Petrochemical Operations: Case study 49 

 

 

Methane is mixed with natural gas from the production wells and routed to the fuel gas network. 

The C2-C3 blend is mixed with olefins coming from the FCCs to provide the feedstock for the 

ethane cracker. A fraction of the naphtha produced at the CDUs provides the feedstock for 

aromatics and specialty solvents production. The rest is used for gasoline blending or upgraded 

into debutanized gasoline at the DBU units. The straight-run jet is sent directly to blending. The 

straight-run light diesel can be routed to the medium distillate blending while the heavy diesel 

is sent to hydrotreating. 

 
Table 3.3. Routing of reduced crude from atmospheric to vacuum distillation units and RC pool (x) and of virgin 
naphtha from atmospheric to debutanizer columns (X). 

ADU VDU1 VDU2 VDU3 VDU4 VDU5 VDU6 RC Pool DBU1 DBU2 
CDU1    x    X  
CDU2    x    X  
CDU3    x    X  
CDU4       x X  
CDU5 x x x  x x  X  
CDU6     x x  X  
CDU7 x  x     X  
CDU8 x x x     X X 
CDU9 x  x    x X X 
CDU10 x  x    x X X 
CDU11 x x x       
CDU12 x  x    x X  
CDU13 x  x    x X  

 

As can be seen in Table 3.3, the reduced crude (RC) from the CDU bottoms is distributed 

into 6 VDUs that produce the feedstock to the FCC units and provide additional components 

for fuel blending. The VDUs separate the RC into distillates, light vacuum gasoil (LVGO), 

heavy vacuum gasoil (HVGO) and vacuum residue (VR). The straight-runs light and heavy 

naphtha from the CDUs are routed to gasoline blending, petrochemicals production or 

distributed into two DBUs. The only exception is the naphtha mix from 𝑐𝑑𝑢11, which goes to 

gasoline blending or petrochemicals production. 
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3.1.2.2 Refinery conversion units 

The conversion units receive the diesel, RC, LVGO, HVGO and VR pools coming from the 

crude fractionation system to produce intermediate streams for fuel blending (Figure 3.4). 

 

Figure 3.4. Diagram for refinery conversion. 

The diesel is hydrotreated to generate a low sulphur component for blending. The RC pool is 

a feedstock component for the FCC units. The LVGO is a commodity that can be sold or 

processed at the catalytic crackers. In case of low production of gasoil, it can be imported to 

complete the FCC feedstock. The HVGO pool can be routed to fuel blending or hydrotreated 

into a low sulphur intermediate stream for further processing by the FCC units. Finally, the VR 

pool can be split, providing streams for asphalt/fuel blending and for DEMEX, which reduces 

the metal content. Demetallized oil (DMO) is the most valuable product from DEMEX and can 

be sent to the FCC or HDT. In the HDT unit, it is transformed into demetallized hydrotreated 

oil (DMOH), an intermediate refined stream with low metal and sulphur content. The bottom 

stream from DEMEX can be routed to fuel oil blending or upgraded at the visbreaking unit to 
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produce naphtha for gasoline blending, gasoil for FCC processing and a residue for fuel 

blending. 

The feedstock to the FCC units consists of a mix of LVGO, HVGO, RC, DMO and DMOH. 

These units produce olefins for further processing at the ethylene cracker, propylene, a mix of 

isobutane-butylene (iC4/C4=), light cracked naphtha (LCN) and heavy cracked naphtha (HCN), 

light cycle oil (LCO), slurry and coke. The iC4/C4= blend is sent to the alkylation unit to 

produce alkylate and other components for gasoline. All the LCN and a fraction of the HCN 

produced is sent to gasoline blending. The rest of the HCN is hydrotreated. The LCO is recycled 

to be hydrotreated with the diesel or can be used with the slurry for fuel oil blending. The coke 

is a by-product that is sold to domestic use. 

There are four hydrotreating units. One unit processes a mix of DMO and HVGO and can 

operate at four different severities. The other three units transform diesel, HVGO and HCN into 

low sulphur streams and operate in a single mode. Solvent extraction at the DEMEX unit can 

operate at four different levels of solvent concentration. Thermal cracking is represented by two 

different process configurations, one with four and the other with three operating modes. The 

FCC process is represented by four different conversion technologies. FCC1 and FCC2 can 

operate in four different modes, while there are three modes for FCC3 and FCC4. 

 

3.1.3 Petrochemical 

The petrochemical (PTQ) plant transforms ethane, olefins, and virgin naphtha to obtain added 

value products such as polyethylene, propylene, benzene, and toluene. Several intermediate 

streams can be sold to the refinery for improving gasoline quality and specialty solvents 

production and supplying hydrogen to hydrotreating units. Relevant properties for these streams 

include their specific gravity, sulphur content, octane, Reid pressure vapor, and aromatics 

content. 
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The virgin naphtha (VN) pool from the CDUs, a fraction of the LVGO from the VDUs, and 

the olefins from the FCC processes comprise the feedstock for the petrochemical, industrial 

solvents and waxes production (Figure 3.5). 

 
Figure 3.5. Diagram for petrochemical production. 

 

The olefins are blended with an ethane-propane stream to generate polyethylene at the 

ethylene cracker, to be sold on the domestic market. Note that if the olefins are not upgraded to 

polyethylene, they may be mixed with light gases to produce LPG or sent to the fuel gas 

network. 

The VN is fractionated in a separation train to obtain butane (C4), pentane, light and heavy 

naphtha. The C4 stream is routed to the LPG pool, while the pentane, light naphtha and a 

fraction of heavy naphtha are sent to gasoline blending. The heavy naphtha (HN) is the raw 

material to the BTX unit, after going through a series of steps. The first one is desulphurization. 

The second one is platforming, where hydrogen is obtained as by-product for the hydrar unit. 

The aromatics mix is separated at the sulfolane unit into two streams, the high-purity extract 

and the raffinate that is a feedstock for producing specialty solvents. The extract is then sent to 
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the BTX separation train to obtain benzene, toluene, xylene, o-xylene and heavy aromatics for 

the domestic market. At the hydrar unit, a fraction of benzene is converted into cyclohexane, 

which is also a marketable product. The aromatics production is completed at the hydeal unit, 

which converts a toluene-xylene stream into a mix that is recycled to the BTX fractionation 

units. 

The LVGO is a valuable refined stream that can be sold on the domestic market or processed 

at the FCC or other units. In particular, the LVGO obtained from the fractionation of naphthenic 

crude oil is suitable to produce waxes and naphthenic base oils. However, several stages of 

solvent extraction are required to remove heavy components, contaminants and aromatics. 

More specifically, propane removes metals from the LVGO, the methyl ethyl ketone (MEK) 

precipitates a stream rich in wax content that is hydrotreated to obtain several grades of waxes, 

and the phenol removes aromatics to obtain lubricant base oils. 

Overall, the petrochemicals, polyethylene, specialty solvents and waxes production might 

represent a small portion of the refinery margin but, without integration of the olefins, all the 

virgin naphtha would be blended into gasoline and the naphthenic LVGO would be degraded 

into lower value commodities, thereby sacrificing profitability. 

 

3.1.4 Fuel Blending 

To produce fuels (FB) with the required quality, the blenders can buy and receive 

intermediate process streams from REF and PTQ, complemented with refined products from 

the domestic and international markets. Overall, 88 refined streams can produce up to 22 grades 

of fuels (Table 3.4), with different quality specifications for each grade (Table 3.5). For 

example, gasoline must comply with quality constraints on the specific gravity, Reid vapor 

pressure (RVP), research octane number (RON), and sulphur content. Property estimation is 

thus required for all 88 streams. 
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Table 3.4. Streams for fuel blending. 

Fuel LPG Gasoline Medium distillate Fuel Oil Asphalt  Total 
Streams to blend 24 23 25 10 6 88 
Products grade 3 7 6 4 2 22 

 

Table 3.5. Property/quality specifications of the different fuels. 

Fuel/Quality  Specific 
gravity 

Sulphur 
content 

Cetane 
number 

RON RVP Viscosity  

LPG x      
Gasoline x x  x x  
Medium distillate x x x    
Fuel Oil x x    x 
Asphalt x x    x 

 

A total of 25 streams are blended into 6 grades of medium distillates, which must comply 

with quality constraints on specific gravity, sulphur content, and cetane number. Two grades of 

jet fuel and four grades of diesel are produced as illustrated in Figure 3.6. 

 
Figure 3.6. Medium distillate blending. 

 

Diesel components from the CDUs provide one grade of diesel (Diesel4), while jet fuel 

components provide two grades of Jet fuel (Jet1 and Jet2). Jet fuel components are also routed 

to the diesel pre-mix tank (Diesel pool). This tank also receives imported diesel, and other 
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refinery streams such as HT diesel from the HVGO HT process, gas oil and heavy diesel pools. 

A second diesel grade with ultra-low sulphur (Diesel1) is obtained from hydrotreated diesel and 

diesel pre-mix blends. A fraction of the hydrotreated diesel is blended with heavy diesel from 

upstream refinery processes and LCO from FCC to produce these two diesel grades (Diesel2 

and Diesel3). 

Note that steady-state operations are assumed as opposed to multiperiod operation (Demirhan 

et al., 2020; Mouret et al., 2009; Neiro and Pinto, 2006). 

 

3.2 Short-term planning optimisation formulation 

The optimisation problem for the short-term planning of an IRPC can be stated as follows: 

Given: 

1. The set of process units and connecting streams in the IRPC. 

2. The capacities, operating conditions, feedstock properties and operating costs of the 

process units. 

3. The volume availability, cost and assay characterization of domestic and imported 

crude oil. 

4. The volume, cost and physical properties of domestic and imported refined products. 

5. The set of multi-modal transportation routes to deliver raw material or refined 

products from the oil wells/import-ports/domestic-market to the refinery/export-

ports/domestic-market, characterized in terms of capacity and cost. 

6. Prices, market demands (domestic and export) and product specifications for LPG, 

jet, gasoline, diesel, fuel oil, asphalt, petrochemical products, waxes and industrial 

solvents. 
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Determine: 

1. The crude basket composition in terms of domestic and imported crude oil. 

2. The crude mix to be processed at each CDU. 

3. The cut-points to predict yields and properties at the CDUs, VDUs and DBUs. 

4. The feedstock volume, composition and operating conditions of each process unit. 

5. The yields and properties of the outlet streams of each process unit. 

6. The volume of refined products from domestic and imported markets needed to 

complement feedstock or fuel blending. 

7. The routing for all the intermediate refined streams. 

8. The volume and specifications of each marketable commodity. 

In order to: 

1. Maximize the profit, determined as the revenue from selling the fuels and 

petrochemical products, minus the costs of purchasing crude oil and refined products, 

minus the logistic costs for the delivery/reception of commodities, minus the 

operational expenditure. 

2. Subject to meeting product demand in terms of volume and quality, satisfying 

operating conditions for each process unit, and respecting logistics. 

An accurate mathematical representation of the Integrated refining and petrochemical 

complex (IRPC) is crucial for computational tools to provide accurate, quantitative decisions 

for short-term planning. This industrial-size problem can be formulated as a large-scale mixed-

integer quadratically constrained quadratic program (MIQCQP), in which discrete decisions 

select operating modes for the process units, while the entire process network is represented by 

input-output relationships based on bilinear expressions describing yields and stream 

properties, pooling equations, fuel blending indices and cost indicators. 
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The short-term planning problem for the IRPC can be cast as the following MIQCQP: 

𝑧∗: = max	𝑓F(𝑥, 𝑦)  
s. t. 𝑓!(𝑥, 𝑦) ≤ 0	∀𝑚 ∈ {1,… ,𝑀}  

𝑥 ∈ [𝑥4 , 𝑥7] ⊆ ℝO
1 , 𝑦 ∈ {0,1}*,  

(P) 

where 𝑧* is the maximum profit, 𝑥 is a 𝑛 −dimensional vector of non-negative continuous 

variables constrained between lower 𝑥4 and upper 𝑥7 bounds, and 𝑦 is a	𝑟 −dimensional vector 

of binary variables used to select process operating conditions such as high, medium, and low 

severity in fluid catalytic process. 

The functions 𝑓!:	ℝ1 × ℝ* → ℝ, with 𝑚 = 0 (objective function), and with 𝑚 = 1,… ,𝑀 

(constraints of P) are quadratic in 𝑥 and linear in 𝑦: 

𝑓!(𝑥, 𝑦) ≔ ∑ 𝑎"#!𝑥"𝑥# + 𝐵!𝑥 + 𝐶!𝑦 + 𝑑!(",#)∈34! , 

where 𝐵𝐿! is an (𝑖, 𝑗)-index set defining the bilinear terms 𝑥"𝑥# present in function 𝑚, 

parameters 𝑎"#! and 𝑑! are scalars, and 𝐵! and 𝐶! are row vectors. 

A detailed mathematical formulation of the objective and constraint functions in the MIQCP 

model (P) is given next. 

 

3.2.1 Generic process unit models 

The topology representation for the IRPC is based on the modelling framework by Neiro and 

Pinto (2004). The network superstructure is built from unit models that include a mixer for the 

input streams to the unit and one splitter for each output stream (Figure 3.7). The topology for 

our IRPC model comprises 155 different types of units connected by intermediate streams. 

Recall that the IRPC is composed by 60 industrial plants, which can operate with exclusive or 

non-exclusive operating modes. Thus, a process unit 𝑢 is modelled for each operating window 

of the real plant 𝑤 (see Section 3.2.5).  
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Figure 3.7. Diagram for a petrochemical production unit u. 

Inputs to a unit 𝑢 include the feedstock volume and properties, represented by variables 𝑄𝐹, 

and 𝑃𝐹,,), respectively, and the operational conditions 𝑦+,, which can be non-exclusive or 

mutually exclusive campaigns. These inputs are used to predict the flowrate 𝑄𝑆,,. of each outlet 

stream 𝑠 from unit 𝑢 and its corresponding properties 𝑃𝑆,,.,). An outlet stream can be routed to 

other process units, fuel blending or tank farms to be sold, with variable 𝑄,,.,,T giving the 

volumetric flowrate of stream 𝑠 from unit 𝑢 that is fed to unit 𝑢′. Next, 𝑆𝑂, denotes the subset 

of outlet streams from unit 𝑢, 𝑈𝑆, the subset of upstream processes connected to 𝑢, and 𝑈𝑂, 

the subset of downstream units connected to 𝑢. 

The balance equation (Eq. 3-1) states that the feed mixer to a process unit 𝑢 collects all 

streams from the units 𝑢´ that are connected to 𝑢. This balance does not apply to raw material 

receiving units 𝑢 ∈ 𝑈<>. The splitter at the outlet of unit 𝑢, divides the volumetric flowrate 

𝑄𝑆,,. over its connected downstream units 𝑢´ ∈ 𝑈𝑂,, as stated in Eq. (3-2). 

𝑄𝐹, = ∑ ∑ 𝑄,´,.,,.∈U:"´,´∈7U" 	∀𝑢 ∈ 𝑈\𝑈<>  (3-1) 

𝑄𝑆,,. = ∑ 𝑄,,.,,´,´∈7:" 	∀𝑢 ∈ 𝑈, 𝑠 ∈ 𝑆𝑂,  (3-2) 

The properties 𝑝 associated with the feedstock to unit 𝑢 are included in subset 𝑃𝐼,. Eq. (3-3) 

applies to those properties that are mixed on a volume base (𝑝 ∈ 𝑃/). The balance for properties 

blended on a weight basis, e.g. sulphur content, is given by Eq. (3-4), where variables 𝑃𝐹,,U=V  
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and 𝑃𝑆,´,.,U=V  give the specific gravity of the inlet stream to unit 𝑢 and the outlet stream 𝑠 from 

unit 𝑢´, respectively. Notice that Eq. (3-4) features trilinear terms instead of the bilinear terms 

in Eq. (3-3). 

𝑄𝐹,𝑃𝐹,,) = ∑ ∑ 𝑄,´,.,,𝑃𝑆,´,.,).∈U:"´,´∈7U" 	∀𝑢 ∈ 𝑈, 𝑝 ∈ 𝑃𝐼, ∩ 𝑃/  (3-3) 

𝑄𝐹,𝑃𝐹,,)𝑃𝐹,,U=V = ∑ ∑ 𝑄,´,.,,𝑃𝑆,´,.,)𝑃𝑆,´,.,U=V.∈U:"´,´∈7U" 	∀𝑢 ∈ 𝑈, 𝑝 ∈
𝑃𝐼,\𝑃/ 		

(3-4) 

Note that Eq. (3-4) can be expressed in terms of bilinear terms, defining two auxiliary 

variables 𝑄𝐹,W,X and 𝑄,$,.,,
W,X  that represent mass flows as indicated in Eqs. (3-5) and (3-6). The 

mixing rule on a mass basis is then calculated by Eq. (3-7). 

𝑄𝐹,W,X = 𝑄𝐹,𝑃𝐹,,U=V 	∀𝑢 ∈ 𝑈  (3-5) 

𝑄,$,.,,
W,X = 𝑄,´,.,,𝑃𝑆,´,.,U=V 		∀(𝑢T, 𝑢) ∈ 𝑈, 𝑠 ∈ 𝑆𝑂,T  (3-6) 

𝑄𝐹,W,X𝑃𝐹,,) = ∑ ∑ 𝑄,$,.,,
W,X 𝑃𝑆,´,.,).∈U:"´,´∈7U" 	∀𝑢 ∈ 𝑈, 𝑝 ∈ 𝑃𝐼,\𝑃/  (3-7) 

 

3.2.2 Crude allocation model 

The total flowrate and crude composition are propagated from the crude allocation to the 

crude distillation processing units. The set 𝑃/0 stand for the volumetric composition of different 

crudes going into a crude mixing tank. Then, the sum over all the volumetric compositions 

𝑃𝑆,,.,) for every outlet stream 𝑠 from crude mix tank 𝑢 ∈ 𝑈689, must be equal to one (Eq. 3-

8). The same goes for the volumetric compositions 𝑃𝐹,,) of the feedstock of a CDU (Eq. 3-9). 

∑ 𝑃𝑆,,.,) = 1) 	∀𝑢 ∈ 𝑈689 , 𝑠 ∈ 𝑆𝑂,, 𝑝 ∈ 𝑃𝑂,,. ∩ 𝑃/0  (3-8) 

∑ 𝑃𝐹,,) = 1) 	∀𝑢 ∈ 𝑈657 , 𝑝 ∈ 𝑃𝐼, ∩ 𝑃/0  (3-9) 

 

3.2.3 Crude fractionation model 

The crude fractionation units 𝑢 ∈ 𝑈6< include atmospheric distillation 𝑈657, vacuum 

separation 𝑈/57 and debutanizer 𝑈537 units. The subset 𝑈𝑉𝐷𝑈, indicates the connectivity of 



60 Integrated Refinery-Petrochemical Operations: Case study 

 

 

the CDU 𝑢 with VDUs, and 𝑈𝐷𝐵𝑈, the connectivity with the DBUs. The crude assay 

characterization provides the yields, 𝑦𝑖𝑒𝑙𝑑BG,,,. and outlet stream properties, 𝑝𝑟𝑜𝑝BG,,,.,) due 

to the fractionation of crude	𝑣𝑓 in unit 𝑢. The flowrates and properties of the outlet streams 

from the CDUs are computed by Eqs. (3-10) - (3-11), where subset 𝑃𝑂,,. holds the properties 

of stream 𝑠 from unit 𝑢. 

𝑄𝑆,,. = 𝑄𝐹, ∑ 𝑦𝑖𝑒𝑙𝑑BG,,,.𝑃𝐹,,BGBG∈=%& 	∀𝑢 ∈ 𝑈657 , 𝑠 ∈ 𝑆𝑂,  (3-10) 

𝑄𝑆,,.𝑃𝑆,,.,) = 𝑄𝐹, ∑ 𝑝𝑟𝑜𝑝BG,,,.,)𝑃𝐹,,BGBG∈=%& 	∀𝑢 ∈ 𝑈657 , 𝑠 ∈ 𝑆𝑂,, 𝑝 ∈
𝑃𝑂,,.  
 

(3-11) 

The RC and light naphtha (LN) streams from the CDUs can be routed to more than one 

vacuum/debutanizer column. Because of this, the flowrate 𝑄𝑆,,. and properties 𝑃𝑆,,.,) need to 

be determined as a fraction of the total yield from the CDU, leading to Eqs. (3-12) to (3-16), 

where 𝐷𝐵 stands for debutanized naphtha. Note that Eqs. (3-13) to (3-16) can be expressed as 

bilinear terms if the denominator is moved to the left-hand side of the equation. 

𝑄𝐹, = ∑ 𝑄𝑆,,..∈U:" 	∀𝑢 ∈ 𝑈/57 ∪ 𝑈537  (3-12) 

𝑄𝑆,,. = 𝑄𝐹,
∑ Z"([\'(,",*=0",'('(∈,%&

∑ ∑ Z"([\'(,"´,-.=0"´,'('(∈,%&"´∈/.0/:"∈/%0/"´

	∀𝑢 ∈ 𝑈/57 , 𝑠 ∈

{𝐿𝑉𝐺𝑂,𝐻𝑉𝐺𝑂, 𝑉𝑅}  
 

(3-13) 

𝑄𝑆,,. = 𝑄𝐹,
∑ Z"([\'(,",*=0",'('(∈,%&

∑ ∑ Z"([\'(,"´,23=0"´,'('(∈,%&"´∈/.0/:"∈/40/"´

	∀𝑢 ∈ 𝑈537 , 𝑠 ∈

{𝐶5, 𝐷𝐵}  
 

(3-14) 

𝑃𝑆,,.,) =
∑ )*])'(,",*=0",'('(∈,%&

∑ ∑ Z"([\'(,"´,-.=0"´,'('(∈,%&"´∈/.0/:"∈/%0/"´

	∀𝑢 ∈ 𝑈/57 , 𝑠 ∈

{𝐿𝑉𝐺𝑂,𝐻𝑉𝐺𝑂, 𝑉𝑅}, 𝑝 ∈ 𝑃𝑂,,.  
 

(3-15) 

𝑃𝑆,,. =
∑ )*])'(,",*=0",'('(∈,%&

∑ ∑ Z"([\'(,"´,23=0"´,'('(∈,%&"´∈/.0/:"∈/40/"´

	∀𝑢 ∈ 𝑈537 , 𝑠 ∈

{𝐶5, 𝐷𝐵}, 𝑝 ∈ 𝑃𝑂,,.  
 

(3-16) 

In order to consider the operating conditions in the atmospheric or vacuum separation 

processes, swing-cuts are defined between the straight-runs heavy naphtha – jet, jet – light 
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atmospheric diesel, light – heavy atmospheric diesel, heavy atmospheric diesel – reduced crude, 

LVGO – HVGO and HVGO – VR. Because these hypothetical streams and their properties can 

be partially or totally routed to their light or heavy adjacent cut, they are modelled using the 

general mass and properties balance Eqs. 3-1 to 3-4. 

 

3.2.4 Conversion unit models 

The set 𝑈6:;/ represents the conversion units. On the refinery side, it includes solvent 

extraction for the vacuum residue; fluid catalytic cracking for the LVGO, HVGO, DMO and 

DMOH; hydrotreating for the jet, diesel, naphtha, HVGO and DMO; and mid-thermal cracking 

for the vacuum and bottom residues from the solvent extraction units. On the petrochemical 

side, it includes straight-run naphtha fractionation; heavy naphtha hydrotreating; naphtha 

catalytic reforming; solvent extraction of aromatics with sulfolane; the separation column train 

for the BTX; the ethylene cracker; the specialty solvents units; and the wax production 

processes. 

Conversion units are modelled as simple input – output relationships based on laboratory 

characterization for their feedstock and yields, pilot-plant runs and industrial test-runs. These 

expressions include bilinear terms to predict the yields and outlet stream properties. More 

specifically, the outlet stream flowrate 𝑄𝑆,,. is determined by the empirical correlation shown 

in Eq. (3-17), where 𝑎,,. and 𝑏,,.,) are regression parameters. In the same way, Eq. (3-18) 

predicts the outlet stream property 𝑃𝑆,,.,), where 𝑐,,.,) and 𝑑,,.,)´,) are regression parameters 

as well. 

𝑄𝑆,,. = 𝑄𝐹,(𝑎,,. + ∑ 𝑏,,.,)𝑃𝐹,,))∈=^" )	∀𝑢 ∈ 𝑈6:;/ , 𝑠 ∈ 𝑆𝑂,  (3-17) 

𝑄𝑆,,.𝑃𝑆,,.,) = 𝑄𝐹,»𝑐,,.,) +∑ 𝑑,,.,)´,)𝑃𝐹,,)´)´∈=^" ¼	∀𝑢 ∈ 𝑈6:;/ , 𝑠 ∈
𝑆𝑂,, 𝑝 ∈ 𝑃𝑂,,.  
 

(3-18) 
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Note that if the dependence on the feedstock property 𝑏,,.,) is dropped, then Eq. (3-17) 

becomes linear, representing a fixed-yield approach. And if the dependence on the feedstock 

property 𝑑,,.,)$,) is neglected in Eq. (3-18), the approach is a proportional distribution with 

respect to the feedstock. 

 

3.2.5 Operating modes modelling 

Let 𝑤 represent a real processing unit that has been divided into a set of virtual units 𝑈𝑊+ 

and let 𝑊8A include the real units with mutually exclusive modes. For such real units, at most 

one logical unit 𝑢 that represents one operating condition needs to be selected through Eq. (3-

19), where the binary variable 𝑦+,, takes a value of 1 if logical unit 𝑢 is selected. Note that if 

the left-side term in Eq. (3-19) is zero, the real unit 𝑤 is idled. Eq. (3-20) then determines the 

bounds on the flowrate 𝑄𝐹,. The maximum capacity available for units with inclusive operating 

modes is given by Eq. (3-21), where 𝑐𝑎𝑝+4 /𝑐𝑎𝑝+7 and 𝑠𝑓+ represent the minimum/maximum 

capacity and service factor for the real unit 𝑤. 𝑠𝑓+ 	is a value in the range [0,1] indicating the 

fraction of the process capacity available for the unit 𝑤. 

∑ 𝑦+,,,∈>75 ≤ 1	∀𝑤 ∈ 𝑊8A  (3-19) 

𝑐𝑎𝑝+4 𝑠𝑓+𝑦+,, ≤ 𝑄𝐹, ≤ 𝑐𝑎𝑝+7𝑠𝑓+𝑦+,,	∀𝑤 ∈ 𝑊8A , 𝑢 ∈ 𝑈𝑊+  (3-20) 

𝑐𝑎𝑝+4 𝑠𝑓+ ≤ ∑ 𝑄𝐹,,∈7>5 ≤ 𝑐𝑎𝑝+7𝑠𝑓+ 	∀𝑤 ∈ 𝑊\𝑊8A  (3-21) 

 

3.2.6 Logistic constraints 

Logistic constraints ensure a feasible production plan by preventing the model from 

producing a commodity with no delivery options to markets and from buying a raw material 

with no available transportation capacity. A transportation mode 𝑚𝑡 can transport raw material 

and refined products simultaneously. The total volume delivered 𝑄𝑇!2 is computed by Eq. (3-
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22), where the set 𝑈𝑃𝑅!2 indicates the relationship between the product unit 𝑢 ∈ 𝑈=< and the 

respective transport mode 𝑚𝑡, and the set 𝑀𝑇,,. indicates the transport mode for the stream 𝑠 

of raw-material unit 𝑢 ∈ 𝑈<>. 

𝑄𝑇!2 = ∑ 𝑄𝐹,,∈7,-∩7=<!6 + ∑ ∑ 𝑄𝑆,,..∈U:":!2∈8?",*,∈7-7 	∀𝑚𝑡 ∈ 𝑀𝑇  (3-22) 

 

3.2.7 Variable bounds 

Defining tight lower and upper bounds for the decision variables is critical to the good 

performance of deterministic global optimisation. The bound constraints in Eq. (3-23) define 

valid ranges for the flowrates and quality specifications of product streams, feed streams and 

intermediate refined streams, as well as the transportation capacity. 

𝑞𝑓,4 ≤ 𝑄𝐹, ≤ 𝑞𝑓,7	∀𝑢 ∈ 𝑈  
𝑞𝑠,,.4 ≤ 𝑄𝑆,,. ≤ 𝑞𝑠,,.7 	∀𝑢 ∈ 𝑈, 𝑠 ∈ 𝑆𝑂,  
𝑞,´,.,,4 ≤ 𝑄,´,.,, ≤ 𝑞,´,.,,7 	∀𝑢 ∈ 𝑈\𝑈<> , 𝑢´ ∈ 𝑈𝑆,, 𝑠 ∈ 𝑆𝑂,´  
𝑞𝑓,4 ≤ 𝑄𝐹, ≤ 𝑞𝑓,7	∀𝑢 ∈ 𝑈  
𝑞𝑠,,.4 ≤ 𝑄𝑆,,. ≤ 𝑞𝑠,,.7 	∀𝑢 ∈ 𝑈, 𝑠 ∈ 𝑆𝑂,  
𝑞,´,.,,4 ≤ 𝑄,´,.,, ≤ 𝑞,´,.,,7 	∀𝑢 ∈ 𝑈\𝑈<> , 𝑢´ ∈ 𝑈𝑆,, 𝑠 ∈ 𝑆𝑂,´  
𝑞𝑡!24 ≤ 𝑄𝑇!2 ≤ 𝑞𝑡!27 	∀𝑚𝑡 ∈ 𝑀𝑇 

				𝑝𝑓,,)4 ≤ 𝑃𝐹,,) ≤ 𝑝𝑓,,)7 	∀𝑢 ∈ 𝑈, 𝑝 ∈ 𝑃𝐼,  
𝑝𝑠,,.,)4 ≤ 𝑃𝑆,,.,) ≤ 𝑝𝑠,,.,)7 	∀𝑢 ∈ 𝑈, 𝑠 ∈ 𝑆𝑂,, 𝑝 ∈ 𝑃𝑂,,. 

(3-23) 

 

3.2.8 Cost function 

The profit (Eq. 3-24) consists of the revenue minus the total production costs. The revenue in 

Eq. (3-25) is obtained from selling the products, which include fuels from blending (LPG, 

gasoline, jet, diesel and fuels) and commodities that do not require blending (BTX, specialty 

solvents, waxes, alkylate, polyethylene and propylene). These marketable products are sold for 

a unit price 𝛼,. 

𝑃𝑟𝑜𝑓𝑖𝑡 ≔ 𝑇𝑜𝑡𝑎𝑙𝑅𝑒𝑣𝑒𝑛𝑢𝑒 − 𝑇𝑜𝑡𝑎𝑙𝐶𝑜𝑠𝑡 (3-24) 

𝑇𝑜𝑡𝑎𝑙𝑅𝑒𝑣𝑒𝑛𝑢𝑒 = ∑ 𝛼,,∈7,- 𝑄𝐹,  (3-25) 
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The total production cost is calculated in Eq. (3-26), with the supply and logistic costs in Eqs. 

(3-27) - (3-28). The parameter 𝛽,,. represents the purchase costs for the raw materials, and 𝛾!2 

the transportation costs. 

𝑇𝑜𝑡𝑎𝑙𝐶𝑜𝑠𝑡 = 𝑅𝑎𝑤𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙 + 𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 + 𝑂𝑝𝐸𝑥  (3-26) 

𝑅𝑎𝑤𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙 = ∑ ∑ 𝛽,,.𝑄𝑆,,..∈U:",∈7-7   (3-27) 

𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 = ∑ 𝛾!2𝑄𝑇!2!2∈8?   (3-28) 

The operating cost (OpEx) in Eq. (3-29) comprises three contributions. The first two 

contributions depend on a unit’s feed flowrate and properties, and the third one considers the 

cost of a pool’s flowrate. Thus, the OpEx calculation for a given process unit 𝑢 in  𝑈6< or 

𝑈6:;/ can be composed of any combination of these terms, where 𝜔,, 𝜓,,) and 𝜙,´,.,, are 

costing parameters. 

𝑂𝑝𝐸𝑥 = ∑ (𝜔,𝑄𝐹, + ∑ 𝜓,,)𝑄𝐹,𝑃𝐹,,))∈=^" +,∈7.-∪7.83%

∑ ∑ 𝜙,´,.,,𝑄,´,.,,.∈U:"´,´∈7U" )  
(3-29) 

 

3.2.9 Summary 

The short-term planning problem for the IRPC consists of the maximization of profit as in 

Eq. (3-24) and Eqs. (3-25) - (3-29), subject to constraints Eqs. (3-1) - (3-22), including bound 

constraints in Eq. (3-23). Nonconvexity in the form of multilinear terms stems from the 

constraints concerning the pooling equations to determine intermediate stream quality and fuel 

blending specifications: Eqs. (3-3) - (3-4), the correlations to predict yields and product 

properties of the process units: Eqs. (3-11), (3-13) - (3-18) and the operational expenditure 

function Eq. (3-29). The resulting model has 9,572 continuous and 280 discrete variables, 6,975 

equations and 35,104 bilinear terms. 
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3.3 Definition of planning scenarios 

We define four typical planning scenarios to establish a baseline for comparing the 

performance of the proposed algorithms with state-of-the-art local or global solvers. P 

 

3.3.1 Base scenario 

The base-case scenario (BCS) considers hydrocarbon market requirements for LPG, gasoline, 

medium distillate, fuel oil and asphalt set to 15, 183, 149, 80 and 7.2 kbbl/day, respectively. 

The combined demand for liquid petrochemicals, industrial solvents, waxes and propylene is 

13.90 kbbl/day, while the polyethylene demand is 0.96 kton/day. The crude basket can be 

composed of both domestic and imported crudes. 

 

3.3.2 Without refinery-petrochemical integration scenario 

The second scenario (WRPS) omits the petrochemical processes, by setting the demands for 

petrochemicals, industrial solvents and waxes to zero. 

 

3.3.3 Logistic disruption scenario 

The third scenario (LDS) analyses the impact of a disruption in the domestic crude supply, 

by halving the capacity of pipeline system PL3, responsible for delivering up to 80% of the 

crude to the IRPC. 

 

3.3.4 Gasoline demand reduction scenario 

The final scenario (DRS) analyses the effect of reducing gasoline demand by 25%, from 183 

kbbl/day to 137 kbbl/day. Since the main income in BCS comes the from production of fuels, 

dominated by gasoline and medium distillate, the IRPC will be forced to shift production 

towards other commodities. 
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3.3.5 Input data 

We consider a time horizon planning of 30 days. Detailed information regarding raw material 

availability, costs and specifications, as well as demand and specifications for petrochemicals 

and fuels are given in Appendix C, Table C. 1 - Table C. 8, while the logistic system is 

characterized in Table C. 9 - Table C. 10. The crude oil assays, and the parameters used for 

predicting yields, stream properties, operational cost coefficients and transportation fees were 

obtained from lab-scale, pilot-scale, or full industrial-scale test-runs. Such information is not 

disclosed for confidentiality reasons. 

 

3.4 Performance of commercial global optimisation solvers on the four scenarios 

of planning problem P 

Two commercial solvers for deterministic global optimisation were used to solve the IRPC 

short-term planning problem P: The Branch-And-Reduce Optimization Navigator – BARON 

(Sahinidis, 2004) and the Algorithms for coNTinuous / Integer Global Optimization of 

Nonlinear Equations – ANTIGONE (Misener and Floudas, 2014a). ANTIGONE is the result 

of the evolution and integration of two previous works from the same authors: GloMIQO  - 

Global Mixed-Integer Quadratic Optimizer, which is a computational framework for solving 

MIQCQPs (Misener and Floudas, 2013), and an algorithm for solving mixed-integer signomial 

optimisation problems (Misener and Floudas, 2014b), subclasses of MINLPs. 

ANTIGONE and BARON both implement a spatial branch-and-bound algorithm at their 

core. The former reformulates the original MINLP problem to solve by detecting special 

structures, then ANTIGONE formulates a series of convex relaxations by bisecting the feasible 

set in order to converge to a global optimal solution. On the other hand, BARON underestimates 

the objective function and/or enlarges the feasible region to construct the relaxations. Both, 
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ANTIGONE and BARON rely on local optimisation to find a feasible solution for the original 

MINLP and solve the MILP relaxations. More details regarding these commercial solvers can 

be found on the GAMS website (https://www.gams.com/latest/docs/S_MAIN.html).  

We select the upper bound (UB), lower bound (LB), optimality gap and CPU runtime as 

criteria to compare the performance of the global optimisation algorithms developed in this 

research.   

• Best-possible solution: This is the best bounding value provided by the relaxation of 

the original problem. Since the IRPC planning problem is a maximization problem, it 

represents an Upper Bound (UB) for the global optimal value of the objective 

function. 

• Best-found solution: Also known as incumbent solution in the context of mixed-

integer programming problems. It is the current best solution found during an 

algorithmic branch and bound search procedure for problem P. For the IRPC planning 

problem it represents a Lower Bound (LB) for the global optimal value of the 

objective function. 

• Dual gap also known as relaxation gap: This is the difference between the best-

found solution (LB) and the best possible solution (UB). This term is not presented as 

the absolute gap, which is the magnitude of the difference, but as the relative gap, 

which is the absolute gap divided by the best-possible solution (UB). Note that, 

BARON computes the dual gap dividing the absolute gap by best-found solution. 

• Optimality gap: This is used to denote difference between best feasible solution 

found and last upper bound found in the search (typically branch and bound). 

The results of solving the MIQCQPs arising from the IRPC planning problem using these 

state-of-the-art commercial solvers are shown in Table 3.6.  

 

https://www.gams.com/latest/docs/S_MAIN.html
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Table 3.6. Commercial deterministic global solvers results. 
 

ANTIGONE 
1.1 

BARON  
V 19.7.13 

BARON V 
20.10.16 

 Base case scenario (BCS) 
LB [MMUSD/day] 2.634 2.687 2.684 
UB [MMUSD/day] 3.898 4.250 4.505 
Optimality gap [%] 32 37 40 
Runtime [h] 10.0* 10.0* 10.0* 

 No petrochemical integration scenario (WRPS) 
LB [MMUSD/day] 1.219 1.523 1.574 
UB [MMUSD/day] 2.926 3.404 3.536 
Optimality gap [%] 58 55 55 
Runtime [h] 10.0* 10.0* 10.0* 

 Logistic disruption scenario (LDS) 
LB [MMUSD/day] 2.156 2.360 2.473 
UB [MMUSD/day] 3.451 3.842 3.981 
Optimality gap [%] 38 39 38 
Runtime [h] 10.0* 10.0* 10.0* 

 Gasoline demand reduction scenario (DRS) 
LB [MMUSD/day]  2.186 2.445 2.478 
UB [MMUSD/day] 3.719 4.134 4.214 
Optimality gap [%] 41 41 41 
Runtime [h] 10.0* 10.0* 10.0* 
*Algorithm interrupted after reaching the maximum runtime of 10 CPU hours 
 

We conducted these computational experiments using two versions of GAMS (version 25.1.2 

and 33.0), featuring ANTIGONE (v 1.1) and BARON (v 19.7.13 and 20.10.16, respectively). 

For the BCS scenario, ANTIGONE and BARON both obtained similar results in terms of the 

LB, with optimality gaps above 32% after 10 h of CPU runtime. Moreover, BARON reached a 

better LB than ANTIGONE for the WRPS, LDS and DRS scenarios, but the optimality gap is 

still above 38%. Note that the most recent version of BARON obtained significantly better 

solutions for all the scenarios except the base case. Overall, ANTIGONE and BARON were 

able to find a feasible solution (LB), but these figures were not improved after 10 hours of 

runtime, the quality of the relaxation was poor, leading to large optimality gaps. This behaviour 

could be due to the wide bounds of the variables participating in bilinear terms, as the 



Integrated Refinery-Petrochemical Operations: Case study 69 

 

 

relaxations become weaker with wider bounds, leading to an accumulation of nodes during the 

branch-and-bound search (Lara et al., 2018). The results in Table 3.6 are furthermore consistent 

with similar computational studies, such  as Li et al. (2016) and Zhao et al. (2017). 

 

3.5 Conclusions 

This chapter introduced the IRPC of interest and detailed the corresponding short-term planning 

optimisation formulation. Four planning scenarios were defined and these scenarios were then used to 

benchmark the performance of the global solvers ANTIGONE and BARON (Lara et al., 2018). 

Large optimality gaps between 32–58% were obtained across all the scenarios, which are a 

perfect illustration of the challenges inherent to solving real-life IRPC planning models to 

global optimality when tackled in a monolithic way. 

In the subsequent chapters, two novel decomposition algorithms for deterministic global 

optimisation are introduced. The first one, introduced through Chapter 4 subdivides the IRPC 

into small clusters according to their functionality. Inside each cluster, a MILP relaxation based 

on piecewise McCormick envelopes is solved, which dynamically partitions the variables that 

belong to the cluster and their domains are reduced through optimality-based bound tightening. 

The second one, presented in Chapter 5, is a spatial Lagrangean decomposition algorithm which 

divides the problem into two, three or four sections, namely crude management, refining, 

petrochemical operations, and fuel blending. 
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Chapter 4 CLUSTERING DECOMPOSITION 

STRATEGY 

This chapter presents a heuristic for the deterministic global optimisation of large-scale 

MIQCQPs such as P that relies on solving a series of lower and upper bounding sub-problems. 

This approach decomposes the problem structure into small clusters, then considers each cluster 

sequentially. Bilinear terms participating in the constraints of the active cluster, or a previous 

cluster are relaxed with piecewise McCormick envelopes, whereas the other bilinear terms are 

relaxed using standard McCormick envelopes. The variable ranges are furthermore reduced 

using OBBT. We apply the clustering approach to the short-term planning problem described 

in Chapter 3. Compared to previous studies, crude selection and allocation are more difficult 

since we consider a wider variety of sources from the market; demand concerns a larger variety 

of fuels and petrochemicals; and more process units are considered, which results in a larger 

number of nonconvex terms in the MIQCQP problem. Moreover, the process unit models 

involve lab-scale, pilot-scale, or full industrial-scale data.  

The rest of this chapter is organized as follows: A definition for process units clusters is given 

in Section 4.1 and the methodology is detailed in Sections 4.2 and 4.3. Applications of this 

approach to 14 benchmark pooling problems and a large-scale MINLP refinery planning 

problem, are shown in Sections 4.4 and 4.5, respectively. Section 4.6 presents the results 

obtained for the real-life IRPC problem, including a complete graphic display of results for the 
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base case scenario (see Appendix D, Appendix E and Appendix F for other scenarios) and a 

comparison with static piecewise relaxations and no clustering. Finally, Section 4.7 concludes 

the chapter. 

 

4.1 Process clustering 

Crude oil refinery operations can be classified into crude oil unloading and blending, unit 

operations that include separation and reaction processes, products blending and delivery (Jia 

and Ierapetritou, 2004; Méndez et al., 2006). We extend this classification to the IRPC with 

chemicals production, following the workflow to decompose the process network into small 

clusters of process units with similar functionality. For instance, crude selection is made before 

crude allocation, which determines the CDU feed streams in terms of flowrate and quality and 

hence their operation. Crude fractionation then determines the performance of downstream 

processes such as petrochemical production and the conversion of intermediate refined streams. 

Finally, fuels production and their quality specifications depend on the flowrate and properties 

of the intermediate refined streams. 

The 155 models are divided into 6 clusters, as detailed in Table 4.1. 

Table 4.1. Cluster definition (units identified by different colors in Figure 3.1). 

Cluster Process Units Physical 
Units 

Logical 
Units 

𝐶𝐿^ Logistic (𝑈<>) and Crude Allocation (𝑈689) 8 8 
𝐶𝐿^^ Crude Distillation (𝑈657) 6 13 

𝐶𝐿^^^ Vacuum (𝑈/57) and Debutanizer Columns 
(𝑈537) 8 11 

𝐶𝐿^/ Refining (𝑈<A0) 36 53 
𝐶𝐿/ Petrochemical (𝑈=?6) 9 48 
𝐶𝐿/^ Fuel Blending (𝑈345) 22 22 
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4.2 Methodology 

For the solution of problem P, we propose a deterministic global optimisation algorithm that 

solves a sequence of upper and lower bounding problems. A relaxed MILP model PR provides 

an upper bound 𝑈𝐵 on the optimal value 𝑧∗ of problem P, while a restriction of P with fixed 

binary variables, named PF, computes a lower bound 𝐿𝐵. Optimality-based bound tightening 

problems BC are also solved to improve the bounds of variables participating in bilinear terms, 

in order to make the PR relaxation tighter. 

 

4.2.1 Lower bounding problem 

The lower bounding problem PF shares the objective function and the constraints of P but 

fixes the binary variables 𝑦 for the operating modes to the values 𝑦� obtained from the solution 

of relaxed model PR (see below): 

𝑧=0: = max	𝑓F(𝑥, 𝑦�)  
s. t. 𝑓!(𝑥, 𝑦�) ≤ 0	∀𝑚 ∈ {1,… ,𝑀}  

𝑥 ∈ [𝑥4 , 𝑥7] ⊆ ℝO
1 , 𝑦 ∈ {0,1}*  

(PF) 

 

Note that fixing the variables may lead to an infeasible problem. If this is not the case, any 

feasible solution 𝑧=0 of PF provides a lower bound 𝐿𝐵 on the optimal value 𝑧∗ of P. 

 

4.2.2 Upper bounding problem 

Upper bounding problem PR is obtained by substituting bilinear terms 𝑥"𝑥# in P with 

auxiliary variables 𝑤"#, essentially linearizing 𝑓!(𝑥, 𝑦) as 𝑓!<(𝑥, 𝑦, 𝑤) ≔ ∑ 𝑎"#!𝑤"# +(",#)∈34!

𝐵!𝑥 + 𝐶!𝑦 + 𝑑!. Additional constraints are added to the problem to relate 𝑤"# to the original 

variables and their lower and upper bounds. This is done through global or piecewise 

McCormick envelopes. The standard McCormick relaxation, adds 4 linear inequality 

constraints per bilinear term (McCormick, 1976), whereas the piecewise McCormick 
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relaxation, adds 9 mixed-integer linear constraints. The latter is tighter due to the use of binary 

variables for partitioning the domain of one of the variables in every bilinear term (Bergamini 

et al., 2005; Castro, 2015) but may lead to a computationally intractable MILP problem even 

for a small number of partitions. To improve the computational tractability of the relaxed MILP 

model PR, the continuous variables 𝑥# are furthermore grouped into 𝑘 = 1, . . , 𝐾 clusters, where 

𝐶𝐿 = {𝐶𝐿b ∪ 𝐶𝐿c ∪ …𝐶𝐿deb ∪ 𝐶𝐿d}. 

By only partitioning the continuous variables 𝑥# belonging to a given cluster 𝐶𝐿, we reduce 

the number of binary variables 𝑦#1 added by the piecewise McCormick relaxation in problem 

PR, where 𝑁# is the chosen number of partitions for 𝑥#. The McCormick relaxations are used 

for the relaxation of bilinear terms located outside the cluster (𝑗 ∉ 𝐶𝐿). 

𝑧<: =	 max	𝑓F<(𝑥, 𝑦, 𝑤)  
s. t. 𝑓!<(𝑥, 𝑦, 𝑤) ≤ 0	∀𝑚 ∈ {1,… ,𝑀}  

𝑤"# ≥ ∑ »𝑥�"#1𝑥#14 + 𝑥�#1𝑥"4 − 𝑦#1𝑥"4𝑥#14 ¼
;9
1gb

𝑤"# ≥ ∑ »𝑥�"#1𝑥#17 + 𝑥�#1𝑥"7 − 𝑦#1𝑥"7𝑥#17 ¼
;9
1gb

𝑤"# ≤ ∑ »𝑥�"#1𝑥#14 + 𝑥�#1𝑥"7 − 𝑦#1𝑥"4𝑥#17 ¼
;9
1gb

𝑤"# ≤ ∑ »𝑥�"#1𝑥#17 + 𝑥�#1𝑥"4 − 𝑦#1𝑥"7𝑥#14 ¼
;9
1gb ⎭

⎪
⎬

⎪
⎫

∀(𝑖, 𝑗) ∈ 𝐵𝐿!, 𝑗 ∈ 𝐶𝐿  

𝑥" = ∑ 𝑥�"#1
;9
1gb ∀(𝑖, 𝑗) ∈ 𝐵𝐿!, 𝑗 ∈ 𝐶𝐿  

𝑥# = ∑ 𝑥�#1
;9
1gb ∀𝑗 ∈ 𝐶𝐿: (𝑖, 𝑗) ∈ 𝐵𝐿!  

∑ 𝑦#1
;9
1gb = 1	∀𝑗 ∈ 𝐶𝐿: (𝑖, 𝑗) ∈ 𝐵𝐿!  

𝑥"4𝑦#1 ≤ 𝑥�"#1 ≤ 𝑥"7𝑦#1∀(𝑖, 𝑗) ∈ 𝐵𝐿!, 𝑗 ∈ 𝐶𝐿, 𝑛 ∈ Æ1, … , 𝑁#Ç  
𝑥#14 𝑦#1 ≤ 𝑥�#1 ≤ 𝑥#17 𝑦#1∀𝑗 ∈ 𝐶𝐿: (𝑖, 𝑗) ∈ 𝐵𝐿!, 𝑛 ∈ Æ1, … ,𝑁#Ç  
𝑤"# ≥ 𝑥"𝑥#4 + 𝑥"4𝑥# − 𝑥"4𝑥#4

𝑤"# ≥ 𝑥"𝑥#7 + 𝑥"7𝑥# − 𝑥"7𝑥#7

𝑤"# ≤ 𝑥"𝑥#4 + 𝑥"7𝑥# − 𝑥"7𝑥#4

𝑤"# ≤ 𝑥"𝑥#7 + 𝑥"4𝑥# − 𝑥"4𝑥#7⎭
⎪
⎬

⎪
⎫

∀(𝑖, 𝑗) ∈ 𝐵𝐿!, 𝑗 ∉ 𝐶𝐿	 

𝑥 ∈ [𝑥4 , 𝑥7] ⊆ ℝO
1 , 𝑦 ∈ {0,1}* , 𝑤 ⊆ ℝO

1   
𝑦#1 ∈ {0,1}	∀𝑗 ∈ 𝐶𝐿: (𝑖, 𝑗) ∈ 𝐵𝐿!, 𝑛 ∈ Æ1, … ,𝑁#Ç	 

(PR) 

 

Note that the lower 𝑥#14  and upper 𝑥#17  bounds for the partitioned variable 𝑥# are calculated by 

Eq. (4-1) before solving the relaxed problem PR. 
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𝑥#14 : = 𝑥#4 +
hX9

/eX9
2i(1eb)

;9

𝑥#17 : = 𝑥#4 +
hX9

/eX9
2i1

;9 ⎭
⎬

⎫
∀𝑗: (𝑖, 𝑗) ∈ 𝐵𝐿!, 𝑗 ∈ 𝐶𝐿, 𝑛 ∈ Æ1, … , 𝑁#Ç  (4-1) 

Since PR is a relaxation of P, PR will be feasible whenever P is feasible. Since the domain 

of the variables in P defines a compact set, its McCormick or RLT relaxation will always return 

a finite bound. Thus, the solution 𝑧< of PR provides a finite upper bound 𝑈𝐵 on the optimal 

value 𝑧∗ of P. 

 

4.2.3 Optimality-based bound tightening (OBBT) 

Consider the variable 𝑥j appearing in a bilinear term of cluster 𝐶𝐿. Its lower bound 𝑥j4 and 

upper bound 𝑥j7 can be tightened after solving optimisation problem BC. 

𝑥j4/𝑥j7 ≔ min/max	𝑥j  
s. t. 𝑓!<(𝑥, 𝑦, 𝑤) ≤ 0	∀𝑚 ∈ {1,… ,𝑀}  

𝑓F<(𝑥, 𝑦, 𝑤) ≥ 𝐿𝐵  
𝑥 ∈ [𝑥4 , 𝑥7] ⊆ ℝO

1 , 𝑦 ∈ {0,1}* , 𝑤 ∈ 𝑊 ⊆ ℝO
1   

𝑦#1 ∈ {0,1}	∀𝑗 ∈ 𝐶𝐿: (𝑖, 𝑗) ∈ 𝐵𝐿!, 𝑛 ∈ Æ1, … ,𝑁#Ç	 

(BC) 

 

Note that the inclusion of constraint 𝑓F<(𝑥, 𝑦, 𝑤) ≥ 𝐿𝐵 ensures that we only explore regions 

of the feasible space that can improve the current incumbent. As in PR, BC linearizes the 

bilinear terms and relaxes the problem using the McCormick and piecewise relaxations based 

on the cluster decomposition. To avoid duplicating the thirteen sets of constraints in PR, we 

refer to the domain of the auxiliary variables resulting from such constraints simply as 𝑤 ∈ 𝑊. 

To keep a moderate model size for BC, 𝑁# may be set to a lower value than in PR. 

 

4.2.4 Relaxation refinement 

The tightness of the PR relaxation can be improved by increasing the number of partitions 𝑁# 

for every partitioned variable 𝑥#. Since these variables might have different lower and upper 
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bounds »𝑥#4 , 𝑥#7¼, a uniform increment could increase the size of the relaxation prohibitively 

(Nagarajan et al., 2019). Instead, we update 𝑁# dynamically by applying Eqs. (4-2) - (4-3) for 

every partitioned variable 𝑥# inside the cluster 𝐶𝐿: 

𝑟"# = È+:9eX:X9
+:9

È ∀(𝑖, 𝑗) ∈ 𝐵𝐿!, 𝑗 ∈ 𝐶𝐿  (4-2) 

𝜌"# =
*:9e klm

9´∈.2:(:,9´)∈42!
*:9´

kno
9´∈.2:(:,9´)∈42!

*:9´e klm
9´∈.2:(:,9´)∈42!

*:9´
∀(𝑖, 𝑗) ∈ 𝐵𝐿!, ∀𝑗 ∈ 𝐶𝐿  (4-3) 

𝜆# = max
":(",#)∈34!

𝜌"# ∀𝑗 ∈ 𝐶𝐿  (4-4) 

Here, 𝑟"# represents the relative deviation at the solution point of PR between the exact value 

of the bilinear term 𝑥"𝑥# and its relaxation 𝑤"#. This deviation is normalized in the range [0,1] 

as 𝜌"#, then used to compute the normalized score 𝜆#. If this score is greater than a user-defined 

threshold 𝜏, then the number of partitions 𝑁# is incremented by Δ, up to the maximum partition 

size 𝑁7. 

 

4.3 Deterministic global optimisation algorithm 

A flowchart of the clustering algorithm for the global optimisation of the MIQCQP resulting 

from the short-term IRPC planning problem is shown in Figure 4.1. The boxes in red and blue 

indicate parallel processing for the solution of problems PR, PF and BC. These steps are further 

detailed below: 

Step 1: Initialize parameters for controlling the algorithm performance, including total 

maximum runtime 𝑀𝑎𝑥𝑅𝑢𝑛𝑇𝑖𝑚𝑒, relaxation gap tolerance 𝜀, maximum runtime 

𝑀𝑎𝑥𝑅𝑢𝑛𝑇𝑖𝑚𝑒=<36 	and optimality gap 𝜀=<36  for the solution of PR and BC problems, 

maximum number of iterations 𝑀𝑎𝑥𝑁𝑢𝑚𝐼𝑡𝑒𝑟, initial 𝑁F and maximum number of partitions 

𝑁7 for the Piecewise McCormick relaxation, with 𝑁F ≤ 𝑁7. Set upper 𝑈𝐵 = +∞ and lower 
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𝐿𝐵 = −∞ bounds for the value 𝑧∗ of the optimal solution of P. Initialize the number of 

iterations: 𝐼𝑡𝑒𝑟 = 0. 

Step 2: Solve problem P to feasibility or local optimality. If a feasible solution 𝑧∗ is found, 

set 𝐿𝐵 ← 𝑧∗; otherwise, keep changing the initial point and solving P until finding a feasible 

solution. 

Step 3: Solve relaxed problem PR to optimality using the standard McCormick relaxation for 

all bilinear terms (since there are no active clusters at this point). Set 𝑈𝐵 ← 𝑧<. 

Step 4: Update relative relaxation gap 𝜀∗ = (𝑈𝐵 − 𝐿𝐵)/𝑈𝐵 

Step 5: Repeat for each cluster 𝑘 = 1,… , 𝐾 

Step 5.1: Define the active cluster 𝐶𝐿 ← ⋃ 𝐶𝐿[d
[gb  

Step 5.2. Initialize the number of partitions for every partitioned variable 𝑥# belonging to 

the active cluster 𝐶𝐿[ to 𝑁# = 𝑁F. If 𝑙 ≥ 2, keep the number of partitions in sub clusters 

𝐶𝐿b, … 𝐶𝐿[eb	at their final values in previous iterations. 

Step 5.3. Generate a population with up to 𝑃𝐹𝑆 feasible solutions of PR. Select the best 

solution at termination (𝑀𝑎𝑥𝑅𝑢𝑛𝑇𝑖𝑚𝑒=<36  or 𝜀=<36), 𝑧<. If 𝑧< < 𝑈𝐵, update 𝑈𝐵 ← 𝑧<. 

Step 5.4. Each feasible solution obtained in step 5.3 provides initial values for the 

continuous variables and the values 𝑦� for fixing the binary variables in PF. Solve up to 

𝑃𝐹𝑆 instances of PF and select the best feasible solution 𝑧=0. If 𝑧=0 > 𝐿𝐵, update 𝐿𝐵 ←

𝑧=0. 

Step 5.5. If (𝑈𝐵 − 𝐿𝐵)/𝑈𝐵 < 𝜀∗, update 𝜀∗ ← (𝑈𝐵 − 𝐿𝐵)/𝑈𝐵 and go step 5.5.1. 

Step 5.5.1. If stop condition is reached, then report 𝐿𝐵, 𝑈𝐵 and 𝜀∗ and finish. 

Otherwise, perform bound contraction by solving both instances of problem BC for 

each variable present in the bilinear terms of the active cluster 𝐶𝐿. 
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Figure 4.1. Flowchart of the clustering algorithm for global optimisation. 
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Step 5.6. Increment the number of iterations 𝐼𝑡𝑒𝑟 ← 𝐼𝑡𝑒𝑟 + 1. If stop condition is reached, 

report 𝐿𝐵, 𝑈𝐵 and 𝜀∗ and finish. Otherwise go to step 5.6.1. 

Step 5.6.1. If 𝜀∗ has decreased, update dynamically the number of partitions 𝑁# for 

each partitioned variable 𝑥# ∈ 𝐶𝐿 (Eqs. 4-2 - 4-4) and go to step 5.3. Otherwise 

explore the next cluster. 

The algorithm stops if any of these conditions are fulfilled: 𝑇𝑖𝑚𝑒𝐸𝑙𝑎𝑝𝑠𝑒𝑑 > 𝑀𝑎𝑥𝑅𝑢𝑛𝑇𝑖𝑚𝑒, 

𝐼𝑡𝑒𝑟 > 𝑀𝑎𝑥𝑁𝑢𝑚𝐼𝑡𝑒𝑟, 𝜀∗ ≤ 𝜀; or if all the clusters are explored. For small problems like the 

one in Sections 4.4 and 4.5, convergence to the given tolerance might be achieved without the 

need to explore all the clusters. For large-scale problems like the one in section 3.1, the main 

focus of this work, the algorithm may stop after exploring all the clusters, even if the gap is not 

closed to zero and the maximum iteration and run time limits are not reached. 

Steps 5.3, 5.4 and 5.5.1 of the deterministic global optimisation algorithm can be 

implemented using parallel computing. For example, in step 5.3, we took advantage of  the 

solution pool facility of CPLEX (GAMS Software GmbH, 2012) with parameters 

Solnpoolintensity, Solnpoolpop, Solnppolgap and Solnpoolcapacity set to 0, 2, 0.10 and 𝑃𝐹𝑆, 

respectively. In addition, Paralellmode = 0 and Threads enable CPLEX to process in parallel. 

Steps 5.4 and 5.5.1 were also implemented in parallel using the GAMS grid computing facility 

(Bussieck et al., 2009). Thus, the 𝑃𝐹𝑆 instances of PF and BC problems were solved 

simultaneously. 

We consider 14 standard pooling problems for illustration of our cluster-based global 

optimisation algorithm (section 4.4) and also, we compare our methodology against a two-stage 

MILP-NLP approach to solve a large-scale MINLP refinery planning problem (Castillo Castillo 

et al., 2017), see section 4.5. The clustering approach was able to reach a global optimal solution 

in both cases as it is reported in the literature. Moreover, the results of the clustering approach 
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applied to a much more complex problem, which recreates typical planning decisions in the 

Colombian hydrocarbon market are presented in section 4.6. 

 

4.4 Clustering approach applied to benchmark pooling problems 

We now consider standard pooling problem Bental5, reported by Ben-Tal et al., (1994), for 

illustration of our cluster-based global optimisation algorithm. This quadratically constrained 

problem (QCP) was solved to global optimality to yield a maximum of 3500, with known local 

solutions of 900, 1900, 2700 and 2900 (Adhya et al., 1999; Misener et al., 2011). We use the 

generic modelling framework of Neiro and Pinto (2004), detailed in the section 3.2.1, which is 

like the p-formulation of Haverly (1978). The full set of constraints of problem P (including 

the generic process unit models) is given in sections 3.2.1 - 3.2.7. The process topology in 

Figure 4.2 shows the input data, together with some of the main constrains and optimal flows 

obtained using our clustering approach. 

 
Figure 4.2. Process Network for the pooling problem. 

 

We define 𝐾 = 8 clusters, one for each intermediate pool: 𝐶𝐿b = {𝑢6}, 𝐶𝐿c = {𝑢7}, 𝐶𝐿p =

{𝑢8}; and product: 𝐶𝐿q = {𝑢9}, 𝐶𝐿r = {𝑢10}, 𝐶𝐿s = {𝑢11}, 𝐶𝐿t = {𝑢12} and 𝐶𝐿u = {𝑢13}. 
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Thus, the unit inside the cluster identifies the index of the partitioned flowrate variable 𝑄𝐹, in 

problem PR. The balance for property 𝑝1 at unit 𝑢6 involves 5 bilinear terms, with a total of 

80 bilinear terms involved in the estimation of properties 𝑝1 and 𝑝2 through the network (see 

the Appendix B for details). 

In the first iteration (steps 2 – 4 of the algorithm), we obtain a lower bound 𝐿𝐵 = 2700 and 

an upper bound 𝑈𝐵 = 3500, leading to a relative relaxation tolerance 𝜀∗ = 0.30. In iteration 

𝐼𝑡𝑒𝑟 = 2, we explore cluster 𝐶𝐿 = 	𝐶𝐿b = {𝑢6}, partitioning variable 𝑄𝐹,s with 𝑁,s = 2 

partitions (step 5). Since neither 𝐿𝐵 or 𝑈𝐵 change after solving PF and PR, 𝜀∗ is not improved, 

OBBT is not applied and the number of partitions for 𝑄𝐹,s remains the same. We then move 

to the next cluster (𝐶𝐿c = {𝑢7}). In 𝐼𝑡𝑒𝑟 = 3, 𝐶𝐿 = 𝐶𝐿b ∪ 𝐶𝐿c = {𝑢6, 𝑢7}, 𝑄𝐹,t is partitioned 

with 𝑁,t = 2, leading to a 𝐿𝐵 = 2900 when solving PF and to an improved 𝜀∗ = 0.21 (Step 

5.4). Consequently, we perform bound contraction in step 5.5.1 and can reduce the domain of 

variables 𝑄𝐹,s and 𝑄𝐹,t by 50%. In iteration 𝐼𝑡𝑒𝑟 = 4, we continue exploring the current 

cluster, by doubling the number of partitions in step 5.6.1, to 𝑁,s = 𝑁,t = 4 (check illustration 

in Figure 4.3). When solving PF in step 5.4, we can find the global optimal solution, 𝐿𝐵 =

3500. Since 𝜀∗ is now zero, the stopping condition has been reached and so there is no need to 

consider the other clusters. 

Note that that during the search, the clustering approach found two of the previously reported 

local solutions. The algorithm converged after exploring just two clusters because in the optimal 

solution of PR the following conditions held: (i) most of the flowrate variables belonging to the 

other clusters, 𝑄𝐹,v-𝑄𝐹,bp, are at their upper bounds and so there is no error when relaxing the 

bilinear terms where they appear; and (ii) the relaxation errors associated to partitioned 

variables 𝑄𝐹,s and 𝑄𝐹,t, which took values away from the partition boundaries (𝑄𝐹,s=209.1 

and 𝑄𝐹,t=150.9; check Figure 4.3), and to the remaining flowrate variable, 𝑄𝐹,u, do not affect 

the objective function value. In other words, while the solution of PR is not feasible in P, it 



Clustering decomposition strategy 81 

 

 

provides a good initialization for the NLP solver to converge to a feasible solution in P that has 

the same value of the objective function. 

 
Figure 4.3. Variable partition and bound contraction for the benchmark pooling problem. 

 

The model formulation for this problem is described in the next section, following that, a 

step-by-step application of the algorithm is shown. 

 

4.4.1 Model formulation 

The process network is composed by 5 input streams, 3 intermediate pools, 5 outlet streams, 

2 stream properties, 8 splitters, 8 mixers, 13 tanks. The objective function formulated in the 

section 3.2.8 are explicitly stated as in Eqs. (4-5) - (4-7): 

𝑧∗ ≔ max𝑓F(𝑢, 𝑓, 𝑝) = 𝑇𝑜𝑡𝑎𝑙𝑅𝑒𝑣𝑒𝑛𝑢𝑒 − 𝑇𝑜𝑡𝑎𝑙𝐶𝑜𝑠𝑡  (4-5) 

𝑇𝑜𝑡𝑎𝑙𝑅𝑒𝑣𝑒𝑛𝑢𝑒 = 18𝑄𝐹,v + 15𝑄𝐹,bF + 19𝑄𝐹,bb + 16𝑄𝐹,bc +	14𝑄𝐹,bp  (4-6) 

𝑇𝑜𝑡𝑎𝑙𝐶𝑜𝑠𝑡 = 6𝑄𝑆,b,Gb + 16𝑄𝑆,c,Gc + 10𝑄𝑆,p,Gp + 15𝑄𝑆,q,Gq + 12𝑄𝑆,r,Gr  (4-7) 

Subject to: 

𝑄𝐹,s𝑃𝐹,s,)b = 𝑄,b,Gb,,s𝑃𝑆,b,Gb,)b + 𝑄,c,Gc,,s𝑃𝑆,c,Gc,)b +
𝑄,q,Gq,,s𝑃𝑆,q,Gq,)b + 𝑄,r,Gr,,s𝑃𝑆,r,Gr,)b  

(4-8) 
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𝑄𝐹,t𝑃𝐹,t,)b = 𝑄,b,Gb,,t𝑃𝑆,b,Gb,)b + 𝑄,c,Gc,,t𝑃𝑆,c,Gc,)b +
𝑄,q,Gq,,t𝑃𝑆,q,Gq,)b + 𝑄,r,Gr,,t𝑃𝑆,r,Gr,)b  
 
𝑄𝐹,u𝑃𝐹,u,)b = 𝑄,b,Gb,,u𝑃𝑆,b,Gb,)b + 𝑄,c,Gc,,u𝑃𝑆,c,Gc,)b +
𝑄,q,Gq,,u𝑃𝑆,q,Gq,)b + 𝑄,r,Gr,,u𝑃𝑆,r,Gr,)b  
 
𝑄𝐹,v𝑃𝐹,v,)b = 𝑄,p,Gp,,v𝑃𝑆,p,Gp,)b + 𝑄,s,Gs,,v𝑃𝑆,s,Gs,)b +
𝑄,t,Gt,,v𝑃𝑆,t,Gt,)b + 𝑄,u,Gu,,v𝑃𝑆,u,Gu,)b  
 
𝑄𝐹,bF𝑃𝐹,bF,)b = 𝑄,p,Gp,,bF𝑃𝑆,p,Gp,)b + 𝑄,s,Gs,,bF𝑃𝑆,s,Gs,)b +
𝑄,t,Gt,,bF𝑃𝑆,t,Gt,)b + 𝑄,u,Gu,,bF𝑃𝑆,u,Gu,)b  
 
𝑄𝐹,bb𝑃𝐹,bb,)b = 𝑄,p,Gp,,bb𝑃𝑆,p,Gp,)b + 𝑄,s,Gs,,bb𝑃𝑆,s,Gs,)b +
𝑄,t,Gt,,bb𝑃𝑆,t,Gt,)b + 𝑄,u,Gu,,bb𝑃𝑆,u,Gu,)b  
 
𝑄𝐹,bc𝑃𝐹,bc,)b = 𝑄,p,Gp,,bc𝑃𝑆,p,Gp,)b + 𝑄,s,Gs,,bc𝑃𝑆,s,Gs,)b +
𝑄,t,Gt,,bc𝑃𝑆,t,Gt,)b + 𝑄,u,Gu,,bc𝑃𝑆,u,Gu,)b  
 
𝑄𝐹,bp𝑃𝐹,bp,)b = 𝑄,p,Gp,,bp𝑃𝑆,p,Gp,)b + 𝑄,s,Gs,,bp𝑃𝑆,s,Gs,)b +
𝑄,t,Gt,,bp𝑃𝑆,t,Gt,)b + 𝑄,u,Gu,,bp𝑃𝑠,u,Gu,)b  

 
  

𝑄𝐹,s𝑃𝐹,s,)c = 𝑄,b,Gb,,s𝑃𝑆,b,Gb,)c + 𝑄,c,Gc,,s𝑃𝑆,c,Gc,)c +
𝑄,q,Gq,,s𝑃𝑆,q,Gq,)c + 𝑄,r,Gr,,s𝑃𝑆,r,Gr,)c  
 
𝑄𝐹,t𝑃𝐹,t,)c = 𝑄,b,Gb,,t𝑃𝑆,b,Gb,)c + 𝑄,c,Gc,,t𝑃𝑆,c,Gc,)c +
𝑄,q,Gq,,t𝑃𝑆,q,Gq,)c + 𝑄,r,Gr,,t𝑃𝑆,r,Gr,)c  
 
𝑄𝐹,u𝑃𝐹,u,)c = 𝑄,b,Gb,,u𝑃𝑆,b,Gb,)c + 𝑄,c,Gc,,u𝑃𝑆,c,Gc,)c +
𝑄,q,Gq,,u𝑃𝑆,q,Gq,)c + 𝑄,r,Gr,,u𝑃𝑆,r,Gr,)c  
 
𝑄𝐹,v𝑃𝐹,v,)c = 𝑄,p,Gp,,v𝑃𝑆,p,Gp,)c + 𝑄,s,Gs,,v𝑃𝑆,s,Gs,)c +
𝑄,t,Gt,,v𝑃𝑆,t,Gt,)c + 𝑄,u,Gu,,v𝑃𝑆,u,Gu,)c  
 
𝑄𝐹,bF𝑃𝐹,bF,)c = 𝑄,p,Gp,,bF𝑃𝑆,p,Gp,)c + 𝑄,s,Gs,,bF𝑃𝑆,s,Gs,)c +
𝑄,t,Gt,,bF𝑃𝑆,t,Gt,)c + 𝑄,u,Gu,,bF𝑃𝑆,u,Gu,)c  
 
𝑄𝐹,bb𝑃𝐹,bb,)c = 𝑄,p,Gp,,bb𝑃𝑆,p,Gp,)c + 𝑄,s,Gs,,bb𝑃𝑆,s,Gs,)c +
𝑄,t,Gt,,bb𝑃𝑆,t,Gt,)c + 𝑄,u,Gu,,bb𝑃𝑆,u,Gu,)c  
 
𝑄𝐹,bc𝑃𝐹,bc,)c = 𝑄,p,Gp,,bc𝑃𝑆,p,Gp,)c + 𝑄,s,Gs,,bc𝑃𝑆,s,Gs,)c +
𝑄,t,Gt,,bc𝑃𝑆,t,Gt,)c + 𝑄,u,Gu,,bc𝑃𝑆,u,Gu,)c  
 

(4-9) 
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𝑄𝐹,bp𝑃𝐹,bp,)c = 𝑄,p,Gp,,bp𝑃𝑆,p,Gp,)c + 𝑄,s,Gs,,bp𝑃𝑆,s,Gs,)c +
𝑄,t,Gt,,bp𝑃𝑆,t,Gt,)c + 𝑄,u,Gu,,bp𝑃𝑠,u,Gu,)c  
 

  

𝑄𝐹,s = 𝑄,b,Gb,,s + 𝑄,c,Gc,,s + 𝑄,q,Gq,,s + 𝑄,r,Gr,,s  

𝑄𝐹,t = 𝑄,b,Gb,,t + 𝑄,c,Gc,,t + 𝑄,q,Gq,,t + 𝑄,r,Gr,,t  

𝑄𝐹,u = 𝑄,b,Gb,,u + 𝑄,c,Gc,,u + 𝑄,q,Gq,,u + 𝑄,r,Gr,,u  

𝑄𝐹,v = 𝑄,p,Gp,,v + 𝑄,s,Gs,,v + 𝑄,t,Gt,,v + 𝑄,u,Gu,,v  

𝑄𝐹,bF = 𝑄,p,Gp,,bF + 𝑄,s,Gs,,bF + 𝑄,t,Gt,,bF + 𝑄,u,Gu,,bF  

𝑄𝐹,bb = 𝑄,p,Gp,,bb + 𝑄,s,Gs,,bb + 𝑄,t,Gt,,bb + 𝑄,u,Gu,,bb  

𝑄𝐹,bc = 𝑄,p,Gp,,bc + 𝑄,s,Gs,,bc + 𝑄,t,Gt,,bc + 𝑄,u,Gu,,bc  

𝑄𝐹,bp = 𝑄,p,Gp,,bp + 𝑄,s,Gs,,bp + 𝑄,t,Gt,,bp + 𝑄,u,Gu,,bp  

 

(4-10) 

  

𝑄𝑆,b,Gb = 𝑄,b,Gb,,s + 𝑄,b,Gb,,t + 𝑄,b,Gb,,u  

𝑄𝑆,c,Gc = 𝑄,c,Gc,,s + 𝑄,c,Gc,,t + 𝑄,c,Gc,,u  

𝑄𝑆,p,Gp = 𝑄,p,Gp,,v + 𝑄,p,Gp,,bF + 𝑄,p,Gp,,bb + 𝑄,p,Gp,,bc + 𝑄,p,Gp,,bp  

𝑄𝑆,q,Gq = 𝑄,q,Gq,,s + 𝑄,q,Gq,,t + 𝑄,q,Gq,,u  

𝑄𝑆,r,Gr = 𝑄,r,Gr,,s + 𝑄,r,Gr,,t + 𝑄,r,Gr,,u  

𝑄𝑆,s,Gs = 𝑄,s,Gs,,v + 𝑄,s,Gs,,bF + 𝑄,s,Gs,,bb + 𝑄,s,Gs,,bc + 𝑄,s,Gs,,bp   

𝑄𝑆,t,Gt = 𝑄,t,Gt,,v + 𝑄,t,Gt,,bF + 𝑄,t,Gt,,bb + 𝑄,t,Gt,,bc + 𝑄,t,Gt,,bp	  

𝑄𝑆,u,Gu = 𝑄,u,Gu,,v + 𝑄,u,Gu,,bF + 𝑄,u,Gu,,bb + 𝑄,u,Gu,,bc + 𝑄,u,Gu,,bp  

 

(4-11) 

  

𝑄𝐹,s = 𝑄𝑆,s,Gs  

𝑄𝐹,t = 𝑄𝑆,t,Gt  
(4-12) 
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𝑄𝐹,u = 𝑄𝑆,u,Gu  

 

  

𝑃𝐹,s,)b = 𝑃𝑆,s,Gs,)b  

𝑃𝐹,s,)c = 𝑃𝑆,s,Gs,)c  

𝑃𝐹,t,)b = 𝑃𝑆,t,Gt,)b  

𝑃𝐹,t,)c = 𝑃𝑆,t,Gt,)c  

𝑃𝐹,u,)b = 𝑃𝑆,u,Gu,)b  

𝑃𝐹,u,)c = 𝑃𝑆,u,Gu,)c  

 

(4-13) 

  

0 ≤ 𝑄𝐹,s, 𝑄𝐹,t, 𝑄𝐹,u ≤ 600  

0 ≤ 𝑄𝐹,v, 𝑄𝐹,bb, 𝑄𝐹,bc, 𝑄𝐹,bp ≤ 100  

0 ≤ 𝑄𝐹,u ≤ 200  

0 ≤ 𝑄𝑆,b,Gb, 𝑄𝑆,c,Gc, 𝑄𝑆,q,Gq,𝑄𝑆,r,Gr ≤ 1800  

0 ≤ 𝑄𝑆,p,Gp ≤ 600  

0 ≤ 𝑄𝑆,q,Gq ≤ 50  

0 ≤ 𝑄,b,Gb,,s, 𝑄,b,Gb,,t, 𝑄,b,Gb,,u ≤ 600  

0 ≤ 𝑄,c,Gc,,s, 𝑄,c,Gc,,t, 𝑄,c,Gc,,u ≤ 600  

0 ≤ 𝑄,p,Gp,,v, 𝑄,p,Gp,,bb, 𝑄,p,Gp,,bc, 𝑄,p,Gp,,bp ≤ 100  

0 ≤ 𝑄,p,Gp,,bF ≤ 200  

0 ≤ 𝑄,q,Gq,,s, 𝑄,q,Gq,,t, 𝑄,q,Gq,,u ≤ 600  

0 ≤ 𝑄,r,Gr,,s, 𝑄,r,Gr,,t, 𝑄,r,Gr,,u ≤ 600  

0 ≤ 𝑃𝐹,s,)b, 𝑃𝐹,t,)b, 𝑃𝐹,u,)b ≤ 3.0  

(4-14) 
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0 ≤ 𝑃𝐹,s,)c, 𝑃𝐹,t,)c, 𝑃𝐹,u,)c ≤ 3.0  

 
  

0 ≤ 𝑃𝐹,v,)b ≤ 2.5  

0 ≤ 𝑃𝐹,v,)c ≤ 2.0  

0 ≤ 𝑃𝐹,bF,)b ≤ 1.5  

0 ≤ 𝑃𝐹,bF,)c ≤ 2.5  

0 ≤ 𝑃𝐹,bb,)b ≤ 2.0  

0 ≤ 𝑃𝐹,bb,)c ≤ 2.6  

0 ≤ 𝑃𝐹,bc,)b, 𝑃𝐹,bc,)c, 𝑃𝐹,bp,)b, 𝑃𝐹,bp,)c ≤ 2.0  

0 ≤ 𝑃𝑆,s,Gs,)b, 𝑃𝑆,t,Gt,)b, 𝑃𝑆,u,Gu,)b ≤ 3.0  

0 ≤ 𝑃𝑆,s,Gs,)c, 𝑃𝑆,t,Gt,)c, 𝑃𝑆,u,Gu,)c ≤ 3.0  

(4-15) 

The properties 𝑝1 and 𝑝2 are calculated by the group of equations (4-8) - (4-9). Note that the 

bilinear terms arise from these equations. The block of equations (4-10) represents the mass 

balance to estimate the feedstock for the process units	𝑢 = {𝑢6, 𝑢7, … , 𝑢13}. The mass balance 

for the splitters is represented by the set of equations (4-11). Since there is no inventory, 

equations in (4-12) and (4-13) relate the outlet streams from the tanks with their input flowrate. 

Variable bounds given in Eqs. (4-14) are defined analysing the process topology (Adhya et al., 

1999; Misener et al., 2011). Products quality specifications are defined by Eqs. (4-15). Thus, 

problem P is defined as maximize Eq. (4-5) subject to Eqs. (4-6) - (4-15). Model P has 41 

equations, 95 continuous variables and 80 bilinear terms. 
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4.4.2 Definition of set BL 

The set 𝐵𝐿 represents the pair flowrate – property involved in the bilinear products. For each 

equation 𝑚 ∈ 𝑀 calculating a property 𝑝 ∈ 𝑃, we define the following sets: 

𝐵𝐿b = {(𝑢6, 𝑝1), (𝑢1, 𝑓1, 𝑝1), (𝑢2, 𝑓2, 𝑝1), (𝑢4, 𝑓4, 𝑝1), (𝑢4, 𝑓5, 𝑝1)}  

𝐵𝐿c = {(𝑢6, 𝑝2), (𝑢1, 𝑓1, 𝑝2), (𝑢2, 𝑓2, 𝑝2), (𝑢4, 𝑓4, 𝑝2), (𝑢5, 𝑓5, 𝑝2)}  

𝐵𝐿p = {(𝑢7, 𝑝1), (𝑢1, 𝑓1, 𝑝1), (𝑢2, 𝑓2, 𝑝1), (𝑢4, 𝑓4, 𝑝1), (𝑢5, 𝑓5, 𝑝1)}  

𝐵𝐿q = {(𝑢7, 𝑝2), (𝑢1, 𝑓1, 𝑝2), (𝑢2, 𝑓2, 𝑝2), (𝑢4, 𝑓4, 𝑝2), (𝑢5, 𝑓5, 𝑝2)}  

𝐵𝐿r = {(𝑢8, 𝑝1), (𝑢1, 𝑓1, 𝑝1), (𝑢2, 𝑓2, 𝑝1), (𝑢4, 𝑓4, 𝑝1), (𝑢5, 𝑓5, 𝑝1)}  

𝐵𝐿s = {(𝑢8, 𝑝2), (𝑢1, 𝑓1, 𝑝2), (𝑢2, 𝑓2, 𝑝2), (𝑢4, 𝑓4, 𝑝2), (𝑢5, 𝑓5, 𝑝2)}  

𝐵𝐿t = {(𝑢9, 𝑝1), (𝑢3, 𝑓3, 𝑝1), (𝑢6, 𝑓6, 𝑝1), (𝑢7, 𝑓7, 𝑝1), (𝑢8, 𝑓8, 𝑝1)}  

𝐵𝐿u = {(𝑢9, 𝑝2), (𝑢3, 𝑓3, 𝑝2), (𝑢6, 𝑓6, 𝑝2), (𝑢7, 𝑓7, 𝑝2), (𝑢8, 𝑓8, 𝑝2)}  

𝐵𝐿v = {(𝑢10, 𝑝1), (𝑢3, 𝑓3, 𝑝1), (𝑢6, 𝑓6, 𝑝1), (𝑢7, 𝑓7, 𝑝1), (𝑢8, 𝑓8, 𝑝1)}  

𝐵𝐿bF = {(𝑢10, 𝑝2), (𝑢3, 𝑓3, 𝑝2), (𝑢6, 𝑓6, 𝑝2), (𝑢7, 𝑓7, 𝑝2), (𝑢8, 𝑓8, 𝑝2)}  

𝐵𝐿bb = {(𝑢11, 𝑝1), (𝑢3, 𝑓3, 𝑝1), (𝑢6, 𝑓6, 𝑝1), (𝑢7, 𝑓7, 𝑝1), (𝑢8, 𝑓8, 𝑝1)}  

𝐵𝐿bc = {(𝑢11, 𝑝2), (𝑢3, 𝑓3, 𝑝2), (𝑢6, 𝑓6, 𝑝2), (𝑢7, 𝑓7, 𝑝2), (𝑢8, 𝑓8, 𝑝2)}  

𝐵𝐿bp = {(𝑢12, 𝑝1), (𝑢3, 𝑓3, 𝑝1), (𝑢6, 𝑓6, 𝑝1), (𝑢7, 𝑓7, 𝑝1), (𝑢8, 𝑓8, 𝑝1)}  

𝐵𝐿bq = {(𝑢12, 𝑝2), (𝑢3, 𝑓3, 𝑝2), (𝑢6, 𝑓6, 𝑝2), (𝑢7, 𝑓7, 𝑝2), (𝑢8, 𝑓8, 𝑝2)}  

𝐵𝐿br = {(𝑢13, 𝑝1), (𝑢3, 𝑓3, 𝑝1), (𝑢6, 𝑓6, 𝑝1), (𝑢7, 𝑓7, 𝑝1), (𝑢8, 𝑓8, 𝑝1)}  

𝐵𝐿bs = {(𝑢13, 𝑝2), (𝑢3, 𝑓3, 𝑝2), (𝑢6, 𝑓6, 𝑝2), (𝑢7, 𝑓7, 𝑝2), (𝑢8, 𝑓8, 𝑝2)}  

𝐵𝐿 =Ï 𝐵𝐿!
!gbs

!gb
 

4.4.3 Step-by-step algorithm 

Next, we describe step by step the application of the clustering approach for the illustrative 

case study. 

Step 1: 𝜀 = 1 ∗ 10ep,  𝑁F = 2, 𝑁7 = 100. 𝑈𝐵 = +∞,  𝐿𝐵 = −∞, 𝐼𝑡𝑒𝑟 = 0.  
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Step 2: Solve problem P, set 𝐿𝐵 ← 2700. 

Step 3: Solve relaxed problem PR to optimality using the standard McCormick relaxation for 

all bilinear terms, set 𝑈𝐵 ← 3500.  

Step 4: Update 𝜀∗ ← prFFectFF
prFF

= 0.30. Increase number of iterations 𝑡𝑒𝑟 ← 𝐼𝑡𝑒𝑟 + 1 = 1 .   

For 𝑘 = 1, 𝐼𝑡𝑒𝑟 = 2 

Step 5.1. Define the active cluster 𝐶𝐿 ← 𝐶𝐿b = {𝑢6} 

Step 5.2. 𝑁,s = 𝑁F = 2. 

Step 5.3. Solve relaxed problem PR, 𝑧< ← 3500.  

               If 𝑧< < 𝑈𝐵, update 𝑈𝐵 ← 𝑧<. 

Step 5.4. Solve problem PF, 𝑧=0 ← 2700.  

               If 𝑧=0 > 𝐿𝐵, update 𝐿𝐵 ← 𝑧=0. 

Step 5.5. If  prFFectFF
prFF

= 0.30 < 𝜀∗ update 𝜀∗ ← prFFectFF
prFF

 and go to step 5.5.1.  

Step 5.5.1.  If stop condition is reached, finish. Otherwise, solve BC for each variable 

present in the bilinear terms of the active cluster 𝐶𝐿.  

Step 5.6. 𝐼𝑡𝑒𝑟 ← 𝐼𝑡𝑒𝑟 + 1 = 2. If stop condition is reached, finish. Otherwise go to step 

5.6.1.     

Step 5.6.1 If 𝜀∗ improves, update dynamically the number of partitions and go to step 5.3. 

Otherwise explore the next cluster.  

Since neither 𝑈𝐵 and 𝐿𝐵 change in steps 5.3 and 5.4, 𝜀∗ is not improved. Consequently, we 

keep the number of partitions 𝑁,s = 2 and explore the next cluster. Note that the 𝐿𝐵 ← 2700 

corresponds to one of the local optimal reported previously in the literature (Adhya et al., 1999).    

For 𝑘 = 2, 𝐼𝑡𝑒𝑟 = 3 

Step 5.1. Define the active cluster 𝐶𝐿 ← 𝐶𝐿b ∪ 𝐶𝐿c = {𝑢6, 𝑢7} 

Step 5.2. 𝑁,= = 𝑁F = 2. 
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Step 5.3. Solve relaxed problem PR, 𝑧< ← 3500.  

               If 𝑧< < 𝑈𝐵, update 𝑈𝐵 ← 𝑧<. 

Step 5.4. Solve problem PF, 𝑧=0 ← 2900.  

               If 𝑧=0 > 𝐿𝐵, update 𝐿𝐵 ← 2900. 

Step 5.5. 𝜀64 =
prFFecvFF

prFF
= 0.21.  

               If prFFecvFF
prFF

= 0.21 < 𝜀∗ update 𝜀∗ ← 0.21 and go to step 5.5.1.  

Step 5.5.1.  If stop condition is reached, finish. Otherwise, solve BC for each variable 

present in the bilinear terms of the active cluster 𝐶𝐿.  

                    0 ≤ 𝑄𝐹,s ≤ 300; 0 ≤ 𝑄𝐹,t ≤ 300. 

Step 5.6. 𝐼𝑡𝑒𝑟 ← 𝐼𝑡𝑒𝑟 + 1 = 3. If stop condition is reached, finish. Otherwise go to step 

5.6.1.   

Step 5.6.1 If 𝜀∗ improves, update dynamically the number of partitions: 𝑁,s = 𝑁,s + 2 =

4. 𝑁,t = 𝑁,t + 2 = 4 and go to step 5.3. Otherwise explore the next cluster.  

In the step 5.4 the 𝐿𝐵 is improved 	leading to 𝜀∗ = 0.21. As a consequence, the domain for 

variables 𝑄𝐹,s and 𝑄𝐹,s is reduced in step 5.5.1, number of partitions is increased (step 5.6.1) 

and we continue exploring cluster 𝑘 = 2 at step 5.3. Note that the 𝐿𝐵 ← 2900 corresponds to 

one of the local optimal reported by Adhya et. al. (1999).    

For 𝑘 = 2, 𝐼𝑡𝑒𝑟 = 4 

Step 5.3. Solve relaxed problem PR, 𝑧< ← 3500.  

               If 𝑧< < 𝑈𝐵, update 𝑈𝐵 ← 𝑧<. 

Step 5.4. Solve problem PF, 𝑧=0 ← 3500.  

               If 𝑧=0 > 𝐿𝐵, update 𝐿𝐵 ← 3500. 

Step 5.5. If 𝜀64 =
prFFeprFF

prFF
= 0 < 𝜀∗ update 𝜀∗ ← 0 and go to step 5.5.1.  
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Step 5.5.1.  If stop condition is reached, 𝐼𝑡𝑒𝑟 ← 𝐼𝑡𝑒𝑟 + 1 = 4 and finish. Otherwise, solve 

BC for each variable present in the bilinear terms of the active cluster 𝐶𝐿.  

In this cluster we reach the global optimal solution. Steps 5.4 and 5.5 lead to 𝐿𝐵 ← 3500 and 

𝜀∗ ← 0. Since the condition 𝜀∗ ≤ 𝜀 is true in the step 5.5.1, the algorithm finishes at the iteration 

𝐼𝑡𝑒𝑟 = 	4 in the cluster 𝑘 = 2.  

𝑄𝐹,s leaves cluster 𝑘 = 1 with 𝑁,s = 2 partitions. In the next cluster, 𝑁,s = 𝑁,t = 2. Since 

𝜀∗ is reduced in the iteration 3, bound contraction is applied reducing by 50% the domain for 

variables 𝑄𝐹,s and 𝑄𝐹,t. We continue exploring cluster 𝑘 = 2 with 𝑁,s = 𝑁,t = 4, reaching 

the relative optimality gap. Note that model PR starts with 2 binary variables at cluster 𝑘 = 1, 

finishing with 8 binary variables (4 for each partitioned variable) at 𝑘 = 2.  

Assuming a maximum number of partitions 𝑁7 = 100 and partitioning variable 𝑄𝐹, without 

clustering, the size for model PR fluctuates between 361 equations and 175 continuous variables 

in case of formulating the global McCormick envelopes and 921 equations, 2775 continuous 

and 1300 binary variables if the piecewise McCormick are formulated. Table 4.2 shows model 

size for PR applying the clustering approach. Note that maximum size for PR has 191 and 8 

continuous and binary variables respectively. In the Appendix A, we solve problem P using the 

state-of-the-art solver GUROBI (v 10.0.2) and compare its performance with our clustering 

approach, ANTIGONE (v. 1.1) and BARON (v. 20.10.16). 

Table 4.2. Model size for PR in the illustrative case study. 

Iteration 
Variables 

Equations 
Continuous Binary 

1 175 0 361 
2 179 2 368 
3 183 4 375 
4 191 8 375 
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Table 4.3. Computational performance of the clustering approach, ANTIGONE and BARON applied to 
benchmark pooling problems. Part 1. 

Reference (Haverly, 1980, 1979, 1978) (Foulds et al., 1992) 
Problem Haverly1 Haverly2 Haverly3 Foulds2 Foulds3 Foulds4 

Pooling Structure       

Input streams 3 3 3 6 11 5 
Pools 1 1 1 4 8 2 
Output streams 2 2 2 4 16 4 
Properties 1 1 1 1 1 6 
Bilinear terms 2 2 2 8 128 128 

# Local optimal slns 2 3 2 6 4 5 

Local optimal 100; 400 0; 400; 
600 125; 750 

400; 600; 
700; 800; 

1,000; 
1,100 

6.5; 7; 
7.5; 8 

6; 6.5;  
7; 7.5;  

8 

Clustering approach       

Global optimum 400 600 750 1,100 8 8 
Relaxation gap 2.84E-16 0.00E+00 1.52E-16 7.68E-02 8.88E-16 8.88E-16 
Runtime [s] 53.83 65.76 76.77 719.85 12.01 14.17 

ANTIGONE       

Global optimum 400 600 750 1,100 8 8 
Optimality gap 9.99E-10 1.00E-09 1.00E-09 1.00E-09 1.00E-09 1.00E-09 
Runtime [s] 3.68 3.96 4.06 5.62 5.92 27.03 

BARON       

Global optimum 400 600 750 1,100 8 8 
Optimality gap 1.00E-09 9.99E-10 1.00E-09 1.00E-09 9.10E-01 9.99E-10 
Runtime [s] 6.05 5.03 5.34 683.61 3600.00 376.00 

 

We apply the clustering approach to 14 standard pooling problems (Table 4.3 – Table 4.5), 

considering different pooling structures, leading to nonconvex optimisation problems with a 

multimodal objective function, which in some cases have between 2 and 13 local optimal 

solutions (see rows local optimal in Table 4.3 – Table 4.5, with the global optimal solution in 

italic) and up to 128 bilinear terms, which are present in the pooling equations (see rows bilinear 

terms in Table 4.3 – Table 4.5). Overall, the three global optimisation approaches were able to 

reach the global optimal solution (see rows relaxation and optimality gap in Table 4.3 – Table 

4.5, with figures in bold showing the problems whose optimality is close to zero). Note that 

ANTIGONE has the best performance in terms of CPU runtime, but problems Adhya2 and 

Adhya3 were challenging to solve by ANTIGONE and BARON with a maximum runtime of 
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3600 CPU s. Moreover, BARON reach the maximum runtime for problems Foulds5 and 

BenTal5. In contrast, for the same four standard pooling problems, the clustering approach 

reach the global optimal solution at 1483 CPU time on average. 

The results from the standard pooling problems shown that the clustering approach has a similar 

performance in terms of quality solution given by the optimal solution found, optimality and 

relaxation gap and CPU runtime compared to ANTIGONE and BARON. In the next section 

4.5, we address a large-scale refinery planning problem adapted from literature in order to text 

our approach solving a more challenging problem. 

Table 4.4. Computational performance of the clustering approach, ANTIGONE and BARON applied to 
benchmark pooling problems. Part 2. 

Reference (Foulds et al., 1992) (Ben-Tal et al., 1994) (Adhya et al., 
1999) 

Problem Foulds5 BenTal4 BenTal5 Adhya1 

Pooling Structure     

Input streams 11 4 5 5 
Pools 4 1 3 2 

Output streams 16 2 5 4 
Properties 1 1 2 4 

Bilinear terms 64 2 30 20 
# local optimal slns 8 2 11 7 

Local optimal 4.5; 5; 5.5; 6;  
6.5; 7; 7.5; 8 100; 450 

1000; 1600; 1900; 2000; 
2100; 2300; 2500; 2600; 

2700; 2900; 3500 

0; 56.67; 63.93; 
68.74; 340.93; 
509.78; 549.80 

Clustering approach     

Global optimum 8.00 450.00 3,500.00 549.80 
Relaxation gap 7.11E-15 8.84E-16 5.20E-16 1.21E-01 

Runtime [s] 28.37 135.44 16.85 306.86 

ANTIGONE     

Global optimum 8.00 450.00 3,500.00 549.80 
Optimality gap 1.00E-09 1.00E-09 9.99E-10 1.00E-09 

Runtime [s] 7.28 8.10 9.67 167.17 

BARON     

Global optimum 8.00 450.00 3,500.00 549.80 

Optimality gap 9.20E-01 1.00E-09 2.30E-01 1.00E-09 
Runtime [s] 3,600.00 0.18 3,600.00 270.80 
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Table 4.5. Computational performance of the clustering approach, ANTIGONE and BARON applied to 

benchmark pooling problems. Part 3. 

Reference (Adhya et al., 1999) (Audet et al., 2004) 

Problem Adhya2 Adhya3 Adhya4 RT2 

Pooling structure     

Input streams 5 8 8 3 
Pools 2 3 2 2 

Output streams 4 4 5 3 
Properties 6 6 4 4 

Bilinear terms 20 32 40 18 
# local optimal slns 6 13 13 2 

Local optimal 
0; 33.33; 56.67; 

65; 509.78; 
549.80 

0; 33.33; 50.74; 
56.67; 57.74; 65; 
390.87; 412.31; 
440.76; 456.67; 

500; 509.78; 549.8; 
552.85; 559.62; 

561.04 

0; 90; 97.5; 105; 202.5; 
365; 365.83; 373.33; 

470.83; 481.12; 505.61; 
544.80; 610.61; 877.65 

3273.95; 4391.83 

Clustering approach     

Global optimum 549.80 561.04 877.65 4,391.83 

Relaxation gap 7.10E-02 3.41E-01 9.69E-03 1.78E-01 
Runtime [s] 802.67 648.22 737.65 392.10 

ANTIGONE     

Global optimum 549.80 561.04 877.65 4,391.83 

Optimality gap 1.45E-01 4.19E-01 1.00E-09 7.17E-08 
Runtime [s] 3,600.00 3,600.00 48.24 3,600.00 

BARON     

Global optimum 549.80 561.04 877.65 4,391.83 
Optimality gap 4.00E-01 4.00E-01 1.00E-09 9.99E-10 

Runtime [s] 3,600.00 3,600.00 314.45 300.00 

 

 

4.5 Application of the clustering approach to a refinery planning benchmarking 

problem 

We applied the clustering approach to a large-scale refinery planning problem (Figure 4.4), 

which is composed by a crude distillation unit, hydrotreating for naphtha, diesel, gas oil and the 

bottom from the CDU, gas oil hydrocracking, catalytic reformer and fluid catalytic cracking. 

The fuels production is given by the blending of intermediated refinery streams to obtain 
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kerosene, gasoline, diesel and fuel oil. A complete detailed data for the refinery can be found 

on Castillo Castillo et al. (Castillo Castillo et al., 2017).  

For this case study, problem P comprises 3,992 equations, 17,116 nonlinear terms, 3,012 

continuous and 99 discrete variables.  

We define five clusters: CDU (blue colour in Figure 4.4), hydrotreating processes (red colour 

in Figure 4.4), FCC and catalytic reformer (gray colour in Figure 4.4), hydrocracking (green 

colour in Figure 4.4) and fuel blending (dark squares in Figure 4.4). 

 

 
Figure 4.4. Refinery flowsheet, adapted from (Castillo Castillo et al., 2017). 

 

The performance for the clustering approach is shown in the Figure 4.5. Note that between 

clusters I and II the optimality gap is improved significantly, whilst in clusters III and IV the 

optimality gap stagnated, and finally exploring the last cluster, which is the fuel blending, our 

approach reached a near global optimal solution. 
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Figure 4.5. Clustering decomposition performance for refinery benchmarking problem. 

 

We compare the results of the clustering decomposition algorithm to the-state-of-the-art 

global optimisation solvers ANTIGONE and BARON (Table 4.6). Overall, all the solvers were 

able to reach the same lower bound and optimality/relaxation gaps below 1%, with BARON 

reporting the lowest of these figures. Since the three approaches have similar performance in 

terms of quality of the solution, the last criteria to compare is the computational time, where 

BARON spent less CPU time than the clustering decomposition-based algorithm and 

ANTIGONE.  

 

Table 4.6. Performance of the clustering approach on a large-scale refinery benchmarking problem. 

 LB 
[kUSD/day] 

UB 
[kUSD/day] 

Relaxation 
gap* [%] 

Runtime 
[h] 

Clustering approach 3,162.66 3.165.05 0.09 0.17 
ANTIGONE 3,162.66 3,163.30 0.02 0.43 
BARON 3,162.66 3,162.98 0.01 0.16 

*Optimality gap is applied for ANTIGONE and BARON 
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4.6 Computational results for the IRPC problem 

All the models used to address the short-term planning problem of the IRPC were 

implemented in GAMS 25.1.2. To solve the MILP relaxations, we have used CPLEX 12.8 

running in parallel deterministic mode and using up to 8 threads, a relative tolerance of 𝜀=<36 =

0.01% and a maximum time of 𝑀𝑎𝑥𝑅𝑢𝑛𝑇𝑖𝑚𝑒=<36 = 2,000 CPU seconds. The NLP 

subproblems were solved using the local solver CONOPT. In all the scenarios, the stopping 

condition of the clustering algorithm was to explore all the clusters. To compare with the 

proposed clustering approach, the MIQCQP problem has also been solved by commercial 

solvers BARON 18.5.8 and ANTIGONE 1.1, after setting the maximum computational time to 

10 CPU hours, the optimality and relaxation gaps to 𝜀=1%. We also tested DICOPT 2 and 

KNITRO 11.1.1, but these solvers were unable to return a feasible solution for the base scenario 

described in section 3.3.1. All computations were conducted on a 64-bit desktop computer with 

8 Intel i7-6700 (3.4 GHz) processors, 16 GB of RAM, and running Windows 7. 

In order to obtain an initial feasible solution in step 2 of the clustering decomposition 

approach (section 4.3), problem P is solved using a MINLP local optimizer. To initialize the 

binary variables 𝑦, we select typical operating conditions. The continuous variables, 

representing flowrates and stream properties, are set to one of their bounds (𝑥4 , 𝑥7), which are 

obtained from the unit’s design conditions. If no feasible solution is identified, another set of 

operating conditions is provided as initial point. 

 

4.6.1 Base scenario 

The performance of the three global optimisation algorithms for the base scenario (described 

in section 3.3.1) is compared in Figure 4.6, representing the progress of the best-found (LB) 

and best-possible (UB) solutions against computational time. Both ANTIGONE (Plan A) and 

BARON (Plan B) can identify a feasible solution to the problem rather quickly, but no 
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significant improvement is observed in either bounds until the maximum runtime (10 CPU 

hours). In contrast, the Clustering algorithm (Plan C) starts with the same profit as ANTIGONE, 

but with a tighter upper bound corresponding to a relaxation gap of 42%. After processing 

Cluster I, this approach can reduce the relaxation gap to 8%. This is accomplished by applying 

OBBT for reducing the variable ranges and by increasing the number of partitions in 𝐶𝐿^. In 

the process, the profit jumped from 2.63 to 2.92 MMUSD/day. During Clusters II and III the 

gap remains unchanged, then the profit increases to 2.96 MMUSD/day after going through 

Cluster IV. This value is 11 and 10% greater than the solutions found by ANTIGONE and 

BARON, respectively. 

 
Figure 4.6. Performance of global optimisation algorithms in the base case scenario (BCS). 

 

Figure 4.7 illustrates the purchases of domestic (per region) and import (IC) crude oil, as well 

as of refined products from domestic (DRP) and import markets (IRP). The corresponding total 

refining capacity in Plan C is 219 kbbl/day, comprising 211 kbbl/day of domestic crude. In 

contrast, Plans A and B recommend processing 186 and 200 kbbl/day of domestic crude without 

petroleum import. 
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Figure 4.7. Optimized raw material supply in base scenario (Plans A, B and C were generated by ANTIGONE, 
BARON and the new clustering algorithm, respectively). 

 

The main differences in the domestic crude purchase arise in regions R1, R2, R4 and R6. Plan 

C selects crude from R1, unlike Plans A and B. The largest deviation is for region R2, which 

accounts for 15% of the total crude cost. To complete the feedstock of process units and 

contribute to fuel blending, all three plans recommend purchasing the same amount of refined 

products. 

As seen in Figure 4.8, logistics are another key differentiating factor between the optimized 

plans. Since the IRPC operates at a higher capacity in Plan C, greater crude supply needs to be 

delivered by pipelines to the IRPC, particularly by PL6 (10.3 and 7.7 kbbl/day more), PL7 and 

PL8-PL9. In the case of PL7, it corresponds to the 4.3 kbbl/day purchases from region R1 

(check Figure 4.7 and Figure 3.2). The other significant difference involves the bidirectional 

system PL8-PL9. The three plans recommend delivering fuel oil from the plant to the export 

port. However, the gap of 7.8 kbbl/day between Plan C and both Plans A and B, is due to the 

purchases of imported crude oil (IC), which are delivered in the other direction. 
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Figure 4.8. Optimized logistics in base scenario. 

 

In terms of revenue, the three plans recommend producing the same volume of 

petrochemicals, waxes and industrial solvents ( 

Figure 4.9).  

 
 

Figure 4.9. Optimized aggregated production income in base scenario. 
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This is because the process units related with the production of these commodities are set to 

operate at their maximal capacity (see PTQ columns in Figure 4.10). There are also small 

discrepancies in the production of LPG and asphalt, with Plan C producing more gasoline, 

medium distillate and fuel oil than Plan A (production differences of 20.6, 4.7 and 13.9 

kbbl/day) and B (differences of 10.7, 2.6 and 12.5 kbbl/day). Consequently, the total income of 

18.29 MMUSD/day is 11% and 6% higher with Plan C, respectively. 

 
 

Figure 4.10. Optimized operational capacities in base scenario. 

 

The final comparison concerns the operational capacity (Figure 4.10). Our new clustering 

approach recommends processing a total of 219 kbbl/day of crude oil across all six CDUs. In 

addition, 101 kbbl/day of atmospheric bottom residue produced at the CDUs are sent to all six 

VDUs. The processing of the bottom of barrel (BTP), which includes two technologies of 

visbreaking and one of DEMEX, accounts for 49 kbbl/day of reduced crude. The FCC capacity 

is about 80 kbbl/day, which is distributed into four technologies that can process a combined 

feedstock composed of reduced crude, LVGO-HVGO, DMO and DMOH. An alkylation 

capacity of 6 kbbl/day (not shown in the graph) provides a high-octane component to improve 

gasoline quality specifications. The naphtha, diesel and gasoil hydrotreating (HDT) combine to 
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a processing capacity of 28 kbbl/day, while the petrochemical units (PTQ) operate at 20 

kbbl/day. Both Plans A and B present a similar capacity in the HDT and PTQ units. 

 

4.6.2 Scenario without petrochemical processes 

The scenario without refinery-petrochemical integration (WRPS) omits the petrochemical 

processes, by setting the demands for petrochemicals, industrial solvents and waxes to zero, 

and by removing Cluster V from the network topology (48 logic process units).  

The results for Plan C, computed with the clustering algorithm, present total refining capacity 

of 201 kbbl/day, decreasing crude oil supply by 18 kbbl/day compared to the base scenario. The 

FCC throughput is 77 kbbl/day (4 kbbl/day less), leading to a 0.75 kbbl/day decrease in gasoline 

production, while the production of the other fuels remains similar. Another main difference is 

that the olefins are now sent to the fuel gas network and all of the naphtha virgin is routed to 

gasoline blending. Consequently, the profit from fuels production only is 2.00 MMUSD/day, a 

32% decrease from the base scenario. 

Plans A and B, computed with the commercial solvers, recommend refining less than 180 

kbbl/day, which would be the lowest historic capacity for this IRPC. Plan A processes 111 

kbbl/day of crude oil, shuts down three of the six CDUs, and operates the FCC at 46% of its 

design capacity, for a profit of 1.2 MMUSD/day. Plan B reduces the refining capacity to 163 

kbbl/day, shuts down one CDU, and operates the FCC at a throughput of 57 kbbl/day, for a 

profit of 1.5 MMUSD/day.  

These profits are 39% and 24% lower than the one from Plan C. The 10% relaxation gap from 

the clustering algorithm is also much lower. The search started with a feasible solution similar 

to the one obtained by ANTIGONE but worse than that found by BARON. However, at the end 

of 𝐶𝐿^, the profit had already increased to 1.97 MMUSD/day, improving slightly in Cluster III 
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to 2.00 MMUSD/day. The full results of this scenario are shown in Figure D. 1 - Figure D. 5 of 

the Appendix D. 

 

4.6.3 Logistic disruption scenario 

In the scenario of a 50% reduced capacity of pipeline PL3, which is responsible for delivering 

up to 80% of the crude to the IRPC (LDS), the clustering algorithm predicts a profit of 2.66 

MMUSD/day, which here again is 19% and 11% better than the plans computed with 

ANTIGONE and BARON, respectively. Since PL3 is responsible for the transportation of the 

crude oil produced in regions R3 and R6, their supply represents the main deviation in the crude 

basket selection. It is compensated by increasing the crude supply from region R1, through 

pipeline PL7, and by importing the maximum volume that can be delivered by the logistics 

system (PL8-PL9). The plans from the commercial solvers do not purchase crude from region 

R1. ANTIGONE suggests importing half of the crude oil, while BARON also maximizes 

imports. The effect of the disruption on commodities is a reduction in the volume of gasoline 

and medium distillate. The main income difference is due to gasoline production, with 72 

kbbl/day throughput from the FCCs, compared to 49.4 kbbl/day (ANTIGONE) and 60.4 

kbbl/day (BARON).  

The insight from the comparison of the performance profiles for the logistic disruption 

scenario is rather similar. Nevertheless, the relaxation gap remains practically unchanged after 

the first cluster. The clustering approach returns a profit of 2.66 MMUSD/day, which is 19% 

and 11% better than ANTIGONE and BARON. The best possible solution (upper bound) is 

3.05 MMUSD/day, leading to a relaxation gap of 13% after a runtime of 13,250 CPUs. The 

complete results of this scenario can be found in Figure E. 1 - Figure E. 5 of the Appendix E. 
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4.6.4 Gasoline demand reduction scenario 

In the context of a gasoline demand reduced by 25%, the three plans advise against importing 

crude and recommend reducing the crude supply from region R6, affecting the operation of 

pipelines PL3, PL8 and PL9. The total crude oil throughput is 204 kbbl/day in Plan C compared 

with 140 and 178 kbbl/day in Plans A and B, respectively. All plans recommend increasing 

medium distillate production, by reducing the FCC throughput to 72 (Plan C), 50 (Plan A) and 

61 kbbl/day (Plan B). Any LVGO that is not processed by the FCC is sold to the domestic 

market.  

For the scenario of gasoline demand reduction (DRS), the optimal profit after 20,890 CPUs 

is 2.83 MMUSD/day, with a relaxation gap of 8%. This value is 26% and 18% better than for 

ANTIGONE and BARON, respectively. As in previous cases, Cluster I provides the largest 

improvement. Nevertheless, the best-found solution improves slightly after clusters II and IV. 

The full results are presented in Figure F. 1 – Figure F. 5 of the Appendix F. 

 

4.6.5 Summary of the results for the different scenarios 

Overall, the proposed algorithm based on cluster decomposition significantly outperforms the 

commercial solvers ANTIGONE and BARON for the short-term planning of the IRPC. We 

found higher profit values with relaxation gaps between 7% and 13%, which for the scale of 

this problem is a remarkable result. The results are summarized in Table 4.7.  

The cluster decomposition enhances the chance of identifying good-quality solutions. We 

show for the industrial-size case study that exploring the process network from crude oil 

allocation to fuel blending leads to a gradual increase in size, i.e. in the number of units in the 

cluster, number of bilinear terms and number of partitions. The advantage of keeping the size 

small is that whenever the maximum run time limits prevent problems PR and BC to be solved 
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to optimality, better bounds are obtained. If, however, the order is reversed, PR and BC increase 

their size more quickly as the clusters are explored, overall becoming less effective. 

 

Table 4.7. Summary of performance of global optimisation solvers for the different scenarios. 
 

Base case scenario (BCS)  
Clustering ANTIGONE BARON 

Best-found Solution [MMUSD/day] 2.964 2.634 2.687 
Best-possible Solution [MMUSD/day] 3.205 3.898 4.505 

Relaxation gap* [%] 7.5 32 40 
Runtime [h] 5.7 10.0 10.0  

No petrochemical integration scenario (WRPS)  
Clustering ANTIGONE BARON 

Best-found Solution [MMUSD/day] 2.009 1.219 1.574 
Best-possible Solution [MMUSD/day] 2.233 2.926 3.536 

Relaxation gap* [%] 10 58 58 
Runtime [h] 5.8 10.0 10.0  

Logistic disruption scenario (LDS)  
Clustering ANTIGONE BARON 

Best-found Solution [MMUSD/day] 2.664 2.156 2.473 
Best-possible Solution [MMUSD/day] 3.050 3.451 3.981 

Relaxation gap* [%] 13 37 39 
Runtime [h] 3.7 10.0 10.0  

Gasoline demand reduction scenario (DRS)  
Clustering ANTIGONE BARON 

Best-found Solution [MMUSD/day] 2.833 2.186 2.478 
Best-possible Solution [MMUSD/day] 3.090 3.719 4.214 

Relaxation gap* [%] 8 41 41 
Runtime [h] 5.8 10.0 10.0 
*Optimality gap is applied to ANTIGONE and BARON 

 

Figure 4.11 shows the impact for the base scenario, where we can see that moving from fuel 

blending to crude allocation leads to a worse profit, LB (2.928 MMUSD/day), and a higher 

relaxation gap (21%). Systematic procedures are thus needed not only to group the variables 

into clusters, but also decide on the best possible order for the clusters. 

 



104 Clustering decomposition strategy 

 

 

 
 

Figure 4.11. Performance of the clustering decomposition in the base case scenario when reversing the order of 
clusters. 

 

4.6.6 Comparison to algorithm with static piecewise relaxations and no clustering 

For the base scenario, problem P comprises 6,975 equations, 35,104 nonlinear terms, 9,592 

continuous and 280 discrete variables. Table 4.8 illustrates the size of the relaxed model PR 

without clusters as a function of the number of partitions 𝑁, for different choices of partitioned 

flowrate variables. As can be seen, if we decide to partition all the flowrate variables appearing 

in bilinear terms, even for a small partitioning size of 𝑁 = 4, the total number of binary 

variables is in the tens of thousands, which might compromise computational performance. 

In Figure 4.12, we show the performance of an algorithm similar to the one in sections 4.2 

and 4.6.1 but using a constant number of partitions in the piecewise relaxation and no clustering. 

We can see that it takes twice as long to find a high-quality solution early in the search, and we 

end up with a solution with 1.4% worse profit. Notice that the performance is very similar for 

different values of 𝑁, with the relaxation gaps at termination being roughly 22%. This 
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behaviour reflects the large size of the PR relaxation problems (see Table 4.8). Still, these 

values are much lower than the gaps obtained with ANTIGONE and BARON. 

 

Table 4.8. Model size for relaxed problem PR as a function of the number of partitions N. 

Partitioned variables 𝑁 Variables Total 
Equations Total Continuous Binary 

𝑄𝐹, 

2 19415 18760 655 55339 
4 27915 26216 1699 63319 
8 33575 31180 2395 71855 
12 42807 39716 3091 80947 
16 52595 48808 3787 89483 
20 61827 57344 4483 98019 
24 71059 65880 5179 106555 

𝑄𝐹,, 𝑄𝑆,,. 4 111081 98354 12727 186971 
𝑄𝐹,, 𝑄𝑆,,., 𝑄,´,.,, 4 269019 236024 32995 427201 

 

 
Figure 4.12. Comparison of proposed algorithm to one considering no clustering and static piecewise relaxations 
(results for different number of partitions N and base scenario). 
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4.7 Conclusions 

This chapter has presented a deterministic global optimisation algorithm for large-scale 

MIQCQPs. The novel aspect has been to divide the bilinear terms in clusters. A piecewise 

McCormick relaxation is performed for the terms belonging to the active cluster while the 

standard McCormick relaxation is used for the others. Other key features involve optimality-

based bound tightening and dynamic partitioning of the variables whose domain is reduced. 

The advantage is that the size of the MILP relaxation is increased gradually, as a function of 

the number of terms in the cluster, instead of generating one large MILP relaxation for the entire 

MIQCQP, which may lead to low-quality solutions, prohibitively high computational times 

and/or large optimality gaps. 

The clustering-based algorithm was shown capable of solving a QCP benchmark instances of 

the pooling problem to global optimality, addressing the global optimisation for a large-scale 

refinery planning problem from literature and of tackling a short-term planning problem of an 

existing integrated refinery-petrochemical facility. In the latter problem, binary variables select 

the optimal operating mode of conversion processes over a set of alternatives, while the bilinear 

terms appear in the cost function, intermediate pooling and fuel blending equations, and in the 

expressions to predict the yields and stream properties for each process unit, which are based 

on laboratory data, pilot plant and industrial test-runs. The decomposition of the process 

topology into clusters was made according to the functionality of the process units and the 

workflow, from crude selection to fuel blending. 

Besides the topology complexity of the real-life IRPC, logistic considerations for the 

reception and delivery of commodities as well as the high dimensionality of crude basket 

selection and product allocation, make it challenging to find high-quality solutions to the 

planning problem within a reasonable relaxation gap. Results for a few scenarios have shown 

that our clustering algorithm, as well as commercial solvers ANTIGONE and BARON, were 
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able to compute solutions that can be implemented by the plant operators. However, there were 

large differences among the best-found plans with our algorithm outperforming the others, not 

only in terms of profit but also in optimality gap and computational runtime. 

Even though the clustering approach was able to reach solutions for problem P with relaxation 

gaps between 8% and 14%, we explore in Chapter 5 another approach to decompose such 

MIQCQP problem, aiming to enhance the process clustering decomposition. Thus, we propose 

a Lagrangean decomposition-based algorithm which is coupled with our previous algorithm for 

deterministic global optimisation. 
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Chapter 5  LAGRANGEAN 

DECOMPOSITION STRATEGY 

In the previous chapter, a deterministic global optimisation algorithm based on clustering 

decomposition (CL) obtained a better performance than global solvers BARON and 

ANTIGONE. But still, the relaxation gaps for several scenarios were above 10%. 

In this chapter, the same case study of full-scale industrial integrated refinery-petrochemical 

complex (IRPC) with four scenarios is used to apply other methodology for the optimal short-

term planning, based on a spatial Lagrangean decomposition (LD), by dividing the IRPC into 

multiple sections: crude management, refinery, fuel blending, and petrochemical production; in 

three decomposition strategies (the four separate IRPC sections, or three or two larger sections 

resulting first from the aggregation of refinery and fuel blending, and then from merging 

petrochemical production); so that the large-scale, nonconvex mixed-integer quadratically 

constrained quadratic program can be tackled to obtain better solutions and/or optimality gaps 

can be reduced further. This Lagrangean decomposition algorithm is benchmarked against other 

solution strategies. To the best of our knowledge, this work is the first to apply spatial LD to 

such a large-scale model and the novelty lies in formulating the decompositions for a full-scale 

industrial IRPC. This chapter is organized as follows: Section 5.1 focus on the literature 

background. Section 5.2 details the three decomposition strategies following by the description 

of the Lagrangean decomposition algorithm, and the coordination between the subproblems, 
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which involves iterating over the multipliers to generate a solution to the original problem 

(Section 5.3), then the computational results for the different scenarios and decomposition 

strategies are shown in Section 5.4. Finally, Section 5.5 concludes the chapter. 

 

5.1 Lagrangean decomposition in refinery planning 

Neiro and Pinto (2004) proposed a general framework for modelling petroleum supply chains, 

where process units, tanks and pipelines are linked through intermediate streams coming from 

mixers and splitters. This formulation exhibits a block structure, which is amenable to a 

decomposition technique such as Lagrangean decomposition (LD) (Guignard and Siwhan Kim, 

1987). LD replaces the solution of a large optimisation model by a series of smaller 

subproblems and updates the Lagrange multipliers connecting theses subproblems iteratively. 

In multi-plant, multiperiod production planning problems, both spatial and temporal 

decompositions may be developed. The former entails dualizing the mass balances around 

plants and markets, while the latter dualizes the inventory equations that connect variables in 

consecutive time periods. Grossmann and co-workers (Jackson and Grossmann, 2003; 

Terrazas-Moreno et al., 2011) showed that the choice of complicating constraints to dualize can 

have a significant impact on computational performance and observed that temporal LD tends 

to provide tighter bounds. Neiro and Pinto (2006) applied temporal LD to solve a multiperiod 

single-refinery MINLP planning problem under uncertainty. Each realization of the uncertainty 

was given by a set of discrete scenarios comprising the crude oil procurement costs, product 

selling prices and demands. Then, a series of subproblems representing the combination of each 

time period and uncertainty scenario were solved iteratively and the Lagrange multipliers were 

updated using a sub-gradient method (Fisher, 1981). Zhao et al. (2017) presented a LD approach 

to solve a multiperiod MINLP planning problem for a petroleum refinery coupled with an 

ethylene plant, where the refinery sends fuel gas, ethane, propylene, naphtha, atmospheric gas 
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oil and heavy gas oil to the ethylene plant, which provides hydrogen, residual fuel oil, and 

pyrolysis gasoline to the refinery in return. The decomposition strategy consisted of duplicating 

the variables of the material streams connecting the refinery and ethylene plant and dualizing 

the constraints equating both sets of variables. This resulted in a MILP subproblem for the 

refinery and a MINLP subproblem for the ethylene plant, which although simpler than the 

original model remained challenging to solve to global optimality. The Lagrange multipliers 

were updated following the hybrid approach proposed by Mouret et al. (2011), which combines 

sub-gradient (Fisher, 1981), cutting planes (Cheney and Goldstein, 1959; Kelley, 1960) and 

trust-region (Marsten et al., 1975) methods. 

Lagrangean decomposition has also been applied to integrate crude oil scheduling operations 

and refinery planning. Mouret et al. (2011) selected the CDU feedstock as the linking variable 

between the scheduling operations (MINLP subproblem) and refinery planning (NLP 

subproblem). For a given crude oil price, each subproblem could be solved independently to 

global optimality, making the spatial Lagrangean decomposition computationally tractable. 

Recently, Yang et al. (2020) proposed a multi-scale approach for the integration of a 

continuous-time MINLP model for crude oil scheduling and a discrete-time NLP for refinery 

planning, again using the hybrid approaches of Mouret et al. (2011) and Oliveira et al. (2013) 

to solve the dual subproblems. 

 

5.2 IRPC decomposition 

The monolithic model of the IRPC is too complex to be solved to global optimality using 

state-of-the-art solvers for deterministic global optimisation (Uribe-Rodriguez et al., 2020). 

Instead, by applying a Lagrangean decomposition-based algorithm, the IRPC can be divided 

into a few sections or business units that might be solved independently to global optimality. 

How to best decompose an IRPC is scenario-specific and remains an open question in general. 
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Therefore, three different decompositions have been investigated in this work. Details about 

the mathematical formulations for each subproblem are provided in Appendix G; information 

regarding availability, costs, and specifications for raw-materials and linking-streams, as well 

as the specifications and demands for the petrochemical and fuel products are provided in 

Appendix C. 

 

5.2.1 Two sections: CM-RPB 

The simplest decomposition entails a split between crude management (CM) on the one hand, 

and a merged section of refinery (REF), petrochemical (PTQ) and fuel blending (FB) on the 

other hand, denoted as RPB. Solving each of the two subproblems independently creates an 

imbalance between the flowrates, compositions and bulk properties of the crudes leaving the 

crude blend tanks and those reaching the CDU charge tanks (Figure 5.1). In effect, the CM 

subproblem seeks to maximize profit by buying cheap crude oil from the market, minimizing 

the transportation cost to the refinery and selling crude blends at the highest price, regardless 

of the operational performance of the RPB section. Inversely, the RPB subproblem seeks to 

maximize profit by buying enough quantity of good-quality crude blends from CM at a cheap 

price, regardless of the costs incurred on the CM section by procuring and delivering the crudes. 

Denoting by 𝑒 ∈ 𝐸CB ≔ {CB1,… ,CB8} the process streams connecting CM to RPB, the 

linking variables consist of the flowrate 𝑄𝐹(" and properties 𝑃𝐹(,)" , with 𝑖 ∈ {CM,RPB} and index 

𝑝 representing either a bulk property (specific gravity, sulphur content, total acid number) or 

volumetric composition of the crude blend. The revenue of the CM section and cost of the RPB 

section associated to the linking streams can be computed as shown in Eqs. (5-1) - (5-2). 

revenueCM = ∑ 𝜆(
CM,RPB ⋅ 𝑄𝐹(CM(∈ACB + ∑ ∑ 𝜆(,)

CM,RPB ⋅ 𝑃𝐹(,)68)∈=CB(∈ACB   (5-1) 

costRPB = ∑ 𝜆(
CM,RPB ⋅ 𝑄𝐹(RPB(∈ACB +∑ ∑ 𝜆(,)

CM,RPB ⋅ 𝑃𝐹(,)RPB)∈=CB(∈ACB   (5-2) 



112 Lagrangean decomposition strategy 

 

 

where the multipliers 𝜆(
CM,RPB and 𝜆(,)

CM,RPB act as the marginal prices for the availability and 

properties of a crude blend, respectively. 

 
Figure 5.1. Two-level decomposition between CM and RPB sections. 

 

5.2.2 Three sections: CM-RB-PTQ 

The next decomposition level entails three subproblems, crude management (CM), refinery 

(REF) merged with fuel blending (FB), denoted as RB, and petrochemical (PTQ). The 

connecting streams between CM and RB are identical to those of the previous decomposition 

(Section 5.2.1 and Figure 5.1). A second bidirectional market is created between RB, which 

sells materials for petrochemical production, and PTQ, which provides hydrogen to 

hydrotreating processes, raffinate for specialty solvent production, and components to improve 

gasoline quality (Figure 5.2). The intermediate refined streams from RB to PTQ are 𝑒 ∈ 𝐸RP: =

{CHq,VirginNaphtha,Olefins,Ethylene} and from PTQ to RB are 𝑒′ ∈ 𝐸PR: =

{Hc,GasolineComponents,Raffinate}. Since, RB also buys crude blends from CM, the profit 

from RB is maximized when buying cheap precursor materials and selling their products at the 

highest possible price. In the same way, PTQ should buy natural gas, ethylene, olefins, and 

virgin naphtha at the lowest possible cost and it should sell hydrogen, raffinate and gasoline 
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components at the highest possible price. The commodities 𝑄𝐹(RB and 𝑄𝐹(
PTQ are traded at the 

price 𝜆(
RB,PTQ, whereas 𝑄𝐹(´RB and 𝑄𝐹(´

PTQ are negotiated at the price 𝜆(´
PTQ,RB. There are also the 

penalty costs 𝜆(,)
RB,PTQ and 𝜆(´,)´

PTQ,RB associated with the commodity qualities 𝑃𝐹(,)RB, 𝑃𝐹(,)
PTQ, 𝑃𝐹(´,)´RB  

and 𝑃𝐹(´,)´
PTQ for either the refinery properties 𝑝 ∈ 𝑃RP or the petrochemical properties 𝑝′ ∈ 𝑃PR. 

Since the exchange between RB and PTQ is bidirectional and recalling that RB also trades 

crude blends with CM, the revenues and costs can be computed as follows in Eqs. (5-3) - (5-

9): 

revenueCM = ∑ 𝜆(
CM,RB ⋅ 𝑄𝐹(CM(∈ACB + ∑ ∑ 𝜆(,)

CM,RB ⋅ 𝑃𝐹(,)CM)∈=CB(∈ACB   (5-3) 

revenueRB = ∑ 𝜆(
RB,PTQ ⋅ 𝑄𝐹(RB(∈ARP + ∑ ∑ 𝜆(,)

RB,PTQ ⋅ 𝑃𝐹(,)RB)∈=RP(∈ARP   (5-4) 

costPTQ = ∑ 𝜆(
RB,PTQ ⋅ 𝑄𝐹(

PTQ
(∈ARP + ∑ ∑ 𝜆(,)

RB,PTQ ⋅ PF(,)
PTQ

)∈=-,(∈ARP   (5-5) 

costRB = costCM,RB + costPTQ,RB  (5-6) 

costCM,RB = ∑ 𝜆(
CM,RB ⋅ 𝑄𝐹(RB(∈ACB + ∑ ∑ 𝜆(,)

CM,RB ⋅ 𝑃𝐹(,)RB)∈=CB(∈ACB   (5-7) 

costPTQ,RB = ∑ 𝜆(´
PTQ,RB ⋅ 𝑄𝐹(´RB(´∈APR +∑ ∑ 𝜆(,)´

PTQ,RB ⋅ 𝑃𝐹(,)´RB
)´∈APR(´∈APR   (5-8) 

revenuePTQ = ∑ 𝜆(´
PTQ,RB ⋅ 𝑄𝐹(´

PTQ
(T∈APR +∑ ∑ 𝜆(,)´

PTQ,RB ⋅ 𝑃𝐹(,)´
PTQ

)´∈ARP(´∈APR   (5-9) 

 
Figure 5.2. Three-level decomposition between CM, RB and PTQ sections. 
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5.2.3 Four sections: CM-REF-PTQ-FB 

The final decomposition level additionally separates fuel blending (FB) from refining (REF), 

leading to four sections. REF can provide intermediate streams to FB, such as naphtha 

(inaphtha), jet (ijet), diesel (idiesel), and fuel (ifuel) generated from crude and vacuum 

distillation columns, catalytic processes such as hydrotreating and fluid catalytic cracking, 

thermal processes (e.g., visbreaking), and solvent extraction processes such as deasphalting, 

among others. The intermediate refined streams between REF and FB are 𝑒 ∈ 𝐸RB: =

{	inaphtha,	ijet,	idiesel,	ifuel	} with properties 𝑝 ∈ 𝑃RB: =

{	SPG,	viscosity,	sulphur,	RON,	MON,	cetane	}.  

 
Figure 5.3. Four-level decomposition between CM, REF, PTQ and FB sections. 

 

The commodities 𝑄𝐹(REF and 𝑄𝐹(FB are traded at the prices 𝜆(
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from PTQ (Figure 5.3). The commodities 𝑄𝐹(´
PTQ and 𝑄𝐹(´FB are traded at the prices 𝜆(´

PTQ,FB, with 

penalty costs 𝜆(,)´
PTQ,FB associated with the commodity qualities 𝑃𝐹(,)´

PTQ and 𝑃𝐹(,)´FB . 
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The profit out of the PTQ section can be maximized by buying cheap natural gas, ethylene, 

olefins, and virgin naphtha from the refinery, while selling hydrogen, raffinate and gasoline 

components at a high price. The FB section receives gasoline components from PTQ and 

intermediate refined streams from REF. It can also operate as an import terminal, satisfying 

fuel demand regardless of REF and PTQ operations. Optimizing each section separately for 

given prices 𝜆(
"# of the traded commodities between sections 𝑖, 𝑗 ∈ {CM,REF,PTQ,FB}, with 𝑖 ≠

𝑗, creates an imbalance between the flowrates 𝑄𝐹(" and 𝑄𝐹(
# and the properties 𝑃𝐹(,)"  and 𝑃𝐹(,)

#  

as illustrated with the yellow circles in Figure 5.4. 

 
Figure 5.4. Imbalances between the flows and properties from different sections in the four-level decomposition. 
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𝝀𝑒
𝑅𝐸𝐹,𝑃𝑇𝑄

𝑒 ∈ 𝐸𝑅𝑃 = 𝐶𝐻4 , 𝑒𝑡ℎ𝑎𝑛𝑒, 𝑜𝑙𝑒𝑓𝑖𝑛𝑠, 𝑛𝑎𝑝ℎ𝑡ℎ𝑎

𝑄𝐹𝑒
𝑃𝑇𝑄𝑄𝐹𝑒𝑅𝐸𝐹
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intermediate streams received from PTQ (costPTQ,REF). The revenue for CM consists of the 

crude blends sold to REF. 

revenueREF = revenueREF,PTQ + revenueREF,FB  (5-10) 

revenueREF,PTQ = ∑ 𝜆(
REF,PTQ ⋅ 𝑄𝐹(REF(∈ARP + ∑ ∑ 𝜆(,)

REF,PTQ ⋅ 𝑃𝐹(,)REF)∈=RP(∈ARP   (5-11) 

revenueREF,FB = ∑ 𝜆(
REF,FB ⋅ 𝑄𝐹(REF(∈ARB +∑ ∑ 𝜆(,)

REF,FB ⋅ 𝑃𝐹(,)REF)∈=RB(∈ARB   (5-12) 

costREF = costCM,REF + costPTQ,REF  (5-13) 

costCM,REF = ∑ 𝜆(
CM,REF ⋅ 𝑄𝐹(REF(∈ACB +∑ ∑ 𝜆(,)

CM,REF ⋅ 𝑃𝐹(,)REF)∈=CB(∈ACB   (5-14) 

costPTQ,REF = ∑ 𝜆(´
PTQ,REF ⋅ 𝑄𝐹(´REF(´∈APR + ∑ ∑ 𝜆(,)´

PTQ,REF ⋅ 𝑃𝐹(,)´REF
)´∈=PR(´∈APR   (5-15) 

revenueCM = ∑ 𝜆(
CM,REF ⋅ 𝑄𝐹(CM(∈ACB + ∑ ∑ 𝜆(,)

CM,REF ⋅ 𝑃𝐹(,)CM)∈=CB(∈ACB   (5-16) 

 

PTQ exchanges materials with REF and FB. The former entails a bidirectional trading 

between PTQ and REF, while PTQ sells components for the gasoline blending to FB in the 

latter. Thus, the revenue for PTQ results from trading gasoline components with FB 

(revenuePTQ,FB) and from selling other streams to REF (revenuePTQ,REF). On the other hand, 

the cost of PTQ (costPTQ) is incurred by the procurement of intermediate product streams from 

REF. 

revenuePTQ = revenuePTQ,REF + revenuePTQ,FB  (5-17) 

revenuePTQ,REF = ∑ 𝜆(´
PTQ,REF ⋅ 𝑄𝐹(´

PTQ
(´∈APR + ∑ ∑ 𝜆(,)´

PTQ,REF ⋅ 𝑃𝐹(,)´
PTQ

)´∈=PR(´∈APR   (5-18) 

revenuePTQ,FB = ∑ 𝜆(´´
PTQ,FB ⋅ 𝑄𝐹(´´

PTQ
(´´∈APB +∑ ∑ 𝜆(´,)´´

PTQ,FB ⋅ 𝑃𝐹(´,)´´
PTQ

)´´∈=PB(´´∈APB   (5-19) 

costPTQ = ∑ 𝜆(
REF,PTQ ⋅ 𝑄𝐹(

PTQ
(∈ARP + ∑ ∑ 𝜆(,)

REF,PTQ ⋅ 𝑃𝐹(,)
PTQ

)∈=RP(∈ARP   (5-20) 

Finally, FB buys streams for fuel blending from both REF (costREF,FB) and PTQ (costPTQ,FB). 

costFB = costREF,FB + costPTQ,FB  (5-21) 
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costREF,FB = ∑ 𝜆(
REF,FB ⋅ 𝑄𝐹(FB(∈ARB + ∑ ∑ 𝜆(,)

REF,FB ⋅ 𝑃𝐹(,)FB)∈=RB(∈ARB   (5-22) 

costPTQ,FB = ∑ 𝜆(´´
PTQ,FB ⋅ 𝑄𝐹(´´FB(´´∈APB +∑ ∑ 𝜆(´,)´´

PTQ,FB ⋅ 𝑃𝐹(´,)´´FB
)´´∈=PB(´´∈APB   (5-23) 

  

5.3 Methodology 

Problem P is formulated in this chapter, with a change in the notation, letting 𝑖 and 𝑗 to be 

indices referring to the subproblems. Then, short-term MIQCQP planning problem for the IRPC 

is now formulated as follows: 

𝑧∗: = max	𝑓F(𝑥, 𝑦)  
s. t. 𝑓!(𝑥, 𝑦) ≤ 0	∀𝑚 ∈ {1,… ,𝑀}  

𝑥 ∈ [𝑥4 , 𝑥7] ⊆ ℝO
) , 𝑦 ∈ {0,1}|  

(P) 

Where 𝑧* is the maximum profit, 𝑥 is a 𝑝 −dimensional vector of non-negative continuous 

variables constrained between lower 𝑥4 and upper 𝑥7 bounds, and 𝑦 is a	𝑞 −dimensional vector 

of binary variables used to select process operating conditions. 

The functions 𝑓!:	ℝ) × ℝ| → ℝ, with 𝑚 = 0 (objective function), and with 𝑚 = 1,… ,𝑀 

(constraints of P) are quadratic in 𝑥 and linear in 𝑦: 

𝑓!(𝑥, 𝑦) ≔ ∑ 𝑎*.!𝑥*𝑥. + 𝐵!𝑥 + 𝐶!𝑦 + 𝑑!(*,.)∈34!   

Where 𝐵𝐿! is an (𝑟, 𝑠)-index set defining the bilinear terms 𝑥*𝑥. present in function 𝑚, 

parameters 𝑎*.! and 𝑑! are scalars, and 𝐵! and 𝐶! are row vectors. 

 

5.3.1 Lagrangean decomposition and relaxation 

The reformulation P’ of problem P for a set of 𝑆 > 1 subproblems entails duplicating the 

continuous variables describing the connecting streams between sections and assigning them to 

different sets of constraints (Grossmann, 2021; Guignard and Siwhan Kim, 1987). A few of 

these duplicated variables are displayed next to the mass balance checkpoints represented as 

yellow circles in Figure 5.4 (e.g., the flowrates 𝑄𝐹(REF and 𝑄𝐹(FB of every stream 𝑒 linking the 
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refinery and fuel blending section). Formally, problem P’ is made equivalent to P by adding 

the constraint 𝑥B" = 𝑥B
# 	∀𝑖, 𝑗 > 𝑖, 𝑣 ∈ 𝑋"#, where 𝑋"# is the index set of the complicating variables 

(flowrates and properties) of all streams linking subproblems 𝑖 and 𝑗. 

𝑧* ≔ 	max	 ∑ 𝑓F"»𝑥" , 𝑦"¼U
"gb   

s.t.	𝑓!:
" »𝑥" , 𝑦"¼ 	≤ 	0	∀𝑖 ∈ {1, … , 𝑆},𝑚" ∈ {1,… ,𝑀}  
𝑥B" − 𝑥B

# 	= 	0	∀𝑖, 𝑗 ∈ {1, … , 𝑆}, 𝑖 < 𝑗, 𝑣 ∈ 𝑋"# 	 
𝑥 ∈ [𝑥L, 𝑥U] 	⊆ 	ℝ+

)$ , 𝑦 ∈ {0,1}| 	 

(P’) 

Each of the 𝑀 constraints is allocated to a given subproblem, and the objective function is 

summing the objective terms of all the subproblems, with 𝑥" and 𝑦" denoting the vectors of 

continuous and binary variables that participate in subproblem 𝑖, respectively. The problem 

reformulation P’ makes it possible to apply a solution strategy based on Lagrangean 

decomposition. In particular, a Lagrangean relaxation (Guignard, 2003; Guignard and Siwhan 

Kim, 1987) 𝐋𝐑𝛌 of problem P’ can be obtained by transferring into the objective function the 

complicating constraints 𝑥B" = 𝑥B
# multiplied by their Lagrange multipliers 𝜆B

"#, which can either 

take positive or negative values: 

𝑧JLR ∶= 	max	∑ 𝑓F"»𝑥" , 𝑦"¼U
"gb 	+ 	∑ ∑ ∑ 𝜆B

"#»𝑥B" − 𝑥B
#¼B∈9:9

U
#g"Ob

Ueb
"gb   

s.t.	𝑓!:
" »𝑥" , 𝑦"¼ 	≤ 	0	∀𝑖 ∈ {1, … , 𝑆},𝑚" ∈ {1,… ,𝑀}  
𝑥 ∈ [𝑥L, 𝑥U] 	⊆ 	ℝ+

)$ , 𝑦 ∈ {0,1}| 	 

(𝐋𝐑𝛌) 

For fixed values of the multipliers 𝜆B
"#, problem 𝐋𝐑𝛌 can be decomposed into 𝑆 parametric 

optimisation problems, which are solved independently from one another: 

𝑧J
",LD ∶= 	max	𝑓F"»𝑥" , 𝑦"¼ 	+ ∑ ∑ 𝜆B

"#𝑥B"B∈9:9
U
#g"Ob 	− 	∑ ∑ 𝜆B

#"𝑥B"B∈99:
"eb
#gb   

s.t.	𝑓!:
" »𝑥" , 𝑦"¼ ≤ 0	∀𝑚" ∈ {1,… ,𝑀}  
𝑥 ∈ [𝑥L, 𝑥U] 	⊆ 	ℝ+

)$ , 𝑦 ∈ {0,1}| 	 

(𝐋𝐃𝛌𝐢 ) 

Therefore, 𝑧JLD 	≔ 	∑ 𝑧J
",LDU

"gb  provides an upper bound on the optimal value 𝑧* of P. 
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5.3.2 Dual problem 

A standard practice is to solve a Lagrangean dual problem for determining values of the 

multipliers 𝜆B
"# that minimize the upper bound 𝑧JLD from Lagrangean relaxation (Grossmann, 

2021). Grossmann and co-workers (Mouret et al., 2011; Oliveira et al., 2013; Yang et al., 2020) 

developed a hybrid method for updating the Lagrange multipliers by combining a subgradient 

method (Held et al., 1974; Held and Karp, 1971) with a cutting plane approach (Cheney and 

Goldstein, 1959), trust-region method (Marsten et al., 1975) and volume algorithm (Barahona 

and Anbil, 2000). Specifically, at a given iteration 𝐾 > 0, the following LP is solved to update 

the Lagrange multipliers 𝜆B
"#,N that feed into subproblem 𝐋𝐃𝛌𝐢  at the next iteration 𝐾 + 1: 

𝑧NDP ∶= 	min	𝜂  
s.t.	𝜂	 ≥ 	 �̄�d»𝜆B

"#,d¼	∀𝑘 ∈ {1,… , 𝐾}  
Ö𝜆B
"#,N − 𝜆B

"#,NebÖ 	≤ 	ΔB
"# , 𝜆B

"#,N ∈ [𝜆L, 𝜆U]	∀𝑖, 𝑗 ∈ {1, … , 𝑆}, 𝑖 < 𝑗, 𝑣 ∈ 𝑋"# 	 

(𝐃𝐏𝐊) 

where the main decision variables are the Lagrange multipliers 𝜆B
"#,N within the range [𝜆L, 𝜆U]; 

𝜆B
"#,Neb are the values of the Lagrangean multipliers at the previous iteration 𝐾 − 1; and the 

augmented objective function 𝑓d is given by: 

�̄�d»𝜆B
"#,d¼ 	≔ 	∑ ×𝑓F"»𝑥",d , 𝑦",d¼ + ∑ ∑ 𝜆B

"#,d𝑥B
",d

B∈9:9
U
#g"Ob − ∑ ∑ 𝜆B

#",d𝑥B
",d

B∈99:
"eb
#gb ØU

"gb   (5-24) 

with 𝑥",d and 𝑦",d taking the optimal solution of subproblem 𝐋𝐃𝛌𝐢  at iteration 𝑘.  

In practice, the variability of 𝑧JLD between iterations may be reduced by adjusting the trust-

region radius ΔB
"# of the Lagrange multipliers 𝜆B

"#,N around 𝜆B
"#,Neb, before solving 𝐃𝐏𝐊 

(Barahona and Anbil, 2000; Oliveira et al., 2013). The procedure used herein consists of 

determining an average deviation between the optimal values 𝑥B
",N of the complicating variables 

in subproblem 𝐋𝐃𝛌𝐢  at iteration 𝐾 and the best feasible solution 𝑥B
",N* of problem P up to iteration 

𝐾, scaling the step-size 𝛼B
"# between [0,1] (Eq. 5-25), and finally obtaining the trust-region 
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radius ΔB
"# (Eq. 5-26). The larger the deviation of the linking variables, the greater the 

corresponding trust-region radius.  

𝛼B
"# 	≔ 	

h~X'
:,B*eX'

:,B~O~X'
9,B*eX'

9,B~i

∑ h~X'
:$,B*eX'

:$,B~O�X'
9$,B*eX'

9$,B�iD
E:$,9$FGH
:$I9$

  
(5-25) 

ΔB
"# 	≔ 	𝛼B

"# È UBeLB

X'
:,BeX'

9,BÈ  (5-26) 

where UB is the tightest upper bound 𝑧JLD found at iteration K from the Lagrangean relaxation 

of P’; and LB is the tightest lower bound at iteration 𝐾, as explained in the following subsection. 

 

5.3.3 Lower bounding problem 

The original problem P features binary variables and bilinear terms between continuous 

variables in the objective function and constraints. The classical approach to determining a 

lower bound on the optimal solution value of P entails fixing the values of the binary variables 

and solving the resulting NLP subproblem to local optimality with a suitable initialization. Any 

feasible solution of this NLP subproblem provides a lower bound 𝑧PF on P. In practice, one 

may set the binary variables and initialize the continuous variables at the solution point of a 

MILP relaxation of P, constructed for instance from piecewise-linear relaxations of the bilinear 

terms. This procedure has been successfully applied to a variety of scheduling and planning 

problems dealing with petroleum refineries (Castillo et al., 2017; Castro, 2016; Mouret et al., 

2011; Uribe-Rodriguez et al., 2020; Zhang et al., 2022, 2021). Nevertheless, if the bounds of 

the variables involved in the bilinear terms are wide, the MILP relaxation is weak, providing 

poor initial points to the NLP and affecting the performance of such two stage MILP – NLP 

approach. 

To formulate a stronger convex relaxation, the decomposable structure of P into 𝑆 

subproblems can be exploited. It can be assumed that 𝑧J
",LD*is the global optimal solution of each 
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subproblem 𝑖, which can provide valid cuts into the feasible region of the MILP relaxation of 

P. These constraints are function of the Lagrange multipliers and the terms participating in the 

relaxed objective function 𝑓F<(𝑥, 𝑦, 𝜆). Thus, the constraints 𝑧J
i,LD*,k ≥ 𝑓F<(𝑥, 𝑦, 𝜆) can enhance 

the quality of the MILP relaxation by appending a cut determined by each subproblem 𝑖 

(Grossmann and Karuppiah, 2008). It is applied herein by taking advantage of the Lagrangean 

dual problem solution to strengthen the piecewise-linear relaxations. Incidentally, the solution 

value 𝑧R of any such MILP relaxation also provides an upper bound on P. 

 

5.3.4 Lagrangean decomposition-based algorithm 

The main steps of the Lagrangean decomposition algorithm for solving the MIQCQP problem 

P are summarized below: 

Step 1: Specify the tuning parameters, including total maximal runtime (TotalMaxRunTime), 

maximal runtime (MaxRunTime) for solving each subproblem, relative optimality 

tolerance 𝜖 for the Lagrangean decomposition algorithm, relative optimality tolerance 

𝜖rel for each Lagrangean relaxation subproblem, and maximum number of iterations 

𝐾max. Set the lower bound LB = −∞, the upper bound UB = +∞, the initial values 

for the Lagrange multipliers 𝜆B
"#,F = 0, and the iteration counter 𝐾 = 1. 

Step 2: Search for a feasible solution 𝑧* (primal bound) of problem P. If successful, set LB ←

𝑧*. 

Step 3: Solve the 𝑆 subproblems 𝐋𝐃𝛌𝐢  with the current Lagrange multipliers 𝜆B
"#,N to global 

optimality with relative tolerance 𝜖rel and maximal runtime MaxRunTime. Set each 

𝑧J
",LD to the best-possible solution (dual bound) of 𝐋𝐃𝛌𝐢  at termination. If 𝑧JLD 	=

	∑ 𝑧J
",LDU

"gb 	< 	UB, update UB ← 𝑧JLD. 
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Step 4: Append a new cut from the solution 𝑧J
i,LD* of the Lagrangean dual problems 𝐋𝐃𝛌𝐢  to the 

MILP relaxation of problem P and solve it by passing the optimal values for the 

continuous variables 𝑥" and the discrete variables 𝑦" from the 𝑆 subproblems 𝐋𝐃𝛌𝐢  as 

hint (choosing values from one of the subproblems for the duplicated variables). If 

𝑧R 	< 	UB, update UB ← 𝑧R. 

Step 5: Solve problem P to local optimality, by fixing the binary variables and initializing the 

continuous variables at the solution of the MILP relaxation in Step 4. If successful and 

𝑧PF 	> 	LB, update LB ← 𝑧PF. 

Step 6: If (UB − LB) UB⁄ 	≤ 	𝜖, terminate. 

Step 7: Update the trust-region radius ΔB
"# using Eqs. (5-25) - (5-26).  

Step 8: Solve problem 𝐃𝐏𝐊 to determine the next Lagrange multipliers 𝜆B
"#,N. 

Step 9: If TotalMaxRunTime is exceeded or 𝐾 = 𝐾max, terminate. Otherwise, set 𝐾 = 𝐾 + 1 

and return to Step 3. 

The Lagrangean decomposition algorithm was implemented in the modeling environment 

GAMS v33.2, setting a relative optimality tolerance 𝜖 = 0.05 and allowing for a maximal 

runtime TotalMaxRunTime of 36,000 seconds. Step 2 of the algorithm relies on the local solver 

DICOPT (Viswanathan and Grossmann, 1990) to find a feasible solution to problem P. In step 

3, the 𝑆 subproblems are solved with either of the global solvers ANTIGONE v1.1 or BARON 

v20.10.16, or using the process clustering decomposition approach by Uribe-Rodriguez et al. 

(2020), with an optimality gap 𝜖rel = 0.1 and a maximal runtime MaxRunTime of 1,000 

seconds. In step 4, the MILP relaxations are solved using CPLEX v12.8 running in parallel 

deterministic mode, with a relative tolerance of 10-4; the initialization values for the subset of 

complicating variables xi are taken from the last Lagrangean relaxation subproblem 𝐋𝐃𝛌𝐢  solved. 

In step 5, the NLP solver used to determine feasible solutions to problem P is CONOPT 3 v. 
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3.17L with a feasibility tolerance for triangular equations of 2E10-8 and an optimality tolerance 

of 1E10-7. 

All the computations were conducted on a 64-bit desktop virtual azure machine with an Intel 

Xeon platinum 8272 CL CPU @2.60 GHz, 16 cores, 32 logical processors, with 64 GB of 

RAM, running Windows 7. 

 

5.4 Computational results 

The performance of the Lagrangean decomposition algorithm to solve the short-term 

planning problem of an IRPC is assessed on four different scenarios and benchmarked against 

the process clustering decomposition approach (CL) presented in Chapter 4, and the 

commercial deterministic global solvers BARON and ANTIGONE. 

 

5.4.1 Comparison of Lagrangean decomposition with other solution strategies 

For each scenario, Table 5.1 summarizes the performance of the Lagrangean decomposition 

(LD) algorithm (Section 5.3.4), for the two- (CM-RPB), three- (CM-RB-PTQ) and four-

section (CM-REF-PTQ-FB) decompositions that were described in section 5.2. Results for 

BARON, ANTIGONE and the clustering decomposition approach (Uribe-Rodriguez et al., 

2020) using either 2 (CL2: crude management, RPB) or 6 clusters (CL6: crude management, 

crude distillation, vacuum and debutanizer, refining, petrochemical production, fuel blending) 

are also reported. 
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Table 5.1. Results from spatial Lagrangean decomposition algorithm with two sections (CM-RPB), three sections 
(CM-RB-PTQ) and four sections (CM-REF-PTQ-FB), compared with the commercial deterministic global 
solvers BARON and ANTIGONE and with the process clustering decomposition approach by Uribe-Rodriguez et 
al. (2020) with two clusters (CL2) and six clusters (CL6). 

 Base case scenario (BCS) 

 LB  
[kUSD/day] 

UB  
[kUSD/day] 

Relaxation 
Gap* [%] 

Runtime  
[h] 

CM-RPB 2,911 2,982 2.4% 0.19 
CM-RB-PTQ  2,953 3,181 7.2% 10.03 
CM-REF-PTQ-FB  2,711  3,379  18.8%  10.00 
ANTIGONE 2,634 3,898 32.4% 10.00 
BARON 2,684 4,505 40.4% 10.00 
CL2 2,924 3,458 15.4% 1.35 
CL6 2,964 3,205 7.5% 5.70 

 Without refinery-petrochemical integration scenario (WRPS) 

 
LB  

[kUSD/day] 
UB  

[kUSD/day] 
Relaxation 
Gap* [%] 

Runtime  
[h] 

CM-RPB  1,943 2,029 4.2% 9.40 
CM-RB-PTQ  2,006 2,022 0.8% 0.72 
CM-REF-PTQ-FB  1,757 2,615  32.8%  10.00 
ANTIGONE 1,219 2,926 58.3% 10.00 
BARON 1,574 3,536 55.5% 10.00 
CL2 1,970 2,310 14.7% 2.46 
CL6 2,009 2,233 10.0% 5.84 

 Logistic disruption scenario (LDS) 

 
LB  

[kUSD/day] 
UB  

[kUSD/day] 
Relaxation 
Gap* [%] 

Runtime  
[h] 

CM-RPB 2,637 2,668 1.2% 0.42 
CM-RB-PTQ 2,661 2,814 5.4% 10.08 
CM-REF-PTQ-FB  2,457  2,848  13.7%  10.00 
ANTIGONE 2,156 3,451 37.5% 10.00 
BARON 2,473 3,981 37.9% 10.00 
CL2 2,625 3,220 18.5% 0.86 
CL6 2,664 3,050 12.7% 3.68 

 Demand reduction scenario (DRS) 

 
LB  

[kUSD/day] 
UB  

[kUSD/day] 
Relaxation 
Gap* [%] 

Runtime  
[h] 

CM-RPB 2,801 2,998 6.6% 10.12 
CM-RB-PTQ  2,804 2,908 3.6% 5.84 
CM-REF-PTQ-FB  2,464  2,961  16.8%  10.00 
ANTIGONE 2,186 3,719 41.2% 10.00 
BARON 2,478 4,214 41.2% 10.00 
CL2 2,820 3,133 10.0% 2.54 
CL6 2,833 3,090 8.3% 5.80 

*Optimality gap is applied to ANTIGONE and BARON 
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The main benefits afforded by Lagrangean decomposition come from considerably tighter 

dual bounds (UB) compared to the other algorithms, irrespective of the scenario considered. 

This translates into much smaller relaxation gaps at termination: relaxation gaps between 0.8–

7.2% with either two or three sections, compared to relaxation gaps between 10–18.5% with 

CL2 and 7.5–12.7% with CL6. In particular, the ability to guarantee a feasible solution around 

1% of the global optimum for the WRPS and LDS scenarios is a remarkable result for such 

large-scale problems. The two- and three-section decompositions are also found to outperform 

the one using four sections, for reasons that will be discussed later on. 

By contrast, none of the LD schemes can improve on the best feasible solutions (LB) found 

by the six-cluster decomposition (CL6). The best-found solutions from LD with two sections 

(CM-RPB) are comparable to those computed by the cluster decomposition with two clusters 

(CL2, maximal difference around 1% across all scenarios). Similarly, the best-found solutions 

from LD with 3 sections (CM-RB-PTQ) are comparable to those from CL6 (maximal 

difference around 1% across). This comparison also reveals that the MILP relaxation from the 

cluster decomposition algorithm can provide better starting points to the local NLP solver than 

its LD counterpart (step 4), thus suggesting that the spatial Lagrangean decomposition would 

benefit from a more effective search for high quality feasible solutions. 

The performance of local solvers such as SBB and DICOPT for solving problem P is 

discussed in the Appendix G, Table G. 1. Overall, these solvers are unreliable to solve such 

large-scale MIQCQP problem, since they might require a good initial point to converge. 

Usually, is not straightforward to reach a feasible solution, and a heuristic procedure might be 

required to initialize the operating conditions (binary variables 𝑦) and flowrates and stream 

properties (continuous variables 𝑥).  
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5.4.2 Analysis of Lagrangean decomposition strategies 

The trade-off in decomposing the large-scale MIQCQP into 𝑆 subproblems (𝐋𝐃𝛌𝐢 ) is that as 

the subproblems (either QCQP or MIQCQP) become smaller in size, they can usually be solved 

to global optimality more efficiently, but this comes at the cost of more iterations in the LD 

algorithms since a greater number of Lagrange multipliers need to be updated simultaneously. 

Here, the two-section decomposition (Figure 5.1) involves a total of 57 Lagrange multipliers (8 

flowrates, 24 bulk properties, and 25 compositions); the disaggregation of the petrochemical 

plant from the refinery and fuel blending in the three-section decomposition (Figure 5.2) adds 

20 Lagrange multipliers (6 flowrates and 14 properties), bringing the total to 77; and the 

disaggregation of the fuel blending from the refinery in the four-section decomposition (Figure 

5.3) adds another 239 Lagrange multipliers (88 flowrates and 151 properties), leading to a grand 

total of 316. The range of the Lagrange multipliers are shown in Table 5.2. Recall that the 

Lagrange multipliers can either take positive or negative values, since the complicating 

constraints are equality equations.   

Table 5.2. Lagrange multipliers range. 

Description Range 
[min,max] 

Subproblems applied 

CM-RPB CM-RB- 
PTQ 

CM-REF-PTQ-
FB 

Crude blend [-60,60] USD/bbl x x x 

H2, ethylene, 
olefins 

[-1000,1000] 
USD/t  x x 

CH4 [-5000,5000] 
USD/MMSCFD  x x 

Raffinate, Virgin 
Naphtha 

[-100,100] 
USD/bbl  x x 

Intermediated 
Refinery streams 

[-100,100] 
USD/bbl   x 

Streams 
properties 

[-0.1,0.1] 
USD/property x x x 
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The ability to solve the corresponding Lagrangean relaxation subproblems to global 

optimality within the 1,000 seconds time-limit on the current platform is summarized in Table 

5.3. The QCQP subproblem for the CM section can be globally optimized using BARON or 

ANTIGONE, and so can the QCQP subproblem for the FB section and the MIQCQP 

subproblem for PTQ. By contrast, the large-scale MIQCQP subproblem for REF alone in the 

four-section decomposition remains intractable within the set time-limit, and those for the 

aggregated RPB and RB in the two- and three-section decompositions are intractable as well. 

In order to increase the likelihood of finding a global optimum for the challenging MIQCQPs, 

a cluster-decomposition approach was applied as part of the LD algorithm, using five clusters 

(crude distillation, vacuum and debutanizer, refining, petrochemical production, fuel blending) 

in the two-section case, four clusters (crude distillation, vacuum and debutanizer, refining, fuel 

blending) in the three-section case, and three clusters (crude distillation, vacuum and 

debutanizer, refinery) in the four-section case; see Uribe-Rodriguez et al., 2020 for further 

details about these clusters. 

Table 5.3. Subproblems for the spatial Lagrangean decomposition. 

S Subproblems Model 
type 

Solved to global 
optimality? * 

# Clusters in 
CL approach 

2 
CM QCQP Yes – 

RPB MIQCQP No 5 

3 
CM QCQP Yes – 

RB MIQCQP No 4 

PTQ MIQCQP Yes – 

4 

CM QCQP Yes – 

REF MIQCQP No 3 

FB QCQP Yes – 

PTQ MIQCQP Yes – 

*By ANTIGONE and BARON    

 

The performance of a Lagrangean decomposition with four sections (CM-REF-PTQ-FB) is 

illustrated on Figure 5.5 (left plot) for the base-case scenario (BCS). While the best-found 
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solution (LB) is about constant throughout the iterations, the dual bound (LD) from the 

Lagrangean decomposition and relaxation presents spurious variations. This is due to large 

variations in some of the Lagrange multiplier values, some even taking negative values (cf. 

right plot of Figure 5.5), despite adapting the trust-region radius prior to solving the dual 

problem (𝐃𝐏𝐊), see the Lagrange multipliers in Table 5.2.  

 

  
Figure 5.5. Performance of the Lagrangean decomposition with four sections (CM-REF-FB-PTQ) in the base-
case scenario (BCS) up to a maximal runtime of 36,000 seconds (left) and corresponding evolution of the Lagrange 
multipliers for the crude blend flowrates (right). 

 

  
Figure 5.6. Performance of the Lagrangean decomposition with two sections (CM-RPB) in the base-case scenario 
(BCS) up to a maximal runtime of 36,000 seconds (left) and corresponding evolution of the Lagrange multipliers 
for the crude blend flowrates (right). 

 

Overall, the presence of over 300 linking variables between all four sections requires many 

iterations for the dual bound to progress, which overwhelms the benefit of having smaller, more 
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tractable subproblems in the Lagrangean relaxation. Still, as discussed in section 4.6.5, the final 

dual bound (UB) is still considerably tighter than that from commercial solvers for all four 

scenarios (recall Table 5.1). From a practical viewpoint, these variations highlight the 

challenges of finding an optimal coordination among the four sections: FB seeks to meet the 

fuel demands with cheaper high-quality materials traded with REF, while buying as little as 

possible from PTQ; CM seeks to sell expensive or low-quality crude blends to REF; PTQ 

seeks to buy cheap natural gas, virgin naphtha, olefins and ethylene from REF; while REF acts 

as an adversary that seeks to maximize its revenue from selling intermediates to FB and PTQ 

and procuring crude blends from CM. Competing against CM, FB and PTQ makes it difficult 

for REF to raise its profit, thereby operating at the lowest level of charge (100 kbbl/day) . 

The coordination of either two (CM-RPB) and three (CM-RB-PTQ) sections in the 

Lagrangean decomposition also results in large variations of the dual bound (LD) and the 

Lagrange multipliers associated with the linking variables. However, in all the scenarios (BCS 

& LDS with 2 sections, WPRS & DRS with 3 sections, cf. Table 5.1) the Lagrangean 

decomposition terminates upon reaching the 5% relaxation tolerance after a few dozen 

iterations. This success is attributed to the much smaller number of multipliers compared to the 

four-section decomposition.   

For illustration, the performance of a Lagrangean decomposition with two sections is 

presented on Figure 5.6 (left plot) for the base-case scenario. Recall that the Lagrange 

multipliers may be interpreted as transfer prices between the crude management (CM) and the 

integrated refinery-petrochemical complex (RPB). Important findings while searching for an 

optimal compromise are the following: 

• At iteration 1 with all the multipliers set to zero, CM and RPB are essentially 

uncoordinated, and their mismatch does not incur any penalty on the other section. 

CM chooses to only provide 100 kbbl/day (the minimal flow) of the crude blend CB7 
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(top-left plot of Figure 5.7), which is comprised of 72% of domestic crude DC9, 16% 

of DC16, and 12% of DC17. It uses all available DC16 and DC17, which are the 

cheapest domestic crudes, neglecting importing crudes as they are more expensive 

(cf. Table 3.1), to achieve a minimal loss of 3.46 MMUSD/day. As a result, the crude 

oils are heavy, sour and acid, leading to a poor-quality crude blend (20 API, 1.13 %wt. 

sulphur content, 2.7 TAN) that fails to comply with CDU specifications. By contrast, 

RPB chooses to process all possible crude blends in the basket, for a total refinery 

capacity of 203 kbbl/day (top-right plot of Figure 5.7) and achieves a maximal profit 

of 11.43 MMUSD/day. CB6 - CB7 comprise a large amount of high-quality domestic 

and imported crudes, which are compliant with the CDUs maximum limits of 1.2 

%wt. and 2.0 TAN. This strategy is expected insofar as there is no premium for 

processing these higher-quality crude blends. Accordingly, the initial dual bound 

(UB) at iteration 1 is highly conservative. 

• The Lagrange multiplier values are very volatile during the first few iterations, where 

a fast reduction in the dual bound (UB) is observed. Following this initial phase, the 

multipliers of the crude blends CB1-CB7 stabilize between 30–60 USD/bbl, the lowest 

value corresponding to the medium crude CB7 and the highest value to the light crude 

CB2. The Lagrange multiplier for CB8 is by far the most volatile, remaining negative 

between iterations 11–26, mainly due to the low fraction of this blend in the crude 

basket.  

• At the final iteration 36, CM procures 202 kbbl/day of a basket of medium crude 

blends (26 API, 0.89 %wt. sulphur and 1.87 TAN) that already meet the quality 

specifications of the CDUs (cf. bottom-left plot of Figure 5.7). Meanwhile RPB has 

a significantly lower throughput of 127 kbbl/day compared to iteration 1, consisting 

of a medium crude blend with 29 API, 0.81 %wt sulphur and 0.67 TAN, which is  of 
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better quality than the crude blend provided by CM (cf. bottom-right plot of Figure 

5.7). With all the Lagrange multipliers – that is, trading prices – now being positive 

(cf. top section of Table 5.4), CM makes a profit of 0.73 MMUSD/day, while the 

profit of RPB decreases to 2.25 MMUSD/day (cf. middle & bottom sections of Table 

5.4) , which is within 0.6% of the best strategy found for BCS (cf. Table 5.1).  

 

Table 5.4. Update of Lagrange multipliers, profit and throughput for CM and RPB at iterations 1 and 36. 

 Lagrange Multiplier 

 Iteration  
Crude Blend 1 36 
CB1 – 47.11 
CB2 – 55.56 
CB3 – 53.50 
CB4 – 50.86 
CB5 – 41.45 
CB6 – 39.70 
CB7 – 38.41 
CB8 – 30.12 

 Profit (MMUSD/day) 

 Iteration  
Problem 1 36 
CM -3.456 0.732 
RPB 11.425 2.249 

 Throughput (kbbl/day) 

 Iteration  
Problem 1 36 
CM 100 202 
RPB 203 127 

 

Overall, these results establish that Lagrangean decomposition is effective at tightly 

bracketing the global solution value of large-scale IRPC planning problems. They also suggest 

a large potential for reducing the number of iterations through improving the Lagrange 

multiplier update in the dual problem. 
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Figure 5.7. Crude blend flowrates provided by CM (left) and processes by RPB (right) at iterations 1 (top) and 36 
(bottom) of the Lagrangean decomposition algorithm in the base-case scenario (BCS). 

 

5.5 Conclusions 

Through this chapter, a spatial Lagrangean decomposition approach has been investigated to 

globally optimize large-scale MIQCQP problems arising in short-term planning of integrated 

refinery-petrochemical complexes. Such problems have not yet been addressed in their full 

complexity in the literature, remaining intractable to generic global optimisation solvers. 

To obtain more manageable QCQP and MIQCQP subproblems, different Lagrangean 

decomposition strategies have been formulated, which subdivide the IRPC into two, three or 

four sections. Such Lagrangean decompositions are akin to creating a virtual market for trading 

the crude blends and other intermediate refined-petrochemical streams between the different 

sections. The marginal prices associated with the flows and properties of these connecting 
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streams correspond to the Lagrange multipliers in the decomposition, thus enabling a clear 

interpretation of the results. 

A comparison on an IRPC arising from the Colombian petroleum industry for four real-life 

scenarios has shown that Lagrangean decomposition could reach relaxation gaps between 0.8–

7.2% with either two or three sections, even guaranteeing a near optimal solution (around 1% 

optimality) in two scenarios. This level of performance is unprecedented and a significant 

improvement over cluster-decomposition algorithms that rely on piecewise-linear relaxations. 

A trade-off could also be identified between the number of sections and the number of iterations 

required by the Lagrangean decomposition algorithm, which causes the four-section 

decomposition to be outperformed by its two- and three-section counterparts. 
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Chapter 6 CONCLUSIONS AND 

RECOMMENDATIONS 

6.1 Key conclusions and contributions made 

This thesis tackles the problem of short-term planning of an industrial-scale IRPC. This case 

study is more challenging and realistic than previous studies for the following reasons: 

• A large variety of crude oils are considered, characterized by different volumes, qualities, 

and costs. 

• The supply chain for crude oil and refined products is managed considering pipeline and 

river fleet transportation depending on the geographic region where the crude oil is 

produced, the import ports and final customer localization. These crudes can be blended 

to meet CDUs volume and quality specifications.    

• Demands are defined on a large variety of fuel and petrochemical products, including five 

different grades of gasoline. 

• The process network presents a high connectivity between units and intermediate streams. 

For instance, virgin naphtha can either be routed to gasoline blending, be a petrochemical 

feedstock, or be sold as an intermediate refined product. 

• Process units can operate in exclusive or non-exclusive campaigns. Specifically, the FCC 

units are constrained to a single operating mode during the whole planning horizon (to be 

decided by the optimisation), while the CDUs can alternate between the maximization of 
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medium distillates, paraffins or lubes, which represent different campaigns. These are 

handled as discrete decisions in the optimisation model. 

All these features led to a large-scale mixed-integer quadratically constrained quadratic 

program (MIQCQP) model with many nonconvex terms, while the entire process network is 

represented by input-output relationships based on bilinear expressions describing yields and 

stream properties, pooling equations, fuel blending indices and cost indicators. 

Whilst global optimizers of large-scale MIQCQP problems may require prohibitive 

computational time to obtain a feasible solution, local search may lead to poor solutions. For 

instance, for the four short-term planning scenarios, ANTIGONE and BARON reached 

optimality gaps of 42.25% and 43.25% on average respectively, at a maximum runtime of 10 

hours (Table 3.6). Moreover, both ANTIGONE and BARON were unable to improve their best 

solution found at the first iteration of the algorithm, remaining unchanged until the maximum 

CPU time is reached.   On the other hand, heuristic decomposition techniques based on the 

understanding of the physical system may provide good quality solutions within a reasonable 

computational expense. 

Two novel decomposition-based algorithms for deterministic global optimisation were 

developed in this thesis:  

The first one divides the network into small clusters according to their functionality. Inside 

each cluster, we derive a mixed-integer linear programming relaxation based on piecewise 

McCormick envelopes, dynamically partitioning the variables that belong to the cluster and 

reducing their domains through optimality-based bound tightening. We applied this approach 

to the same four planning scenarios, highlighting that the clustering approach found higher 

profit values with relaxation gaps between 7% and 13%, which for the scale of this problem is 

a remarkable result and a significant improvement over the global solvers ANTIGONE and 

BARON. (See Table 4.7).  
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Aiming to improve the performance of the clustering decomposition, we propose the second 

global optimisation approach, which is a spatial Lagrangean decomposition-based algorithm 

which divides the problem into a collection of two, three or four subproblems, organizing 

differently the four physical section of the complex: crude management, refining, petrochemical 

operations, and fuel blending. Even though this disaggregation, the refinery subproblem is still 

challenging to solve using ANTIGONE and BARON. Thus, we adapted the clustering approach 

to solve the refinery subproblem, whilst the other subproblems can be solved to global 

optimality either by ANTIGONE or BARON. Thus, by applying the Lagrangean decomposition 

with a modified version of the clustering approach we were able to reach relaxation gaps 

between 0.8–7.2% with either two or three sections, even guaranteeing a near optimal solution 

(around 1% optimality) in two scenarios. This level of performance is unprecedented and a 

significant improvement over cluster-decomposition algorithms that rely on piecewise-linear 

relaxations. 

We observed that the performance of the spatial Lagrangrean decomposition proposed in this 

work to address the short-term planning problem for the IRPC relies on the coordination of the 

Lagrange multipliers, which depending on the decomposition strategy can vary from 57 to 316, 

comprising flowrates and process streams quality and composition. The more Lagrange 

multipliers to determine in the solution of the dual problem (𝐃𝐏𝐊), the more challenging is the 

coordination between the subproblems. We propose to reduce the variability on the upper bound 

𝑧JLD between iterations by adjusting the trust-region radius ΔB
"# of the Lagrange multipliers 𝜆B

"#,N 

around 𝜆B
"#,Neb, before solving 𝐃𝐏𝐊. Thus, the larger the deviation of the linking variables, the 

greater the corresponding trust-region radius. Other challenge arising from the Lagrangean 

decomposition approach is the solution of each subproblem (business unit) to global optimality. 

For instance, the crude management (CM), petrochemical operations (PTQ) and fuel blending 

(FB) can be solved to global optimality by ANTIGONE and BARON. But the refinery (RFB) 
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is still a challenging problem to address by these commercial solvers, leading to poor solutions 

at expenses of a prohibitive computational expenses. This finding is crucial, because if each 

subproblem cannot be solved to global optimality, it might compromise the performance of the 

Lagrangean decomposition. 

We also observed that a subproblem derived from the Lagrangean decomposition can be 

composed by at least one aggregation of process clusters. For example, there is a one business 

unit-to-one cluster relationship for the CM, PTQ and FB subproblems, whilst subproblem RFB 

is composed by six clusters. Since ANTIGONE and BARON are not able to solve RFB, we 

apply the clustering approach to solve the refinery subproblem, leveraging the solution of the 

other subproblems to ANTIGONE or BARON. Thus, the performance of the spatial 

Lagrangean decomposition is enhanced using the clustering approach to address the most 

challenging subproblem (RFB).                 

A comparison on the same four real-life scenarios previously addressed by the clustering 

approach has shown that Lagrangean decomposition could reach relaxation gaps between 0.8–

7.2% with either two or three sections, even guaranteeing a near optimal solution (around 1% 

gap) in two scenarios. This level of performance is unprecedented and highlights that the 

clustering approach can be integrated into other decomposition-based methodologies (e.g., 

Lagrangean decomposition). However, a trade-off could also be identified between the number 

of sections and the number of iterations required by the Lagrangean decomposition algorithm, 

which causes the four-section decomposition to be outperformed by its two- and three-section 

counterparts. 
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6.2 Further research 

 

6.2.1 Process clustering 

Future work could focus on testing alternative relaxations, such as the normalized 

multiparametric relaxation technique, and on evaluating the performance in other MIQCQPs 

problems, such as water management, generalized pooling and multiperiod blending. Other 

research topic would be enabling parallel computing mechanisms to run several instances of 

MILP and QCQP models. These features could improve the computational performance of the 

proposed framework and, it will enhance the optimality-based bound contraction methods.  

In terms of the algorithm implementation, it could be worth exploring other mathematical 

programming languages such as Pyomo (Hart et al., 2017) and JuMP (Dunning et al., 2017) 

instead of GAMS. One advantage of these open-source platforms based on python and Julia 

respectively, is the possibility of integration with state-of-art research which could be beneficial 

for the performance of the clustering approach. Since problem P has about 35,000 bilinear 

terms, approaches such as SUSPECT (Ceccon et al., 2020) could improve the performance of 

the clustering decomposition approach by working as a pre-processing stage to the algorithm. 

According to the authors, OBBT, bounds propagation, monotonicity and convexity detection 

can also be applied to enhance the performance of commercial solvers for global optimisation. 

Note that in this work we already have identified all the non-convex terms. 

Other possible research direction might be the integration of the clustering approach within a 

branch and cut global optimisation solvers such as GALINI (Ceccon et al., 2021; Ceccon and 

Misener, 2022), which is building up on the basis of Pyomo’s MINLP formulations. Moreover, 

other building blocks for the development of global optimisation solvers based on branch and 

bound such as SUSPECT and CORAMIN (“Coramin: A collection of tools (classes, functions, 

etc.) for developing MINLP algorithms,” n.d.) are already implemented in Pyomo. Thus, 
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GALINI could be extended to solve problem P in combination to the clustering approach. 

Following this idea, EAGO (Easy Advanced Global Optimization) which is a branch and bound 

open-source global optimisation package developed in JuMP (Wilhelm and Stuber, 2022) could 

also be extended to solve problem P. 

The Adaptive, multivariate partitioning (AMP) algorithm (Kannan et al., 2022; Nagarajan et 

al., 2019) implemented in JuMP has in common with the clustering approach that both are based 

on a two stage MILP – NLP strategy to solve the original MINLP problem, but they perform 

OBBT and manage the number of partitions for the piecewise McCormick relaxations in a 

different way. The authors argued that using an adaptive and non-uniform bi-variated 

partitioning scheme, the size of the MILP relaxation can be scaled-up to tackle large-scale 

MINLP problems. If so, this AMP feature might improve the performance of the clustering 

approach. 

 

6.2.2 Advances on normalized multiparametric disaggregation technique  

We formulate model PR’ considering the normalized multiparametric disaggregation 

technique (NMDT) (Castillo Castillo et al., 2017, 2018; Castillo et al., 2017; Castro, 2016) 

instead the piecewise McCormick to relax the bilinear terms present in problem P. Thus, for 

the bilinear expressions belonging to the cluster 𝑐𝑙 ∈ 𝐶𝐿 we formulate a NMDT relaxation, 

otherwise, we apply the standard McCormick envelope. Consequently, we solve PR’ instead 

PR in the steps 3 and 5.3 of the clustering decomposition algorithm (see Section 4.3). In the 

following formulation, the precision level 𝑝 = {−2,−1}  and 𝐾 = {1,2, … 10}. 

The piecewise McCormick envelopes (PCM) and normalized multiparametric disaggregation 

technique are comparable between them for relaxing a bilinear term for a small number of 

partitions. In particular, for 𝑁 = 2 in PCM, NMDT should be set up with 𝐾 = 2, 𝑝 = −1, and  

for 𝑁 = 4 in PCM, NMDT should be set up with 𝐾 = 4, 𝑝 = −2 (Castro, 2016). However, the 
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size of problem PR even for a small number of partitions based on PCM relaxations might lead 

to a large-scale MILP problem, which can be challenging to solve (see Table 4.7). 

𝑧<: =	 max	𝑓F<(𝑥, 𝑦, 𝑤)  
s. t. 𝑓!<(𝑥, 𝑦, 𝑤) ≤ 0	∀𝑚 ∈ {1,… ,𝑀}  

𝑥# = 𝑥#4 + 𝜆# 	»𝑥#7 − 𝑥#4¼																		
𝜆# = ∑ ∑ 𝐾[ ∙ 𝑘 ∙ 𝑧#d[Neb
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[g) + ∆𝜆#

0 ≤ ∆𝜆# ≤ 𝐾)																																			
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We apply the NMDT at the steps 3 and 5.3 of the clustering approach, for the BCS scenario, 

with 𝐾!�X = 10, 𝑝 = −1. The Figure 6.1 shows the performance for NMDT, PCM and 

commercial solvers ANTIGONE and BARON for the base case scenario. NMDT and PCM 

relaxations both were set up with 𝐾 = 𝑁 = 2, and they can be increased every time the 

optimality gap is improved (step 5.6.1 of the clustering decomposition algorithm). Note that 

NMDT started with a worse UB compared to the clustering approach and ANTIGONE. 

However, after 750 and until 1,500 seconds of CPU time, the UB obtained from solving 

problem PR’ is the best so far. From 1,600 seconds of computational time, the UB reported by 

solving problem PR is lower than the reached out by the solution of problem PR’. In terms of 
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LB, PR’ provided the best figure at the beginning of the algorithm, but it is quickly improved 

by CL applying PCM to solve PR. At 2600 s of CPU time, the UB is the same solving PR and 

PR’. Indeed, until 6500 seconds of runtime, the CL decomposition solving PR’ provided a 

better lower bound, which is about 2.972 MMUSD/day compared to 2.964. thus, for the BCS 

scenario, the relaxation of bilinear terms using NMDT in the clustering decomposition approach 

proved a better LB, with similar optimality gaps and less runtime than applying PCM.   

 
Figure 6.1. Clustering approach performance for NMDT applied to BCS. 

The clustering approach using NMDT to solve problem PR’ reported better LB for the BCS 

and WRPS scenarios but this relaxation led to a worse upper bound. In general, the relaxation 

gap was increased for all the scenarios, where WRPS reported an relaxation gap of 23.5%. 

moreover, for LDS and DRS scenarios, both relaxations led to the same lower bound. Overall, 

it might be worth to explore how the performance of the NMDT relaxation could be improved, 

since it reached out a better or at least the same lower bound as the PCM but with less 

computational expenses (Table 6.1). A detailed description of the performance for the WRPS, 

LDS and DRS scenarios is shown in the Appendix H.  
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Table 6.1. Performance of the NMDT relaxation in the clustering approach, 

 Base case scenario (BCS) 

 LB  
[kUSD/day] 

UB  
[kUSD/day] 

Relaxation 
Gap [%] 

Runtime  
[h] 

CL with PCM 2,964 3,205 7.5% 5.70 
CL with NMDT 2,972 3,233 8.1% 3.70 

 Without refinery-petrochemical integration scenario (WRPS) 

 
LB  

[kUSD/day] 
UB  

[kUSD/day] 
Relaxation 
Gap [%] 

Runtime  
[h] 

CL with PCM 2,009 2,333 10.0% 5.84 
CL with NMDT 2,027 2,650 23.5% 4.88 

 Logistic disruption scenario (LDS) 

 
LB  

[kUSD/day] 
UB  

[kUSD/day] 
Relaxation 
Gap [%] 

Runtime  
[h] 

CL with PCM 2,664 3,050 12.7% 3.68 
CL with NMDT 2,662 3,217 17.3% 3.90 

 Demand reduction scenario (DRS) 

 
LB  

[kUSD/day] 
UB  

[kUSD/day] 
Relaxation 
Gap [%] 

Runtime  
[h] 

CL with PCM 2,833 3,090 8.3% 5.80 
CL with NMDT 2,834 3,174 10.7% 6.59 

 

6.3 Lagrangean decomposition assessment 

Future work on the Lagrangean decomposition algorithm should focus on improving the dual 

problem formulation, to handle a large number of Lagrange multipliers within a reasonable 

number of iterations (i.e., scaling the Lagrange multipliers, see Table 5.2). The algorithm would 

also benefit from a more effective search for feasibility or locally optimal solutions during the 

iterations. On the application side, a future research direction entails the integration of refinery-

petrochemical short-term planning with crude oil scheduling operations, another challenging 

problem for which effective global optimisation algorithms need to be developed. 

Since the clustering decomposition approach and the Lagrangean-based decomposition 

algorithm both rely on the solution of MILP relaxations, it would be interesting to use GUROBI 

(“GUROBI Optimization LLC,” 2023) to solve such large-scale models instead CPLEX. 

Moreover, recent versions of GUROBI can solve MIQCP problems to global optimality. This 

feature would be explored to solve problem P and compare our results now considering 
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GUROBI. This part of the investigation was not covered in this thesis mainly for confidentiality 

issues of the model and due to internal protocols regarding the use of trial software at Ecopetrol. 

Other interesting research topics to address would be the potential improvement on the IRPC 

modelling, for example adding uncertainties through stochastic programming or applying 

robust optimisation or considering environmental constraints using multi-objective 

optimisation. These new modelling features applied to the IRPC optimisation would require the 

development of novel solution methods for such challenging problems. 
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Appendix A. SOLUTION OF THE 

BENCHMARKING POOLING PROBLEM 

USING GUROBI 

We solve the benchmarking pooling problem described in the Section 4.4 using the branch 

and cut approach to solve MIQCQP problems recently developed by GUROBI. 

The pooling structure of the problem is given by input streams (5), pools (3), output streams 

(5), properties (2) and bilinear terms (30). Moreover, this problem has 10 local optimal 

solutions:  1000, 1600, 1900, 2000, 2100, 2300, 2500, 2600, 2700, 2900, and 3500 as the global 

optimal. 

GUROBI starts with a feasible solution of 0 and a relaxation at the root node of 6100. It then 

explores this node adding 12 RLT cutting planes, reaching the global optimal solution reported 

in the literature (optimality gap of 0%), with a CPU runtime below 1 second (see part of the log 

file in the Figure A. 1). 

Table A. 1. Computational performance of the clustering approach, ANTIGONE, BARON and GUROBI applied to the 
benchmark pooling problem. 

 Clustering approach ANTIGONE BARON GUROBI 

Global optimum 3,500 3,500 3,500 3,500 

Optimality gap 5.20E-16* 9.99E-10 2.30E-01 0.00 

Runtime [s] 16.85 9.67 3,600.00 0.13 

*Relaxation gap is computed for the clustering approach 

 

The results for this benchmarking pooling problem shown that the four approaches were able 

to reach the global optimal solution. Moreover, ANTIGONE, GUROBI and the clustering 

approach were able to close the gap. In terms of computational expenses (CPU s), it is 
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remarkable that GUROBI can solve the problem using one order of magnitud less than 

ANTIGONE and the clustering approach (Table A. 1).      

 

 

Figure A. 1. GUROBI log file for the benchmark pooling problem. 
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Appendix B. RELAXATION OF 

BILINEAR AND TRILINEAR TERMS  

The terms 𝑃𝐹,,)𝑄𝐹,, 𝑃𝑆,´,.,)𝑄,´,.,,, 𝑄,´,.,,𝑃𝑆,´,.,)𝑃𝑆,´.,U=V , 𝑃𝑆,,.,)𝑄𝑆,,., 𝑃𝐹,,BG𝑄𝐹,, 

𝑄𝐹,𝑃𝐹,,)𝑃𝐹,,U=V , 𝑃𝑆,,.,)𝑃𝐹,´,BG and 𝑃𝐹,´,BG𝑄𝑆,,. in problem P (section 3.2.1) involve the 

product of two or three continous variables. One way to obtain a relaxation for P, is to substitute 

each of these terms by a new continuous variable: 𝑃𝐹𝑄𝐹,,), 𝑃𝑆𝑄,,.,,´,), 𝑃𝑆𝑄𝑆,,.,), 𝑃𝐹𝑄𝐹,,BG, 

𝑃𝑆𝑃𝐹,,.,,´,),BG and 𝑃𝐹𝑄𝑆,,.,,´,BG leading to Eqs. (B-1) - (B-10). Note that Eq. (B-1) is applied 

for properties that mix on volume and weight bases, thus replacing Eqs. (3-3) - (3-7). 

𝑃𝐹𝑄𝐹,,) = ∑ ∑ 𝑃𝑆𝑄,,.,,$,).∈U:"´,´∈7U" 	∀𝑢 ∈ 𝑈, 𝑝 ∈ 𝑃𝐼,  (B-1) 

𝑄𝑆,,. = ∑ 𝑦𝑖𝑒𝑙𝑑,,BG,𝑃𝐹𝑄𝐹,,BGBG∈=%& 	∀𝑢 ∈ 𝑈657 , 𝑠 ∈ 𝑆𝑂,  (B-2) 

𝑃𝑆𝑄𝑆,,.,) = ∑ 𝑝𝑟𝑜𝑝BG,,,.,)𝑃𝐹𝑄𝐹,,BGBG∈=%& 	∀𝑢 ∈ 𝑈657 , 𝑠 ∈ 𝑆𝑂,, 𝑝 ∈ 𝑃𝑂,,.  (B-3) 

∑ ∑ 𝑦𝑖𝑒𝑙𝑑BG,,´,<6𝑃𝐹𝑄𝑆,,.,,´,BGBG∈=%&,´∈7.0/:,∈7/57"´ =
∑ 𝑦𝑖𝑒𝑙𝑑BG,,,.𝑃𝐹𝑄𝐹,,BGBG∈=%& 	∀𝑢 ∈ 𝑈/57 , 𝑠 ∈ {𝐿𝑉𝐺𝑂,𝐻𝑉𝐺𝑂, 𝑉𝑅}  
 

(B-4) 

∑ ∑ 𝑦𝑖𝑒𝑙𝑑BG,,´,4;𝑃𝐹𝑄𝑆,,.,,´,BGBG∈=%&,´∈7.0/:,∈7357"´ =
∑ 𝑦𝑖𝑒𝑙𝑑BG,,,.𝑃𝐹𝑄𝐹,,BGBG∈=%& 	∀𝑢 ∈ 𝑈537 , 𝑠 ∈ {𝐶5, 𝐷𝐵}  
 

(B-5) 

∑ ∑ 𝑦𝑖𝑒𝑙𝑑BG,,´,<6𝑃𝑆𝑃𝐹,,.,,´,),BGBG∈=%&,´∈7.0/:,∈7/57"´ =
∑ 𝑝𝑟𝑜𝑝BG,,,.𝑃𝐹,,BGBG∈=%& 	∀𝑢 ∈ 𝑈/57 , 𝑠 ∈ {𝐿𝑉𝐺𝑂,𝐻𝑉𝐺𝑂, 𝑉𝑅}, 𝑝 ∈ 𝑃𝑂,,.  
 

(B-6) 

∑ ∑ 𝑦𝑖𝑒𝑙𝑑BG,,´,4;𝑃𝑆𝑃𝐹,,.,,´,),BGBG∈=%&,´∈7.0/:,∈7357"´ =
∑ 𝑝𝑟𝑜𝑝BG,,,.𝑃𝐹,,BGBG∈=%& 	∀𝑢 ∈ 𝑈537 , 𝑠 ∈ {𝐶5, 𝐷𝐵}, 𝑝 ∈ 𝑃𝑂,,.  
 

(B-7) 

𝑄𝑆,,. = 𝑎,,.𝑄𝐹, + ∑ 𝑏,,.,)𝑃𝐹𝑄𝐹,,))∈=^" 	∀𝑢 ∈ 𝑈6:;/ , 𝑠 ∈ 𝑆𝑂,  (B-8) 

𝑄𝑆𝑃𝑆,,.,) = 𝑐,,.,)𝑄𝐹, +∑ 𝑑,,.,)´,)𝑃𝐹𝑄𝐹,,)´)´∈=^" 	∀𝑢 ∈ 𝑈6:;/ , 𝑠 ∈
𝑆𝑂,, 𝑝 ∈ 𝑃𝑂,,.  
 

(B-9) 
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𝑂𝑝𝐸𝑥 = ∑ (𝜔,𝑄𝐹, +∑ 𝜓,,)𝑃𝐹𝑄𝐹,,))∈=^" +,∈7.-∪7.83%

∑ ∑ 𝜙,´,.,,𝑄,´,.,,.,´ )  
 

(B-10) 

In order to improve the quality of the relaxation, additional constraints can be added to the 

problem that relate these new variables to the original ones and their lower and upper bounds. 

This will be done either through standard or piecewise McCormick envelopes. In case of the 

standard McCormick relaxation, a total of 4 linear inequality constraints are added for each 

bilinear term (McCormick, 1976). On the other hand, the piecewise McCormick relaxation, 

uses 9 mixed-integer linear constraints. It is tighter due to the use of binary variables for 

partitioning of the domain of one of the variables in every bilinear term (Bergamini et al., 2005; 

Castro, 2015). 

Let 𝑤"# represent the new variable replacing bilinear term 𝑥"𝑥#, let 𝑥# represent the partitioned 

variable in PMR, and let set 𝐵𝐿 include the pair of indexes (𝑖, 𝑗) involved. For instance, in 

𝑃𝐹,,)𝑄𝐹,, 𝑄𝐹, is the partitioned variable. In general, to reduce the number of added binary 

variables, we select the flowrate (𝑄𝐹,, 𝑄𝑆,,. or 𝑄𝑆,´,.,,) as the variable to partition. This is 

because 𝑥" is defined by multisets derived from set 𝑈 (such as 𝑃𝐼, and 𝑃𝑂,,.) making |𝑖| ≥ |𝑗|. 

The exception occurs for term 𝑃𝐹,´,BG𝑃𝑆,,.,), where the stream properties variable 𝑃𝑆,,.,) is the 

one selected to be partitioned. Assuming the same number 𝑁 of partitions for all variables, the 

overall number of binary variables introduced is 𝑁 ∙ (|𝑈| + |𝑆𝑂,| + |𝑈𝑆,| + Ö𝑃𝑂,,.Ö). Even 

though the number of these binary variables is kept at a minimum for a given 𝑁, the MILP 

relaxation might still lead to an intractable problem. The alternative is to consider only a subset 

of the bilinear terms in the relaxation, for which a decomposition based on process structure 

may be foreseen. 
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Appendix C. CASE STUDY DATA 

Raw material supply 

Table C. 1. Domestic Crude. 

Region Crude Max 
(kbbl/day) 

Price  
(USD/bbl) 

1 

DC1 2.10 39.50 
DC2 31.10 49.70 
DC3 3.40 49.68 
DC4 2.20 35.43 

2 

DC5 5.60 45.27 
DC6 24.20 41.26 
DC7 12.60 40.28 
DC8 5.80 38.50 

3 DC9 44.80 34.57 

4 
DC10 3.30 42.49 
DC11 3.70 40.13 

5 DC12 32.00 40.86 

6 
DC13 24.10 52.00 
DC14 26.70 52.11 
DC15 13.50 42.78 

7 DC16 10.30 30.77 
8 DC17 11.80 35.08 

 Total 257.20  
Table C. 2. Imported Crude. 

Crude 
Max 

(kbbl/day) 
Price 

(USD/bbl) 

IC1 15.00 52.23 
IC2 15.00 52.30 
IC3 15.00 49.28 
IC4 15.00 49.17 
IC4 15.00 49.15 
IC6 15.00 52.37 
IC7 15.00 50.64 
Total 105.00  
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Table C. 3. Crude Oil Quality Specifications. 

Crude 
Sulphur 
(%wt) TAN* SPG 

DC1 1.22 1.13 0.9103 
DC2 0.51 0.10 0.8810 
DC3 0.81 0.17 0.8635 
DC4 1.93 0.53 0.9312 
DC5 0.64 1.49 0.8868 
DC6 0.93 2.14 0.9128 
DC7 1.01 2.30 0.9225 
DC8 0.96 3.13 0.9424 
DC9 1.13 3.34 0.9327 
DC10 1.22 1.68 0.8990 
DC11 1.24 2.64 0.9176 
DC12 1.85 0.12 0.9401 
DC13 0.09 0.31 0.8075 
DC14 0.05 0.07 0.8011 
DC15 0.98 0.47 0.9121 
DC16 1.14 0.14 0.9491 
DC17 1.14 2.38 0.9370 
IC1 0.16 0.63 0.8294 
IC2 0.92 0.06 0.8283 
IC3 0.25 0.59 0.8792 
IC4 0.69 1.27 0.8810 
IC4 0.61 0.47 0.8814 
IC6 0.48 0.04 0.8272 
IC7 0.16 0.61 0.8555 

*TAN = Total Acid Number (mg KOH/g crude oil) 

Table C. 4. Refined Products. 

Market Product 
Max 

(Kbbl/day) 
Price 

(USD/bbl) 

Domestic DRP1 0.70 22.61 

Imports 
IRP1 47.00 49.95 
IRP2 60.00 43.08 
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Fuel demand 

Table C. 5. Fuel Demand. 

Gasoline Medium Distillate Fuel Oil 
Grade Max 

(kbbl/day) 
Price 

(USD/bbl) 
Grade Max 

(kbbl/day) 
Price 

(USD/bbl) 
Grade Max 

(kbbl/day) 
Price 

(USD/bbl) 
GL1 0.33 87.62 MD1 19.14 64.91 FO1 1.87 31.65 
GL2 60.00 52.34 MD2 4.39 64.91 FO2 3.42 18.26 
GL3 69.17 59.15 MD3 67.60 59.60 FO3 33.28 31.00 
GL4 3.08 69.24 MD4 5.20 60.71 FO4 41.60 30.42 
GL5 1.04 53.14 MD5 17.89 59.60    

GL6 24.52 54.42 MD6 16.90 31.00    
GL7 24.52 58.74       
 

Fuel specifications 

Table C. 6. Gasoline. 

 
SPG Sulphur 

(ppm) RON RVP 

Gasoline 
Grade Max Max Min Max Max 

GL1 0.0400 5    
GL2 0.7351 120    
GL3 0.7800 100 85.50 90.00 8.60 
GL4 0.7800 100 90.00 100.00  
GL5,GL6,GL7  50 48  50 

 

Table C. 7. Medium Distillates.  

 
SPG Sulphur 

(ppm) CBI 

Distillate 
Grade Min Max Max Min Max 

MD1 0.7800 0.8400 300 30 100 
MD2  0.8500 300   
MD3,MD4,MD6  0.9000 250   
MD5 0.8000 0.8750 40   

 

Table C. 8. Fuel Oil. 

 
SPG Sulphur 

(ppm) V50 

Fuel Oil 
Grade Min Max Min Max Min Max 

FO1   1000 1700   
FO3 1.0000 1.3000 1000 1300   
FO4 0.9000 1.3000   34.05 34.35 
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Logistic 

Table C. 9. Pipeline and river fleet routes for transportation of refined products. 

Transport  
Mode 

Commodity 

LPG1 BUT1 GL6 MD4 MD6 FO3 FO4 IRP2 IRP3 DRP1 
RF1 1 1 1               
RF2               1 1 1 
RF3       1 1   1       
PL1*               1 1   
PL9**           1 1       

 

* The pipeline PL1 delivers the imported refined products to the IRPC. The pipeline system 

PL1 - PL2 (not shown in Table C. 9) operates in bi-directional flow. Through PL2 (flowing in 

reverse direction compared to PL1), the IRPC delivers virgin naphtha and light cracked naphtha 

to other IRPC, which is part of the whole nationwide petroleum supply in Colombia. Since in 

this work we consider only one of those industrial complexes, PL2 is not modelled. 

RF4 is a river fleet route delivering fuel-oil between the two IRPCs existing in Colombia. 

Since in this work we consider one IRPC, RF4 is set to zero. 
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Table C. 10. Pipeline routes for transportation of domestic and imported crude oil. 

Transport  
Mode 

Commodity 
DC1 DC2 DC3 DC4 DC5 DC6 DC7 DC8 DC9 DC10 DC11 DC12 DC13 DC14 DC15 DC16 DC17 IC1 … IC7 

PL3                 1     1 1 1 1 1 1       
PL4               1   1 1                   
PL5             1                           
PL6         1 1                             
PL7 1 1 1 1                                 

PL8**                                   1 1 1 
 

**Pipeline system PL8 - PL9 operates in bi-directional flow. Through PL8 the IRPC receives imported crude oil (IC1,…,IC7). On the other hand, 

through PL9 the IRPC delivers fuel-oil (FO3, FO4) from the IRPC to the domestic and exportation market.
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Appendix D. CLUSTERING RESULTS FOR 

WRPS SCENARIO 

Clustering results for the scenario without refinery - petrochemical integration (WRPS) 

 
Figure D. 1. Raw material supply for the WRPS scenario. 

 

 
Figure D. 2. Commodities production for the WRPS scenario. 
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Figure D. 3. Logistic for the WRPS scenario. 

 
Figure D. 4. Plant capacities for the WRPS scenario. 
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Figure D. 5. Solvers performance for the WRPS scenario. 
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Appendix E. CLUSTERING RESULTS FOR 

LDS SCENARIO 

Clustering results for the logistic disruption scenario (LDS) 

 
Figure E. 1. Raw material supply for the LDS scenario. 

 

 
Figure E. 2. Commodities production for the LDS scenario. 
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Figure E. 3. Logistic for the LDS scenario. 

 
Figure E. 4. Plant capacities for the LDS scenario. 
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Figure E. 5. Solvers performance for the LDS scenario. 
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Appendix F. CLUSTERING RESULTS FOR 

DRS SCENARIO 

Clustering results for the gasoline demand reduction scenario (DRS) 

 
Figure F. 1. Raw material supply for the DRS scenario. 

 

 
Figure F. 2. Commodities production for the DRS scenario. 
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Figure F. 3. Logistic for the DRS scenario. 

 
Figure F. 4. Plant capacities for the DRS scenario. 
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Figure F. 5. Solvers performance for the DRS scenario. 
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Appendix G. MODELS FOR EACH 

SUBPROBLEM IN THE LAGRANGEAN 

DECOMPOSITION  

An integrated refinery petrochemical complex (IRPC) can be composed by four independent 

business units: 

• Crude management section (CM) 

• Refinery (REF) 

• Petrochemicals (PTQ) and 

• Fuel blending (FB) 

Other possible schemes to disaggregate the IRPC into small business units are considered in this 

thesis. For instance, two sections including CM and REF – PTQ - FB or three sections considering 

CM, REF – FB and PTQ. Since the four subproblems are the most general decomposition of the 

IRPC considered in this thesis, we describe in detail its model formulation.   

When the IRPC is decomposed in four subproblems, the interaction between each subproblem 

and their linking variables are summarized in Figure 5.3 and Figure 5.4. 

It is highlighted that each group of linking variables among two subproblems is duplicated, for 

example 𝐸63 = {𝐶𝐵1,… , 𝐶𝐵8} (Figure 5.4) , is identified in the subproblem 𝑖 as: 𝐸𝑜𝑢𝑡#" (in this 

example 𝐸𝑜𝑢𝑡<A068 = 𝐸63), and in the  subproblem 𝑗 as:	 𝐸𝑖𝑛"
# 	 (𝐸𝑖𝑛68<A0 = 𝐸63). This group of 

linking variables  comes  out from one tank (𝑈𝐸𝑜𝑢𝑡#", in this example 𝑈𝐸𝑜𝑢𝑡<A068 ) in the problem 
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where it is produced, and it is received in another tank (𝑈𝐸𝑖𝑛"
#, in this example 𝑈𝐸𝑖𝑛68<A0) in the 

destination problem. The flow and properties for this group of linking streams are calculated using 

the optimisation model of each subproblem. Since the results might be different, “checkpoints” 

(new restrictions) become necessary to address the integration between the subproblems, in order 

to guaranty the linking stream values are equalized. 

Each problem 𝑖 consists of a superstructure of units connected among them and a series of 

internal, linking, raw-material and final-product streams. Since the topology for the IRPC model 

addressed in this thesis comprises 155 units connected by intermediate streams, a generic 

superstructure is shown in Figure G. 1, to illustrate the problem modelling process. 

The objective function of each problem is to maximize 𝑧�
",45∗, defined as the profit plus a term 

that is related to the integration of the problem 𝑖 with the problem 𝑗 which exchange materials 

between them by selling or buying commodities (See model identified as 𝐋𝐃𝛌𝐢  in the Chapter 5). 

 
Figure G. 1. General subproblem model developed in Chapter 5. 

 

 

u5
u1

u2

u3

u4

u6

Subproblem i

𝑄𝑢1,𝑠1,𝑢3

𝑄𝑢2,𝑠2,𝑢4

𝑒𝑜𝑢𝑡1	 ∈ 𝐸𝑜𝑢𝑡 𝑖 ⊆ 𝑆𝑖

𝑒𝑜𝑢𝑡2	 ∈ 𝐸𝑜𝑢𝑡 𝑖 ⊆ 𝑆𝑖

𝑟𝑤1 ∈ 𝑅𝑊𝑖 ⊆ 𝑆𝑖

𝑟𝑤2 ∈ 𝑅𝑊𝑖 ⊆ 𝑆𝑖

𝑟𝑤3	 ∈ 𝑅𝑊𝑖 ⊆ 𝑆𝑖

𝑄𝐹𝑒𝑜𝑢𝑡2𝑖

𝑄𝐹𝑒𝑜𝑢𝑡1𝑖

𝑄𝑢1,𝑠3,𝑢3

𝑄𝑢3,𝑠4,𝑢5

𝑄𝑢3,𝑠4,𝑢6

𝑄𝑢6,𝑠5,𝑢4

𝑄𝑢6,𝑠6,𝑢5

𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙	𝑠𝑡𝑟𝑒𝑎𝑚𝑠	𝑜𝑓	𝑠𝑢𝑏𝑝𝑟𝑜𝑏𝑙𝑒𝑚	𝑖 = 	 𝑆𝑖𝑛𝑡𝑖 	= 𝑠1, 𝑠2, 𝑠3, 𝑠4, 𝑠5, 𝑠6
𝑅𝑎𝑤	𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙	𝑠𝑡𝑟𝑒𝑎𝑚𝑠	𝑜𝑓	𝑠𝑢𝑏𝑝𝑟𝑜𝑏𝑙𝑒𝑚	𝑖 = 	𝑅𝑊𝑖 = 𝑟𝑤1, 𝑟𝑤2, 𝑟𝑤3

𝐿𝑖𝑛𝑘𝑖𝑛𝑔	𝑠𝑡𝑟𝑒𝑎𝑚𝑠	𝑜𝑓	𝑠𝑢𝑏𝑝𝑟𝑜𝑏𝑙𝑒𝑚	𝑖	𝑡𝑜	𝑜𝑡ℎ𝑒𝑟	𝑠𝑢𝑏𝑝𝑟𝑜𝑏𝑙𝑒𝑚𝑠 = 	𝐸𝑜𝑢𝑡 𝑖 = 𝑒𝑜𝑢𝑡1, 𝑒𝑜𝑢𝑡2

𝑆𝑡𝑟𝑒𝑎𝑚𝑠	𝑜𝑓	𝑠𝑢𝑏𝑝𝑟𝑜𝑏𝑙𝑒𝑚	𝑖	 = 	 𝑆𝑖 =	𝑆𝑖𝑛𝑡𝑖 ∪		𝑅𝑊𝑖 	∪ 		𝑃𝑅𝑖 	∪ 	𝐸𝑜𝑢𝑡 𝑖 	∪		𝐸𝑖𝑛𝑖

𝑄𝐹𝑟𝑤1𝑖

𝑄𝐹𝑟𝑤2𝑖

𝑄𝐹𝑟𝑤3𝑖

𝑄𝐹𝑒𝑖𝑛1
𝑖

𝑄𝐹𝑒𝑖𝑛2𝑖

𝑒𝑖𝑛1	 ∈ 𝐸𝑖𝑛𝑖 ⊆ 𝑆𝑖

𝑒𝑖𝑛2	 ∈ 𝐸𝑖𝑛𝑖 ⊆ 𝑆𝑖

𝐿𝑖𝑛𝑘𝑖𝑛𝑔	𝑠𝑡𝑟𝑒𝑎𝑚𝑠	𝑜𝑓	𝑜𝑡ℎ𝑒𝑟	𝑠𝑢𝑏𝑝𝑟𝑜𝑏𝑙𝑒𝑚𝑠	𝑡𝑜	𝑠𝑢𝑏𝑝𝑟𝑜𝑏𝑙𝑒𝑚	𝑖 = 	𝐸𝑖𝑛𝑖 = 𝑒𝑖𝑛1, 𝑒𝑖𝑛2

𝑄𝐹𝑝𝑟1𝑖

𝑃𝑟𝑜𝑑𝑢𝑐𝑡	𝑠𝑡𝑟𝑒𝑎𝑚𝑠	𝑜𝑓	𝑠𝑢𝑏𝑝𝑟𝑜𝑏𝑙𝑒𝑚	𝑖, 𝑠𝑜𝑙𝑑	𝑡𝑜	𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙	𝑚𝑎𝑟𝑘𝑒𝑡 = 	𝑃𝑅𝑖 = 𝑝𝑟1, 𝑝𝑟2

𝑄𝑢5,𝑝𝑟1 ,𝑢11

𝑄𝑢7,𝑟𝑤1 ,𝑢3

𝑄𝑢7,𝑟𝑤1 ,𝑢1
𝑄𝑢8,𝑟𝑤2 ,𝑢1

𝑄𝑢8,𝑟𝑤2 ,𝑢2

𝑄𝑢9,𝑟𝑤3 ,𝑢2

𝑄𝑢5,𝑒𝑜𝑢𝑡1 ,𝑢12

𝑄𝑢6,𝑒𝑜𝑢𝑡2 ,𝑢15

𝑄𝑢13 ,𝑒𝑖𝑛1 ,𝑢5

𝑄𝑢13 ,𝑒𝑖𝑛1 ,𝑢6

𝑄𝑢14 ,𝑒𝑖𝑛2 ,𝑢6

𝑄𝑢4,𝑝𝑟2 ,𝑢10

𝑝𝑟1 ∈ 𝑃𝑅𝑖 ⊆ 𝑆𝑖
𝑄𝑢3,𝑝𝑟1 ,𝑢11

𝑝𝑟2 ∈ 𝑃𝑅𝑖 ⊆ 𝑆𝑖
𝑄𝐹𝑝𝑟2𝑖 𝑄𝑢4,𝑒𝑜𝑢𝑡2 ,𝑢15
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For problem 𝑖, the objective function (profit) to be maximized can be cast as follows: 

𝑓F"»𝑥" , 𝑦"¼ = 𝑝𝑟𝑜𝑓𝑖𝑡" = 𝑡𝑜𝑡𝑎𝑙𝑟𝑒𝑣𝑒𝑛𝑢𝑒" − 𝑡𝑜𝑡𝑎𝑙𝑐𝑜𝑠𝑡"  (G-1) 

Where 𝑥" represents the continuous - and 𝑦" the binary-variables. 

Total revenue of problem 𝑖 is calculated using Eq. (G-2): 

𝑡𝑜𝑡𝑎𝑙𝑟𝑒𝑣𝑒𝑛𝑢𝑒" = 𝑟𝑒𝑣𝑒𝑛𝑢𝑒_𝑝𝑟" + 𝑟𝑒𝑣𝑒𝑛𝑢𝑒"  (G-2) 

Where 𝑟𝑒𝑣𝑒𝑛𝑢𝑒_𝑝𝑟" is the sum of revenues obtained by selling all the final products from the 

problem 𝑖 to external market: 

𝑟𝑒𝑣𝑒𝑛𝑢𝑒_𝑝𝑟" = ∑ 𝛼)* . 𝑄𝐹)*")*∈=<:   (G-3) 

Where 𝛼)* is the selling price for product pr ($/bbl or $/ton).  

The second term in the Eq. (G-2), 𝑟𝑒𝑣𝑒𝑛𝑢𝑒" , is the sum of revenues obtained from the exchange 

of commodities sold to the business unit  𝑗 with 𝑗 ≠ 𝑖. These streams are traded at 𝜆(
",# and 𝜆(,)

",#  

price, which correspond to the Lagrange multipliers. 

𝑟𝑒𝑣𝑒𝑛𝑢𝑒" = ∑ ∑ 𝜆(
",# . 𝑄𝐹("(∈A],29

:#�" + ∑ ∑ ∑ 𝜆(,)
",# . 𝑃𝐹(,)")∈=^J:(∈A],29

:#�"   (G-4) 

It is assumed that each linking stream from problem 𝑖 is sent to only one problem 𝑗. 

In the case of costs of problem 𝑖, given in the Eq. (G-5), three types of costs are considered: the 

cost of raw materials at the plant gate (𝑐𝑜𝑠𝑡_𝑟𝑤"), the logistic cost (𝑐𝑜𝑠𝑡_𝑙𝑔𝑠𝑡𝑐") and the cost of 

linking streams from another subproblems (𝑐𝑜𝑠𝑡"). 

𝑡𝑜𝑡𝑎𝑙𝑐𝑜𝑠𝑡" = 𝑐𝑜𝑠𝑡_𝑟𝑤" + 𝑐𝑜𝑠𝑡_𝑙𝑔𝑠𝑡𝑐" + 𝐶𝑜𝑠𝑡_𝑂𝑝𝐸𝑥𝑖 + 𝑐𝑜𝑠𝑡"  (G-5) 

The cost of raw materials (𝑐𝑜𝑠𝑡_𝑟𝑤") are defined by Eq. (G-6) as the sum of the cost of the raw 

materials at their source: oil fields for domestic crudes, or national ports for imported crudes and 

imported refined products. 
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𝑐𝑜𝑠𝑡_𝑟𝑤" = ∑ 𝛽*+ 	. 𝑄𝐹*+"*+∈<>:   (G-6) 

Where 𝛽*+ is the purchasing cost for raw material 𝑟𝑤 ($/bbl or $/ton). 

The logistic cost (𝑐𝑜𝑠𝑡_𝑙𝑔𝑠𝑡𝑐") is defined as the cost of transportation of raw materials from their 

source to the plant gate, plus the cost of transportation of final products to the buyer’s storage 

facilities or exportation ports, generally by pipeline system (mt): 

𝑐𝑜𝑠𝑡_𝑙𝑔𝑠𝑡𝑐" = ∑ 	𝛾!2	. 𝑄𝑇!2"!2∈8?:   (G-7) 

Where 𝛾!2 is the transportation cost of the transport mode 𝑚𝑡 ($/bbl), 𝑀𝑇" is the set of all 

incoming and outgoing piping systems associated with problem 𝑖 and 𝑄𝑇!2"  is the total flowrate, 

(total volume of raw materials or final products of subproblem 𝑖), through that transportation mode 

𝑚𝑡	 ∈ 	𝑀𝑇". 

 
Figure G. 2. Raw material and product stream transportation scheme. 
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Unidirectional flow is assumed for each pipeline system. Each raw material or product stream is 

allowed to be transported through one, two or more transportation modes (pipeline systems), as 

shown in Figure G. 2. Then, 𝑄𝑇!2"  can be calculated by Eq. (G-8): 

𝑄𝑇!2" = ∑ 𝑄,)*,)*,!2(,)*,)*)∈7=<!6
: +∑ 𝑄!2,*+,,*+(*+,,*+)∈7<>!6

: ∀	𝑚𝑡 ∈ 𝑀𝑇"  (G-8) 

Where 𝑈𝑃𝑅!2"  is a subset indicating all product streams being delivered through transportation 

mode mt, and their corresponding product unit from which they are outgoing. In Figure G. 2, the 

subsets 𝑈𝑃𝑅!2"  for each 𝑚𝑡 ∈ 𝑀𝑇" are presented as follows: 

𝑈𝑃𝑅!2b" = { } 𝑈𝑃𝑅!2q" = {𝑢𝑝𝑟1 𝑝𝑟1} 

𝑈𝑃𝑅!2c" = { } 𝑈𝑃𝑅!2r" = ß𝑢𝑝𝑟1 𝑝𝑟1
𝑢𝑝𝑟2 𝑝𝑟2à 

𝑈𝑃𝑅!2p" = { } 𝑈𝑃𝑅!2s" = {𝑢𝑝𝑟2 𝑝𝑟2} 

Analogously, 

𝑈𝑅𝑊!2b
" = {𝑢𝑟𝑤1 𝑟𝑤1} 𝑈𝑅𝑊!2q

" = { } 

𝑈𝑅𝑊!2c
" = á𝑢𝑟𝑤1 𝑟𝑤1

𝑢𝑟𝑤2 rw2â 𝑈𝑅𝑊!2r
" = { } 

𝑈𝑅𝑊!2p
" = á𝑢𝑟𝑤2 𝑟𝑤2

𝑢𝑟𝑤3 𝑟𝑤3â 𝑈𝑅𝑊!2s = { } 

The following restriction on the total flow by the transportation mode mt must be applied to 

avoid surpassed the limit of the piping system capacity: 

𝑄𝑇!24 ≤ 𝑄𝑇!2" ≤ 𝑄𝑇!27 ∀𝑚𝑡 ∈ 𝑀𝑇"     (G-9) 

The Operating costs (𝐶𝑜𝑠𝑡_𝑂𝑝𝐸𝑥") for problem 𝑖 is defined as a summatory of the operating costs 

of all units inside the problem, as follows: 
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𝐶𝑜𝑠𝑡_𝑂𝑝𝐸𝑥" = ∑ ,𝜔#. 𝑄𝐹#" + ∑ 𝜓#,%. 𝑄𝐹#" . 𝑃𝐹#,%"%∈'($ +#∈)(*+%

∑ ∑ 𝜙#&,,,#. 𝑄#&,,,#
"

,∈-.$&#&∈)-$ 5  
(G-10) 

Where 𝜔#, 𝜓#,% and 𝜙#&,,,# are positive costing indexes that can be null for certain units inside the 

problem 𝑖. 

Finally, the cost of linking streams coming in from another problem 𝑗 to problem 𝑖 (𝑐𝑜𝑠𝑡") is 

calculated in the Eq. (G-11) as a function of the Lagrange multipliers: 

𝑐𝑜𝑠𝑡" = ∑ ∑ 𝜆(
#," . 𝑄𝐹("(∈A"19

:#�" +∑ ∑ ∑ 𝜆(,)
#," . 𝑃𝐹(,)")∈=:(∈A"19

:#�"   (G-11) 

It is assumed that each linking stream entering problem 𝑖 is coming from only one problem 𝑗. 

Each subproblem 𝑖 (Figure G. 1) has three types of process units: 

• Internal units: that represent the unit operations (𝑢b, 𝑢c, … , 𝑢s) transforming the raw 

materials and exchanged streams into sellable products or commodities to trade with 

other business units. 

• Farm tanks for the products that are sold at the gate of the business unit 𝑖 to the market 

through units 𝑢bF and	𝑢bb or to other business units 𝑗 managing the tanks 𝑢bc and 𝑢br, 

with 𝑗 ≠ 𝑖  

• Farm tanks to manage the reception of raw materials (𝑢t, 𝑢u, 𝑢v) at the business unit 𝑖 

and the exchange of commodities (𝑢bp, 𝑢bq) coming in from the business units 𝑗 , with 

𝑗 ≠ 𝑖. 

The modelling approach for each business unit and the monolithic IRPC problem is based on the 

framework proposed by Neiro and Pinto (2004). The process network topology can be represented 

by a sequence of mixers, process units (e.g. CDUs, FCCs, HDTs, tanks, etc.) and splitters as it is 

shown in the Figure G. 3. The variable 𝑄,$,.,, represents the flowrate of the stream 𝑠, which is an 
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outlet stream from the process 𝑢′ and it is routed to process 𝑢. The variable 𝑄𝐹, manages the 

feedstock for the unit 𝑢 and the outlet stream 𝑠 from process 𝑢 is accounted by variable 𝑄𝑆,,.. The 

variables 𝑃𝐹,,) and 𝑃𝑆,,.,) represent the characterization or property 𝑝 for the feedstock to unit 𝑢 

and the stream 𝑠 leaving unit 𝑢. The binary variable 𝑦+,, represents the operational conditions 𝑤 

which can be non-exclusive or mutually exclusive campaigns for the unit 𝑢. 

 

 
 

Figure G. 3. General unit model adapted from Neiro and Pinto (2004) to consider raw materials streams, linking 
streams between subproblems and product streams to external market. 

 

There are three main indexes, process units (𝑢), process streams (𝑠) and stream properties (𝑝). 

These main sets are used to build the process network connectivity as follows: the set 𝑆𝑂, denotes 

the duple outlet stream 𝑠 from unit 𝑢, 𝑈𝑆, is a tuple to represent the routing for stream 𝑠 from unit 
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𝑢′ to unit 𝑢. Moreover, the property 𝑝 for the feedstock at process unit 𝑢 is represented by the duple 

𝑃𝐼, while the property for the oulet stream 𝑠 is denoted by the tuple 𝑃𝑂,,.. 

Inputs to the model of the unit u itself include the feedstock volume (𝑄𝐹,), properties (𝑃𝐹,,)) and 

the operational conditions (𝑦+,,) which can be non-exclusive or mutually exclusive campaigns. 

These inputs are used to predict the flowrate (𝑄𝑆�,�) of each outlet stream s from unit u and its 

corresponding properties (𝑃𝑆�,�,�) through a process model that may be based on conservation 

principles, yield or constitutive relations or empirical correlations. Afterwards, each outlet stream 

can then take different paths to other units. 

The outlet stream 𝑠 from unit t 𝑢 is calculated by Eq. (G-12), where function 𝑓,,. can be an 

empirical correlation, a data-driven model, a fixed yield approach or a model based on conservation 

principles. 

𝑓,,.»𝑄𝐹,, 𝑄𝑆,,.	, 𝑃𝐹,,)	, 𝑦+,,¼ = 0			∀	𝑠 ∈ 𝑆𝑂,, 𝑢 ∈ 𝑈𝐼𝑛𝑡" ⊆ 𝑈  (G-12) 

Eq. G-13 calculates the property 𝑝 for the outlet stream 𝑠 from unit 𝑢, where 𝑔,,) could have a 

similar mathematical structure as 𝑓,,.. 

𝑔,,)»𝑄𝐹,, 𝑃𝐹,,)	, 𝑄𝑆,,.	, 𝑃𝑆,,.,)	, 𝑦+,,¼ = 0			∀	𝑠 ∈ 𝑆𝑂,	, 𝑝 ∈ 𝑃𝑂,,., 𝑢 ∈ 𝑈𝐼𝑛𝑡"  (G-13) 

The mathematical representation of functions 𝑓,,. and 𝑔,,) in the equations (G-12)  and  (G-13) 

respectively unit 𝑢 to be modeled. For example, models for blender tanks and pipelines are 

presented by Neiro and Pinto (2004). Whilst, crude fractionation units (atmospheric distillation, 

vacuum distillation and debutanizer columns) and conversion units, the models are presented in 

the electronic supplementary material of our previous paper (Uribe-Rodriguez et al., 2020). 

The binary variables denoted by 𝑦+,, are implicit in the process model (Eqs G-12  -  G-13) and 

are used to represent mutually exclusive, or inclusive, modes of operation of the unit 𝑢. Given 𝑤 
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representing a real processing unit that has been divided into a set of virtual units 𝑈𝑊+, one for 

each operating mode, and 𝑊8A including the units with mutually exclusive modes, for such units, 

only one operating condition is allowed to be selected, then Eq. (G-14) is formulated as an equality 

constraint, where the binary variable 𝑦+,, takes a value of 1 if mode 𝑢 (virtual unit) is selected. Eq. 

(G-15) then determines the bounds on the flowrate 𝑄𝐹,. The maximum capacity available for units 

with inclusive operating modes is given by Eq. (G-16), where 𝑐𝑎𝑝+4 /𝑐𝑎𝑝+7 and 𝑠𝑓+ represent the 

minimum/maximum capacity and service factor for the real unit 𝑤. 𝑠𝑓+ 	is a value in the range [0,1] 

indicating the fraction of the process capacity available in the real unit 𝑤. 

∑ 𝑦+,,,∈>75 ≤ 1	∀𝑤 ∈ 𝑊8A  (G-14) 

𝑐𝑎𝑝+4 . 𝑠𝑓+ . 𝑦+,, ≤ 𝑄𝐹, ≤ 𝑐𝑎𝑝+7 . 𝑠𝑓+ . 𝑦+,,	∀𝑤 ∈ 𝑊8A , 𝑢 ∈ 𝑈𝑊+  (G-15) 

𝑐𝑎𝑝+4 . 𝑠𝑓+ ≤ ∑ 𝑄𝐹,,∈7>5 ≤ 𝑐𝑎𝑝+7 . 𝑠𝑓+ 	∀𝑤 ∈ 𝑊\𝑊8A  (G-16) 

If a specific unit does not have several operating modes, 	𝑤 = 𝑢, 𝑦,,, = 1 

Bounds for the variables for 𝑃𝐹,,), 𝑄𝑆,,. and  𝑃𝑆,,.,) are imposed by Eqs. (G-17) – (G-19). 

𝑃𝐹,,)4 ≤ 𝑃𝐹,,) ≤ 𝑃𝐹,,)7 		∀𝑢 ∈ 𝑈𝐼𝑛𝑡" , 𝑝 ∈ 𝑃𝐼,  (G-17) 

𝑄𝑆,,.4 ≤ 𝑄𝑆,,. ≤ 𝑄𝑆,,.7 		∀𝑢 ∈ 𝑈𝐼𝑛𝑡" , 𝑠 ∈ 𝑆𝑂,  (G-18) 

𝑃𝑆,,.,)4 ≤ 𝑃𝑆,,.,) ≤ 𝑃𝑆,,.,)7 		∀𝑢 ∈ 𝑈𝐼𝑛𝑡" , 𝑠 ∈ 𝑆𝑂,, 𝑝 ∈ 𝑃𝑂,,.  (G-19) 

When the streams are mixtures of several components, for example crude blends, the volume 

fraction of each component is included as an element of the subset of properties denoted by 𝑃/0. 

The summatory of all the volume fractions is equal to one: 

∑ 𝑃𝐹,,))∈=^"∩=%& = 1		∀𝑢 ∈ 𝑈𝐼𝑛𝑡" ⊆ 𝑈  (G-20) 

∑ 𝑃𝑆,,.,))∈=:*,"∩=%& = 1			∀𝑠 ∈ 𝑆𝑂,, 𝑢 ∈ 𝑈𝐼𝑛𝑡" ⊆ 𝑈  (G-21) 
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The flowrate 𝑄𝐹, is calculated by Eq. (G-22), which represents a mixer, where all the streams 

𝑄,$,.,, are routed to the unit 𝑢. Moreover, the feedstock properties 𝑃𝐹,,) are estimated by equations 

(G-23) and (G-24) using volumetric and weight blend respectively. 

𝑄𝐹, = ∑ ∑ 𝑄,$,.,,.∈U:"$,$∈7U" 	∀𝑢 ∈ 𝑈𝐼𝑛𝑡" ⊆ 𝑈  (G-22) 

Where 𝑈𝑆, the subset of upstream processes connected to u. The second part of the model is 

intended to calculate the properties of the of the inlet stream to the unit itself: 

𝑄𝐹,𝑃𝐹,,) = ∑ ∑ 𝑄,$,.,,𝑃𝑆,$,.,)	∀	𝑢 ∈ 𝑈𝐼𝑛𝑡" ⊆ 𝑈, 𝑝 ∈ 𝑃𝐼, ∩ 𝑃/.∈U:"$,$∈7U"   (G-23) 

𝑄𝐹,𝑃𝐹,,)𝑃𝐹,,U=V = ∑ ∑ 𝑄,$,.,,𝑃𝑆,$,.,)𝑃𝑆,$,.,U=V 	∀𝑢 ∈ 𝑈𝐼𝑛𝑡" ⊆ 𝑈, 𝑝 ∈.∈U:"$,$∈7U"

𝑃𝐼,\𝑃/  
(G-24) 

Note that trilinear terms in the previous equation can be expressed as bilinear terms, defining 

auxiliary variables with the form of 𝑄𝐹𝑎𝑢𝑥, = 𝑄𝐹,𝑃,,.,U=V  and 𝑄𝑎𝑢𝑥,$,.,, = 𝑄,$,.,,𝑃𝑆,,.,U=V . 

On the other hand, the model for each splitter can be stated as follows: 

𝑄𝑆,,. = ∑ 𝑄,,.,,$ 		∀	𝑢 ∈ 𝑈𝐼𝑛𝑡" ⊆ 𝑈, 𝑠 ∈ 𝑆𝑂,,$∈7:"   (G-25) 

Where 𝑈𝑂, is the subset of downstream units connected to unit u. For each outlet stream 𝑠 ∈ 𝑆𝑂, 

of the unit u, property values (𝑃𝑆,,.,)) are preserved before and after the splitter. 

𝑄,,.,,$ is bounded: 

𝑄,,.,,$
4 ≤ 𝑄,,.,,$ ≤ 𝑄𝑆,,.,,$

7 		∀𝑢 ∈ 𝑈𝐼𝑛𝑡" ⊆ 𝑈, 𝑠 ∈ 𝑆𝑂,, 𝑢TT ∈ 𝑈𝑂,  (G-26) 

The second type of units present in the problem 𝑖 are the product units, which are mixer tanks. 

These units manage products sold to the market or the linking streams between problems 𝑖 and 𝑗, 

with 𝑗 ≠ 𝑖. See equations (G-27) – (G-33). 

𝑄𝐹(" = ∑ ∑ 𝑄,$,.,,.∈U:"$,$∈7U" 		∀	𝑒 ∈ »𝐸𝑜𝑢𝑡" ∪ 𝑃𝑅"¼, 𝑢 ∈ 𝑢" ∩ (𝑈𝐸𝑜𝑢𝑡" ∪ 𝑈=<)  (G-27) 
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𝑄𝐹(" . 𝑃𝐹(,)" = ∑ ∑ 𝑄,$,.,,𝑃𝑆,$,.,)	∀𝑝 ∈ 𝑃𝐸( ∩ 𝑃/.∈U:"$,$∈7U" , 𝑒 ∈ »𝐸𝑜𝑢𝑡" ∪ 𝑃𝑅"¼  (G-28) 

𝑄𝐹(" . 𝑃𝐹(,)" . 𝑃𝐹(,U=V" = ∑ ∑ 𝑄,$,.,,𝑃𝑆,$,.,)𝑃𝑆,$,.,U=V 	∀𝑝 ∈ 𝑃𝐸(\𝑃/.∈U:"$,$∈7U" , 𝑒 ∈

»𝐸𝑜𝑢𝑡" ∪ 𝑃𝑅"¼  
(G-29) 

∑ 𝑃𝐹(,)")∈=AJ∩=%& = 1			∀	𝑒 ∈ »𝐸𝑜𝑢𝑡" ∪ 𝑃𝑅"¼  (G-30) 

𝑄𝐹(4 ≤ 𝑄𝐹(" ≤ 𝑄𝐹(7		∀𝑒 ∈ »𝐸𝑜𝑢𝑡" ∪ 𝑃𝑅"¼  (G-31) 

It is highlighted that in this type of unit, 𝑠 = 𝑒, 𝑄𝐹, = 𝑄𝑆,,. = 𝑄𝐹(". 

∑ 𝑃𝐹(,)")∈=AJ∩=%& = 1			∀	𝑒 ∈ »𝐸𝑜𝑢𝑡" ∪ 𝑃𝑅"¼  (G-32) 

𝑄𝐹(4 ≤ 𝑄𝐹(" ≤ 𝑄𝐹(7		∀𝑒 ∈ »𝐸𝑜𝑢𝑡" ∪ 𝑃𝑅"¼  (G-33) 

 
Figure G. 4. Product unit scheme. 

 

The third type of unit inside the subproblem is the raw material unit (splitter tank), the scheme 

and model (assumed as a mere splitter) are presented as follows: 

𝑄𝐹(" = ∑ 𝑄,,.,,$$,$$∈7:" ∀	𝑒 ∈ »𝐸𝑖𝑛" ∪ 𝑅𝑊"¼, 𝑢 ∈ 𝑢" ∩ (𝑈𝐸𝑖𝑛" ∪ 𝑈<>)  (G-34) 

𝑄𝐹(4 ≤ 𝑄𝐹(" ≤ 𝑄𝐹(7	∀	𝑒 ∈ »𝐸𝑖𝑛" ∪ 𝑅𝑊"¼  (G-35) 
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𝑄,,.,,$$
4 ≤ 𝑄,,.,,$$ ≤ 𝑄𝐹,,.,,$$

7 	∀	𝑢 ∈ 𝑢" ∩ (𝑈𝐸𝑖𝑛" ∪ 𝑈<>), 𝑠 ∈ »𝐸𝑖𝑛" ∪ 𝑅𝑊"¼, 𝑢TT ∈

𝑈𝑂,  
(G-36) 

In this type of unit, 𝑠 = 𝑒.  

Stream property values are preserved before and after each raw material stream unit: 

𝑃𝑆,,.,) = 𝑃𝐹(,)" 		∀𝑢 ∈ 𝑢" ∈ 𝑢" ∩ (𝑈𝐸𝑖𝑛" ∪ 𝑈<>), 𝑒 ∈ »𝐸𝑖𝑛" ∪ 𝑅𝑊"¼, 𝑝 ∈ 𝑃𝐸(  (G-37) 

A restriction on the values of the properties should be applied to monitor that subproblem is 

receiving the right raw material or linking stream: 

𝑃𝑆,,.,)4 ≤ 𝑃𝑆,,.,) ≤ 𝑃𝑆,,.,)7 		∀𝑢 ∈ 𝑢" ∩ (𝑈𝐸𝑖𝑛" ∪ 𝑈<>), 𝑠 ∈ »𝐸𝑖𝑛" ∪ 𝑅𝑊"¼, 𝑝 ∈ 𝑃𝐸(  (G-38) 

 
Figure G. 5. Raw material stream unit scheme. 

 

 

Crude Management (CM) model 

Crude management (CM) buy domestic or imported crude oils from external market (domestic 

fields or national ports), mix them and send the crude blends to the refinery section (REF). Note 

that if the two optimisation problems are solved independently, there will be an imbalance between 

SPLITTER TANK u

𝑄𝐹𝑒𝑖 𝑄𝐹𝑢
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the flowrate, bulk properties and composition of the crude blends leaving CM and arriving REF at 

the CDU charge tanks. Specifically, CM will maximize its profit by buying cheap crude oil from 

the market, minimizing the transportation cost to the refinery and selling crude blends at the highest 

price, without being concerned with the operational performance of REF. In contrast, REF will 

maximize its profit by buying enough quantity of good-quality crude blends from CM at a cheap 

price, without being concerned with the costs incurred by CM in purchasing and delivering the 

crude. 

The crude management (CM) optimisation problem is a quadratically constrained quadratic 

program (QCQP), comprising a set of equations representing transport capacity (Eqs. G-41  -  G-

42), mass balances, capacity constraints and bounds for variables in splitter tanks (Eqs. G-43  -  G-

47) and mixer tanks (Eqs. G-48  -  G-54). Whereas equation G-51 ensures the volumetric 

composition of crude blends. The nonconvexities arise from mixing on volume G-49 and weight 

G-50 basis to estimate stream properties. Thus, the objective function 𝐎𝐅𝐂𝐌 is to maximize profit 

given by the revenue obtained from selling crude blend flows 𝑄𝐹(68  at price 𝜆(
68,<A0, considering 

a quality bonus 𝜆(,)
68,<A0 for property 𝑃𝐹(,)68, where 𝑒 ∈ 𝐸𝑜𝑢𝑡<A068 = 𝐸63 = {𝐶𝐵1,… , 𝐶𝐵9} refers to 

the crude blends going from CM to REF, and 𝑝 ∈ 𝑃63 can be a bulk property (specific gravity, 

sulphur content or TAN) or the volumetric composition of the crude blend; minus the outcome 

represented by the crude oil 𝑄𝐹*+68purchases at cost 𝛽*+, where 𝑟𝑤 ∈ 𝑅𝑊68 = 𝐷𝐶 ∪ 𝐼𝐶 (domestic 

crudes plus imported crudes), and the total volume delivered 𝑄𝑇!268 at transport fee 𝛾!2. Since all 

the energy to pump the crudes and crude blends is assumed to be included in the logistic costs for 

each transportation mode (mt), the OpEx for every unit inside CM is taken as null. 

𝑓F68(𝑥68) = 𝑝𝑟𝑜𝑓𝑖𝑡68 = 𝑡𝑜𝑡𝑎𝑙𝑟𝑒𝑣𝑒𝑛𝑢𝑒68 − 𝑡𝑜𝑡𝑎𝑙𝑐𝑜𝑠𝑡68  (𝐎𝐅𝐂𝐌) 
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Where 𝑥68 is denoting the continuous variables. No binary variables are present in CM 

optimisation problem. 

𝑡𝑜𝑡𝑎𝑙𝑟𝑒𝑣𝑒𝑛𝑢𝑒68 = ∑ 𝜆(
68,<=3𝑄𝐹(68(∈A],2-M&

.N + ∑ ∑ 𝜆(,)
68,<=3𝑃𝐹(,)68)∈=.4(∈A],2-M&

.N   (G-39) 

𝑡𝑜𝑡𝑎𝑙𝑐𝑜𝑠𝑡68 = ∑ 𝛽*+ 	. 𝑄𝐹*+68 + ∑ 	𝛾!2	. 𝑄𝑇!268!2∈8?.N*+∈<>.N   (G-40) 

s. t.  

Transport capacity for CM: 

𝑄𝑇!268 = ∑ 𝑄,)*,)*,!2(,)*,)*)∈7=<!6
.N +∑ 	𝑄!2,*+,,*+(*+,,*+)∈7<>!6

.N ∀	𝑚𝑡 ∈ 𝑀𝑇68  (G-41) 

𝑄𝑇!24 ≤ 𝑄𝑇!268 ≤ 𝑄𝑇!27 ∀𝑚𝑡 ∈ 𝑀𝑇68  (G-42) 

Equations for units in CM receiving raw materials (domestic or imported crudes). In this type of 

units 𝑒 = 𝑠 = 𝑟𝑤: 

𝑄𝐹*+68 = ∑ 𝑄,,.,,$$ 		∀	𝑟𝑤 ∈,$$∈7:" 𝑅𝑊68 , 𝑢 ∈ 𝑈68 ∩ 𝑈<>  (G-43) 

𝑄𝐹*+4 ≤ 𝑄𝐹*+68 ≤ 𝑄𝐹*+7 	∀	𝑟𝑤 ∈ 𝑅𝑊68  (G-44) 

𝑄,,.,,$$
4 ≤ 𝑄,,.,,$$

68 ≤ 𝑄,,.,,$$
7 	∀	𝑢 ∈ 𝑈68 ∩ 𝑈<> , 𝑠 ∈ 𝑅𝑊68 , 𝑢TT ∈ 𝑈𝑂,  (G-45) 

𝑃𝑆,,.,) = 𝑃𝐹*+,)68 	∀	𝑢 ∈ 𝑈68 ∩ 𝑈<> , 𝑟𝑤 ∈ 𝑅𝑊68 , 𝑝 ∈ 𝑃𝐸*+  (G-46) 

𝑃𝑆,,.,)4 ≤ 𝑃𝑆,,.,) ≤ 𝑃𝑆,,.,)7 	∀	𝑢 ∈ 𝑈68 ∩ 𝑈<> , 𝑠 ∈ 𝑅𝑊68 , 𝑝 ∈ 𝑃𝐸*+  (G-47) 

Equations for units in CM producing the crude blends (𝑠 = 𝑒, 𝑒 ∈ 𝐸𝑜𝑢𝑡<A068 = 𝐸63 , 𝑃𝐸( =

𝑃𝐸63): 

𝑄𝐹(68 = ∑ ∑ 𝑄,$,.,,.∈U:"$,$∈7U" 		∀	𝑒 ∈ 𝐸𝑜𝑢𝑡<A068 , 𝑢 ∈ 𝑈𝐸𝑜𝑢𝑡<A068   (G-48) 

𝑄𝐹(68 . 𝑃𝐹(,)68 = ∑ ∑ 𝑄,$,.,,𝑃𝑆,$,.,)	∀𝑝 ∈ 𝑃𝐸( ∩ 𝑃/.∈U:"$,$∈7U" , 𝑒 ∈ 𝐸𝑜𝑢𝑡<A068   (G-49) 

𝑄𝐹(68 . 𝑃𝐹(,)68 . 𝑃𝐹(,U=V68 = ∑ ∑ 𝑄,$,.,,𝑃𝑆,$,.,)𝑃𝑆,$,.,U=V 	∀𝑝 ∈.∈U:"$,$∈7U"

𝑃𝐸(\P/ , 𝑒 ∈ 𝐸𝑜𝑢𝑡<A068   
(G-50) 
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∑ 𝑃𝐹(,)68)∈=AJ∩=%& = 1		∀	𝑒 ∈ 𝐸𝑜𝑢𝑡<A068   (G-51) 

𝑄𝐹(4 ≤ 𝑄𝐹(68 ≤ 𝑄𝐹(7		∀𝑒 ∈ 𝐸𝑜𝑢𝑡<A068   (G-52) 

𝑃𝐹,,) = 𝑃𝑆,,.,) = 𝑃𝐹(,)68 	∀	𝑢 ∈ 𝑈𝐸𝑜𝑢𝑡<A068 , 𝑒 ∈ 𝐸𝑜𝑢𝑡<A068 , 𝑝 ∈ 𝑃𝐸(  (G-53) 

𝑃𝐹(,)4 ≤ 𝑃𝐹(,)68 ≤ 𝑃𝐹(,)7 	∀𝑒 ∈ 𝐸𝑜𝑢𝑡<A068 , 𝑝 ∈ 𝑃𝐸(  (G-54) 

 

Refinery (REF) model 

The refinery (REF) problem is cast as a mixed-integer quadratically constrained quadratic 

program (MIQCQP). The objective function 𝐎𝐅𝐑𝐄𝐅 represents the profit to be maximized. The 

income has three components, ∑ 𝛼)* . 𝑄𝐹)*<A0)*∈=<-M&  indicates the revenue for selling refined products 

to external market. The second element ∑ 𝜆(
<A0,=?@ . 𝑄𝐹(<A0(∈A],2,OP

-M& +

∑ ∑ 𝜆(,)
<A0,=?@ . 𝑃𝐹(,)<A0)∈=AJ(∈A],2,OP

-M&  corresponds to the refined streams sold to the petrochemical plants 

(PTQ). And the third term ∑ 𝜆(
<A0,03 . 𝑄𝐹(<A0(∈A],2&4

-M& + ∑ ∑ 𝜆(,)
<A0,03 . 𝑃𝐹(,)<A0)∈=AJ(∈A],2&4

-M&  

represents the sales to the fuel blending section. The outcomes are given by crude blends bought to the 

crude management (CM) section and the purchase of streams from the petrochemical sections to improve 

the gasoline blending, provide raw material to specialty solvent production, and hydrogen for hydrotreating. 

These are represented by the terms ∑ 𝜆(
=?@,<A0 . 𝑄𝐹(<A0(∈A"1,OP

-M& + ∑ ∑ 𝜆(,)
=?@,<A0 . 𝑃𝐹(,)<A0)∈=AJ(∈A"1,OP

-M&  

and ∑ 𝜆(
68,<A0 . 𝑄𝐹(<A0(∈A"1.N

-M& + ∑ ∑ 𝜆(,)
68,<A0 . 𝑃𝐹(,)<A0)∈=AJ(∈A"1.N

-M&  respectively. Other component of 

the outcome is the requirement of refined products to fulfill the feedstock for some refining units and 

improve fuels quality ∑ 𝛽*+ 	. 𝑄𝐹*+<A0*+∈<>-M& , the refining units operating costs 

∑ ,𝜔#. 𝑄𝐹#/01 + ∑ 𝜓#,%. 𝑄𝐹#/01 . 𝑃𝐹#,%/01%∈'($ +∑ ∑ 𝜙#&,,,#. 𝑄#&,,,#
/01

,∈-.$&#&∈)-$ 5#∈)(*+'() , and the 

transportation cost ∑ 	𝛾!2	. 𝑄𝑇!2<A0!2∈8?-M& : 



188 Models for each subproblem in the lagrangean decomposition 

 

 

𝑓QRST(𝑥RST , 𝑦RST) = ∑ 𝛼UV . 𝑄𝐹UVRSTUV∈WR!"# +∑ 𝜆X
RST,WYZ . 𝑄𝐹XRSTX∈S[\]$%&

!"# +

∑ ∑ 𝜆X,U
RST,WYZ . 𝑃𝐹X,URSTU∈WS'X∈S[\]$%&

!"# +	∑ 𝜆XRST,T^ . 𝑄𝐹XRSTX∈S[\]#(
!"# +

∑ ∑ 𝜆X,URST,T^ . 𝑃𝐹X,URSTU∈WS'X∈S[\]#(
!"# −∑ 𝜆X

WYZ,RST . 𝑄𝐹XRSTX∈S_`$%&
!"# −

∑ ∑ 𝜆X,U
WYZ,RST . 𝑃𝐹X,URSTU∈WS'X∈S_`$%&

!"# −∑ 𝜆Xab,RST . 𝑄𝐹XRSTX∈S_`)*
!"# −

∑ ∑ 𝜆X,Uab,RST . 𝑃𝐹X,URSTU∈WS'X∈S_`)*
!"# −∑ 𝛽Vc	. 𝑄𝐹VcRSTVc∈Rd!"# −∑ 5𝜔\. 𝑄𝐹\RST +\∈ef`]!"#

∑ 𝜓\,U. 𝑄𝐹\RST . 𝑃𝐹\,URSTU∈Wf+ +∑ ∑ 𝜙\,,g,\. 𝑄\,,g,\
RST

g∈hi+,\,∈eh+ 9 − ∑ 	𝛾j]	. 𝑄𝑇j]RSTj]∈bY!"#   

(𝐎𝐅𝐑𝐄𝐅) 

Where 𝑥<A0 is denoting the continuous variables and 𝑦<A0 corresponds to the binary variables 

present in REF optimisation problem. 

s. t.  

Transport capacity for REF: 

𝑄𝑇!2<A0 = ∑ 𝑄,)*,)*,!2(,)*,)*)∈7=<!6
: + ∑ 	𝑄!2,*+,,*+(*+,,*+)∈7<>!6

: ∀	𝑚𝑡 ∈ 𝑀𝑇<A0  (G-55) 

𝑄𝑇!24 ≤ 𝑄𝑇!2<A0 ≤ 𝑄𝑇!27 ∀𝑚𝑡 ∈ 𝑀𝑇<A0  (G-56) 

Equations for units in REF receiving raw materials (alkylate and gasoil). In this type of units 𝑒 =

𝑠 = 𝑟𝑤: 

𝑄𝐹*+<A0 = ∑ 𝑄,,.,,$$,$$∈7:" ∀𝑟𝑤 ∈ 𝑅𝑊<A0 , 𝑢 ∈ 𝑈<A0 ∩ 𝑈<>  (G-57) 

𝑄𝐹*+4 ≤ 𝑄𝐹*+<A0 ≤ 𝑄𝐹*+7 		∀𝑟𝑤 ∈ 𝑅𝑊<A0  (G-58) 

𝑄,,.,,$$
4 ≤ 𝑄,,.,,$$ ≤ 𝑄𝐹,,.,,$$

7 		∀	𝑢 ∈ 𝑈<A0 ∩ 𝑈<> , 𝑠 ∈ 𝑅𝑊<A0 , 𝑢TT ∈ 𝑈𝑂,  (G-59) 

𝑃𝑆,,.,) = 𝑃𝐹*+,)<A0 		∀𝑢 ∈ 𝑈<A0 ∩ 𝑈<> , 𝑟𝑤 ∈ 𝑅𝑊<A0 , 𝑝 ∈ 𝑃𝐸*+  (G-60) 

𝑃𝑆,,.,)4 ≤ 𝑃𝑆,,.,) ≤ 𝑃𝑆,,.,)7 		∀𝑢 ∈ 𝑈<A0 ∩ 𝑈<> , 𝑠 ∈ 𝑅𝑊<A0 , 𝑝 ∈ 𝑃𝐸*+  (G-61) 

Equations for units in REF receiving linking streams from CM (crude blends). In this type of 

units, 𝑠 = 𝑒, 𝑒 ∈ 𝐸𝑖𝑛68<A0 = 𝐸63: 
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𝑄𝐹(<A0 = ∑ 𝑄,,.,,$$,$$∈7:" ∀𝑒 ∈ 𝐸𝑖𝑛68<A0 , 𝑢 ∈ 𝑈𝐸𝑖𝑛68<A0  (G-62) 

𝑄𝐹(4 ≤ 𝑄𝐹(<A0 ≤ 𝑄𝐹(7		∀𝑒 ∈ 𝐸𝑖𝑛68<A0  (G-63) 

𝑄,,.,,$$
4 ≤ 𝑄,,.,,$$ ≤ 𝑄𝐹,,.,,$$

7 		∀𝑢 ∈ 𝑈𝐸𝑖𝑛68<A0 , 𝑠 ∈ 𝐸𝑖𝑛68<A0 , 𝑢TT ∈ 𝑈𝑂,  (G-64) 

𝑃𝑆,,.,) = 𝑃𝐹(,)<A0 		∀𝑢 ∈ 𝑈𝐸𝑖𝑛68<A0 , 𝑒 ∈ 𝐸𝑖𝑛68<A0 , 𝑝 ∈ 𝑃𝐸(  (G-65) 

𝑃𝑆,,.,)4 ≤ 𝑃𝑆,,.,) ≤ 𝑃𝑆,,.,)7 		∀𝑢 ∈ 𝑈𝐸𝑖𝑛68<A0 , 𝑠 ∈ 𝐸𝑖𝑛68<A0 , 𝑝 ∈ 𝑃𝐸(  (G-66) 

Equations for units in REF receiving linking streams from PTQ (H2, raffinate). 

𝑄𝐹(<A0 = ∑ 𝑄,,.,,$$,$$∈7:" ∀𝑒 ∈ 𝐸𝑖𝑛=?@<A0 , 𝑢 ∈ 𝑈𝐸𝑖𝑛=?@<A0  (G-67) 

𝑄𝐹(4 ≤ 𝑄𝐹(<A0 ≤ 𝑄𝐹(7∀𝑒 ∈ 𝐸𝑖𝑛=?@<A0  (G-68) 

𝑄,,.,,$$
4 ≤ 𝑄,,.,,$$ ≤ 𝑄𝐹,,.,,$$

7 ∀𝑢 ∈ 𝑈𝐸𝑖𝑛=?@<A0 , 𝑠 ∈ 𝐸𝑖𝑛=?@<A0 , 𝑢TT ∈ 𝑈𝑂,  (G-69) 

𝑃𝑆,,.,) = 𝑃𝐹(,)<A0 , ∀𝑒 ∈ 𝐸𝑖𝑛=?@<A0 , 𝑝 ∈ 𝑃𝐸(  (G-70) 

𝑃𝑆,,.,)4 ≤ 𝑃𝑆,,.,) ≤ 𝑃𝑆,,.,)7 ∀𝑠 ∈ 𝐸𝑖𝑛=?@<A0 , 𝑝 ∈ 𝑃𝐸(  (G-71) 

Equations for units in REF delivering final products to the external market. (In this type of units, 

e = 𝑠 = 𝑝𝑟, 𝑄𝐹, = 𝑄𝑆,,. = 𝑄𝐹)*<A0): 

𝑄𝐹)*<A0 = ∑ ∑ 𝑄,$,.,,.∈U:"$,$∈7U" 		∀	𝑝𝑟 ∈ 𝑃𝑅<A0 , 𝑢 ∈ 𝑈<A0 ∩ (𝑈=<)  (G-72) 

𝑄𝐹)*<A0 . 𝑃𝐹)*,)<A0 = ∑ ∑ 𝑄,$,.,,𝑃𝑆,$,.,)	∀𝑝 ∈ 𝑃𝐸)* ∩ 𝑃/.∈U:"$,$∈7U" , 𝑝𝑟 ∈ 𝑃𝑅<A0  (G-73) 

𝑄𝐹)*<A0 . 𝑃𝐹)*,)<A0 . 𝑃𝐹)*,U=V<A0 = ∑ ∑ 𝑄,$,.,,𝑃𝑆,$,.,)𝑃𝑆,$,.,U=V 	∀𝑝 ∈.∈U:"$,$∈7U"

𝑃𝐸)*\𝑃/ , 𝑝𝑟 ∈ 𝑃𝑅<A0  
(G-74) 

∑ 𝑃𝐹)*,)<A0
)∈=^"∩=%& = 1			∀	𝑝𝑟 ∈ 𝑃𝑅<A0  (G-75) 

𝑄𝐹)*4 ≤ 𝑄𝐹)*<A0 ≤ 𝑄𝐹)*7 		∀𝑝𝑟 ∈ 𝑃𝑅<A0  (G-76) 

𝑃𝐹,,) = 𝑃𝑆,,.,) = 𝑃𝐹)*,)<A0 		∀𝑢 ∈ 𝑈<A0 ∩ 𝑈=< , 𝑝𝑟 ∈ 𝑃𝑅<A0 , 𝑝 ∈ 𝑃𝐸)*  (G-77) 

𝑃𝐹)*,)4 ≤ 𝑃𝐹)*,)<A0 ≤ 𝑃𝐹)*,)7 		∀𝑝𝑟 ∈ 𝑃𝑅<A0 , 𝑝 ∈ 𝑃𝐸)*  (G-78) 
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Equations for units in REF producing linking streams to PTQ: 

𝑄𝐹(<A0 = ∑ ∑ 𝑄,$,.,,.∈U:"$,$∈7U" 		∀	𝑒 ∈ 𝐸𝑜𝑢𝑡=?@<A0 , 𝑢 ∈ 𝑈𝐸𝑜𝑢𝑡=?@<A0  (G-79) 

𝑄𝐹(<A0 . 𝑃𝐹(,)<A0 = ∑ ∑ 𝑄,$,.,,𝑃𝑆,$,.,)	∀𝑝 ∈ 𝑃𝐸( ∩ 𝑃/.∈U:"$,$∈7U" , 𝑒 ∈ 𝐸𝑜𝑢𝑡=?@<A0  (G-80) 

𝑄𝐹(<A0 . 𝑃𝐹(,)<A0 . 𝑃𝐹(,U=V<A0 = ∑ ∑ 𝑄,$,.,,𝑃𝑆,$,.,)𝑃𝑆,$,.,U=V 	∀𝑝 ∈.∈U:"$,$∈7U"

𝑃𝐸(\P/ , 𝑒 ∈ 𝐸𝑜𝑢𝑡=?@<A0  
(G-81) 

∑ 𝑃𝐹(,)<A0)∈=AJ∩=%& = 1		∀	𝑒 ∈ 𝐸𝑜𝑢𝑡=?@<A0  (G-82) 

𝑄𝐹(4 ≤ 𝑄𝐹(<A0 ≤ 𝑄𝐹(7		∀𝑒 ∈ 𝐸𝑜𝑢𝑡=?@<A0  (G-83) 

𝑃𝐹,,) = 𝑃𝑆,,.,) = 𝑃𝐹(,)<A0 	∀	𝑢 ∈ 𝑈𝐸𝑜𝑢𝑡=?@<A0 , 𝑒 ∈ 𝐸𝑜𝑢𝑡=?@<A0 , 𝑝 ∈ 𝑃𝐸(  (G-84) 

𝑃𝐹(,)4 ≤ 𝑃𝐹(,)<A0 ≤ 𝑃𝐹(,)7 	∀𝑒 ∈ 𝐸𝑜𝑢𝑡=?@<A0 , 𝑝 ∈ 𝑃𝐸(  (G-85) 

Equations for units in REF producing linking streams to FB: 

𝑄𝐹(<A0 = ∑ ∑ 𝑄,$,.,,.∈U:"$,$∈7U" 		∀	𝑒 ∈ 𝐸𝑜𝑢𝑡03<A0 , 𝑢 ∈ 𝑈𝐸𝑜𝑢𝑡03<A0  (G-86) 

𝑄𝐹(<A0 . 𝑃𝐹(,)<A0 = ∑ ∑ 𝑄,$,.,,𝑃𝑆,$,.,)	∀𝑝 ∈ 𝑃𝐸( ∩ 𝑃/.∈U:"$,$∈7U" , 𝑒 ∈ 𝐸𝑜𝑢𝑡03<A0  (G-87) 

𝑄𝐹(<A0 . 𝑃𝐹(,)<A0 . 𝑃𝐹(,U=V<A0 = ∑ ∑ 𝑄,$,.,,𝑃𝑆,$,.,)𝑃𝑆,$,.,U=V 	∀𝑝 ∈.∈U:"$,$∈7U"

𝑃𝐸(\P/ , 𝑒 ∈ 𝐸𝑜𝑢𝑡03<A0  
(G-88) 

∑ 𝑃𝐹(,)<A0)∈=AJ∩=%& = 1		∀	𝑒 ∈ 𝐸𝑜𝑢𝑡03<A0  (G-89) 

𝑄𝐹(4 ≤ 𝑄𝐹(<A0 ≤ 𝑄𝐹(7		∀𝑒 ∈ 𝐸𝑜𝑢𝑡03<A0  (G-90) 

𝑃𝐹,,) = 𝑃𝑆,,.,) = 𝑃𝐹(,)<A0 	∀	𝑢 ∈ 𝑈𝐸𝑜𝑢𝑡03<A0 , 𝑒 ∈ 𝐸𝑜𝑢𝑡03<A0 , 𝑝 ∈ 𝑃𝐸(  (G-91) 

𝑃𝐹(,)4 ≤ 𝑃𝐹(,)<A0 ≤ 𝑃𝐹(,)7 	∀𝑒 ∈ 𝐸𝑜𝑢𝑡03<A0 , 𝑝 ∈ 𝑃𝐸(  (G-92) 

Equations for internal units in REF: 

𝑓,,.»𝑄𝐹,, 𝑄𝑆,,.	, 𝑃𝐹,,)	, 𝑦+,,¼ = 0			∀	𝑠 ∈ 𝑆𝑂,, 𝑢 ∈ 𝑈𝐼𝑛𝑡<A0  (G-93) 

𝑔,,)»𝑄𝐹,, 𝑃𝐹,,)	, 𝑄𝑆,,.	, 𝑃𝑆,,.,)	, 𝑦+,,¼ = 0			∀	𝑠 ∈ 𝑆𝑂,	, 𝑝 ∈ 𝑃𝑂,,., 𝑢 ∈ 𝑈𝐼𝑛𝑡<A0  (G-94) 
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As mentioned before, the specific form that can take the previous equations (G-93) - (G-94) in 

the model of each unit 𝑢 depends on the type of unit being considered. The general forms of these 

equations for crude fractionation units (atmospheric distillation, vacuum distillation and 

debutanizer columns) and conversion units are presented in the electronic supplementary material 

of our previous paper (Uribe-Rodriguez et al., 2020) and can be classified in three main types: 

based on conservation principles, yield or constitutive relations and empirical correlations. The 

specific yields, factors or coefficients for specific units and feedstocks cannot be disclosed due to 

confidentiality issues. 

∑ 𝑦+,,,∈>75 ≤ 1	∀𝑤 ∈ 𝑊8A  (G-95) 

𝑐𝑎𝑝+4 . 𝑠𝑓+ . 𝑦+,, ≤ 𝑄𝐹, ≤ 𝑐𝑎𝑝+7 . 𝑠𝑓+ . 𝑦+,,	∀𝑤 ∈ 𝑊8A , 𝑢 ∈ 𝑈𝑊+  (G-96) 

𝑐𝑎𝑝+4 . 𝑠𝑓+ ≤ ∑ 𝑄𝐹,,∈7>5 ≤ 𝑐𝑎𝑝+7 . 𝑠𝑓+ 	∀𝑤 ∈ 𝑊\𝑊8A  (G-97) 

If a specific unit does not have several operating modes, 	𝑤 = 𝑢, 𝑦,,, = 1 

𝑃𝐹,,)4 ≤ 𝑃𝐹,,) ≤ 𝑃𝐹,,)7 		∀𝑢 ∈ 𝑈𝐼𝑛𝑡<A0 , 𝑝 ∈ 𝑃𝐼,  (G-98) 

𝑄𝑆,,.4 ≤ 𝑄𝑆,,. ≤ 𝑄𝑆,,.7 		∀𝑢 ∈ 𝑈𝐼𝑛𝑡<A0 , 𝑠 ∈ 𝑆𝑂,  (G-99) 

𝑃𝑆,,.,)4 ≤ 𝑃𝑆,,.,) ≤ 𝑃𝑆,,.,)7 		∀𝑢 ∈ 𝑈𝐼𝑛𝑡<A0 , 𝑠 ∈ 𝑆𝑂,, 𝑝 ∈ 𝑃𝑂,,.  (G-100) 

∑ 𝑃𝐹,,))∈=^"∩=%& = 1		∀𝑢 ∈ 𝑈𝐼𝑛𝑡<A0  (G-101) 

∑ 𝑃𝑆,,.,))∈=:*,"∩=%& = 1			∀𝑠 ∈ 𝑆𝑂,, 𝑢 ∈ 𝑈𝐼𝑛𝑡<A0  (G-102) 

𝑄𝐹, = ∑ ∑ 𝑄,$,.,,.∈U:"$,$∈7U" 	∀𝑢 ∈ 𝑈𝐼𝑛𝑡<A0  (G-103) 

𝑄𝐹,𝑃𝐹,,) = ∑ ∑ 𝑄,$,.,,𝑃𝑆,$,.,)	∀	𝑢 ∈ 𝑈𝐼𝑛𝑡<A0 , 𝑝 ∈ 𝑃𝐼, ∩ 𝑃/.∈U:"$,$∈7U"   (G-104) 

𝑄𝐹,𝑃𝐹,,)𝑃𝐹,,U=V = ∑ ∑ 𝑄,$,.,,𝑃𝑆,$,.,)𝑃𝑆,$,.,U=V 	∀𝑢 ∈ 𝑈𝐼𝑛𝑡<A0 , 𝑝 ∈.∈U:"$,$∈7U"

𝑃𝐼,\𝑃/  
(G-105) 
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𝑄𝑆,,. = ∑ 𝑄,,.,,$$ 		∀	𝑢 ∈ 𝑈𝐼𝑛𝑡<A0 , 𝑠 ∈ 𝑆𝑂,,$$∈7:"   (G-106) 

𝑄,,.,,$$
4 ≤ 𝑄,,.,,$$ ≤ 𝑄𝑆,,.,,$$

7 		∀𝑢 ∈ 𝑈𝐼𝑛𝑡<A0 , 𝑠 ∈ 𝑆𝑂,, 𝑢TT ∈ 𝑈𝑂,  (G-107) 

The nonconvexities in problem REF arise from Eqs. G-73, G-74, G-80, G-81, G-87, G-88, G-

93, G-94, G-104, G-105. 

Petrochemicals (PTQ) model 

The petrochemical (PTQ) problem is formulated as a MIQCQP. The objective function 𝐎𝐅𝐏𝐓𝐐 

represents the profit to be maximized: 

𝑓Q
WYZ(𝑥WYZ , 𝑦WYZ) = ∑ 𝛼UV . 𝑄𝐹UV

WYZ
UV∈WR$%& +∑ 𝜆X

WYZ,RST . 𝑄𝐹X
WYZ

X∈𝐸𝑜𝑢𝑡𝑅𝐸𝐹
𝑃𝑇𝑄 +

∑ ∑ 𝜆X,U
WYZ,RST . 𝑃𝐹X,U

WYZ
U∈WS'X∈𝐸𝑜𝑢𝑡𝑅𝐸𝐹

𝑃𝑇𝑄 +	∑ 𝜆X
WYZ,T^ . 𝑄𝐹X

WYZ
X∈𝐸𝑜𝑢𝑡𝐹𝐵

𝑃𝑇𝑄 +

∑ ∑ 𝜆X,U
WYZ,T^ . 𝑃𝐹X,U

WYZ
U∈WS'X∈𝐸𝑜𝑢𝑡𝐹𝐵

𝑃𝑇𝑄 − ∑ 𝜆X
RST,WYZ . 𝑄𝐹X

WYZ
X∈𝐸𝑖𝑛𝑅𝐸𝐹

𝑃𝑇𝑄 −

∑ ∑ 𝜆X,U
RST,WYZ . 𝑃𝐹X,U

WYZ
U∈WS'X∈𝐸𝑖𝑛𝑅𝐸𝐹

𝑃𝑇𝑄 −∑ 𝛽Vc	. 𝑄𝐹Vc
WYZ

Vc∈Rd$%& −∑ 5𝜔\. 𝑄𝐹\
WYZ +\∈ef`]$%&

∑ 𝜓\,U. 𝑄𝐹\
WYZ . 𝑃𝐹\,U

WYZ
U∈Wf+ + ∑ ∑ 𝜙\,,g,\. 𝑄\,,g,\

WYZ
g∈hi+,\,∈eh+ 9 − ∑ 	𝛾j]	. 𝑄𝑇j]

WYZ
j]∈bY$%&   

(𝐎𝐅𝐏𝐓𝐐) 

Where 𝑥=?@ is denoting the continuous variables and 𝑦=?@ corresponds to the binary variables 

present in REF optimisation problem. 

s. t.  

Transport capacity for PTQ: 

𝑄𝑇!2
=?@ = ∑ 𝑄,)*,)*,!2(,)*,)*)∈7=<!6

: + ∑ 	𝑄!2,*+,,*+(*+,,*+)∈7<>!6
: ∀	𝑚𝑡 ∈

𝑀𝑇=?@  
(G-108) 

𝑄𝑇!24 ≤ 𝑄𝑇!2
=?@ ≤ 𝑄𝑇!27 ∀𝑚𝑡 ∈ 𝑀𝑇=?@  (G-109) 

Equations for units in PTQ receiving raw materials. In this type of units 𝑒 = 𝑠 = 𝑟𝑤: 

𝑄𝐹*+
=?@ = ∑ 𝑄,,.,,$$,$$∈7:" ∀𝑟𝑤 ∈ 𝑅𝑊=?@ , 𝑢 ∈ 𝑈=?@ ∩ 𝑈<>  (G-110) 
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𝑄𝐹*+4 ≤ 𝑄𝐹*+
=?@ ≤ 𝑄𝐹*+7 		∀𝑟𝑤 ∈ 𝑅𝑊=?@  (G-111) 

𝑄,,.,,$$
4 ≤ 𝑄,,.,,$$ ≤ 𝑄𝐹,,.,,$$

7 		∀	𝑢 ∈ 𝑈=?@ ∩ 𝑈<> , 𝑠 ∈ 𝑅𝑊=?@ , 𝑢TT ∈ 𝑈𝑂,  (G-112) 

𝑃𝑆,,.,) = 𝑃𝐹*+,)
=?@ 		∀𝑢 ∈ 𝑈=?@ ∩ 𝑈<> , 𝑟𝑤 ∈ 𝑅𝑊=?@ , 𝑝 ∈ 𝑃𝐸*+  (G-113) 

𝑃𝑆,,.,)4 ≤ 𝑃𝑆,,.,) ≤ 𝑃𝑆,,.,)7 		∀𝑢 ∈ 𝑈=?@ ∩ 𝑈<> , 𝑠 ∈ 𝑅𝑊=?@ , 𝑝 ∈ 𝑃𝐸*+  (G-114) 

Equations for units in PTQ receiving linking streams from REF. 

𝑄𝐹(
=?@ = ∑ 𝑄,,.,,$$,$$∈7:" ∀𝑒 ∈ 𝐸𝑖𝑛<A0

=?@ , 𝑢 ∈ 𝑈𝐸𝑖𝑛<A0
=?@  (G-115) 

𝑄𝐹(4 ≤ 𝑄𝐹(
=?@ ≤ 𝑄𝐹(7∀𝑒 ∈ 𝐸𝑖𝑛<A0

=?@  (G-116) 

𝑄,,.,,$$
4 ≤ 𝑄,,.,,$$ ≤ 𝑄𝐹,,.,,$$

7 ∀𝑢 ∈ 𝑈𝐸𝑖𝑛<A0
=?@ , 𝑠 ∈ 𝐸𝑖𝑛<A0

=?@ , 𝑢TT ∈ 𝑈𝑂,  (G-117) 

𝑃𝑆,,.,) = 𝑃𝐹(,)
=?@ , ∀𝑒 ∈ 𝐸𝑖𝑛<A0

=?@ , 𝑝 ∈ 𝑃𝐸(  (G-118) 

𝑃𝑆,,.,)4 ≤ 𝑃𝑆,,.,) ≤ 𝑃𝑆,,.,)7 ∀𝑠 ∈ 𝐸𝑖𝑛<A0
=?@ , 𝑝 ∈ 𝑃𝐸(  (G-119) 

Equations for units in PTQ delivering final products to the external market. (In this type of units, 

e = 𝑠 = 𝑝𝑟, 𝑄𝐹, = 𝑄𝑆,,. = 𝑄𝐹)*
=?@): 

𝑄𝐹)*
=?@ = ∑ ∑ 𝑄,$,.,,.∈U:"$,$∈7U" 		∀	𝑝𝑟 ∈ 𝑃𝑅=?@ , 𝑢 ∈ 𝑈=?@ ∩ (𝑈=<)  (G-120) 

𝑄𝐹)*
=?@ . 𝑃𝐹)*,)

=?@ = ∑ ∑ 𝑄,$,.,,𝑃𝑆,$,.,)	∀𝑝 ∈ 𝑃𝐸)* ∩ 𝑃/.∈U:"$,$∈7U" , 𝑝𝑟 ∈ 𝑃𝑅=?@  (G-121) 

𝑄𝐹)*
=?@ . 𝑃𝐹)*,)

=?@ . 𝑃𝐹)*,U=V
=?@ = ∑ ∑ 𝑄,$,.,,𝑃𝑆,$,.,)𝑃𝑆,$,.,U=V 	∀𝑝 ∈.∈U:"$,$∈7U"

𝑃𝐸)*\𝑃/ , 𝑝𝑟 ∈ 𝑃𝑅=?@  
(G-122) 

∑ 𝑃𝐹)*,)
=?@

)∈=^"∩=%& = 1			∀	𝑝𝑟 ∈ 𝑃𝑅=?@  (G-123) 

𝑄𝐹)*4 ≤ 𝑄𝐹)*
=?@ ≤ 𝑄𝐹)*7 		∀𝑝𝑟 ∈ 𝑃𝑅=?@  (G-124) 

𝑃𝐹,,) = 𝑃𝑆,,.,) = 𝑃𝐹)*,)
=?@ 		∀𝑢 ∈ 𝑈=?@ ∩ 𝑈=< , 𝑝𝑟 ∈ 𝑃𝑅=?@ , 𝑝 ∈ 𝑃𝐸)*  (G-125) 

𝑃𝐹)*,)4 ≤ 𝑃𝐹)*,)
=?@ ≤ 𝑃𝐹)*,)7 		∀𝑝𝑟 ∈ 𝑃𝑅=?@ , 𝑝 ∈ 𝑃𝐸)*  (G-126) 
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Equations for units in PTQ producing linking streams to REF: 

𝑄𝐹(
=?@ = ∑ ∑ 𝑄,$,.,,.∈U:"$,$∈7U" 		∀	𝑒 ∈ 𝐸𝑜𝑢𝑡<A0

=?@ , 𝑢 ∈ 𝑈𝐸𝑜𝑢𝑡<A0
=?@  (G-127) 

𝑄𝐹(
=?@ . 𝑃𝐹(,)

=?@ = ∑ ∑ 𝑄,$,.,,𝑃𝑆,$,.,)	∀𝑝 ∈ 𝑃𝐸( ∩ 𝑃/.∈U:"$,$∈7U" , 𝑒 ∈ 𝐸𝑜𝑢𝑡<A0
=?@  (G-128) 

𝑄𝐹(
=?@ . 𝑃𝐹(,)

=?@ . 𝑃𝐹(,U=V
=?@ = ∑ ∑ 𝑄,$,.,,𝑃𝑆,$,.,)𝑃𝑆,$,.,U=V 	∀𝑝 ∈.∈U:"$,$∈7U"

𝑃𝐸(\P/ , 𝑒 ∈ 𝐸𝑜𝑢𝑡<A0
=?@  

(G-129) 

∑ 𝑃𝐹(,)
=?@

)∈=AJ∩=%& = 1		∀	𝑒 ∈ 𝐸𝑜𝑢𝑡<A0
=?@  (G-130) 

𝑄𝐹(4 ≤ 𝑄𝐹(
=?@ ≤ 𝑄𝐹(7		∀𝑒 ∈ 𝐸𝑜𝑢𝑡<A0

=?@  (G-131) 

𝑃𝐹,,) = 𝑃𝑆,,.,) = 𝑃𝐹(,)
=?@ 	∀	𝑢 ∈ 𝑈𝐸𝑜𝑢𝑡<A0

=?@ , 𝑒 ∈ 𝐸𝑜𝑢𝑡<A0
=?@ , 𝑝 ∈ 𝑃𝐸(  (G-132) 

𝑃𝐹(,)4 ≤ 𝑃𝐹(,)
=?@ ≤ 𝑃𝐹(,)7 	∀𝑒 ∈ 𝐸𝑜𝑢𝑡<A0

=?@ , 𝑝 ∈ 𝑃𝐸(  (G-133) 

Equations for units in PTQ producing linking streams (gasoline components) to FB: 

𝑄𝐹(
=?@ = ∑ ∑ 𝑄,$,.,,.∈U:"$,$∈7U" 		∀	𝑒 ∈ 𝐸𝑜𝑢𝑡03

=?@ , 𝑢 ∈ 𝑈𝐸𝑜𝑢𝑡03
=?@  (G-134) 

𝑄𝐹(
=?@ . 𝑃𝐹(,)

=?@ = ∑ ∑ 𝑄,$,.,,𝑃𝑆,$,.,)	∀𝑝 ∈ 𝑃𝐸( ∩ 𝑃/.∈U:"$,$∈7U" , 𝑒 ∈ 𝐸𝑜𝑢𝑡03
=?@  (G-135) 

𝑄𝐹(
=?@ . 𝑃𝐹(,)

=?@ . 𝑃𝐹(,U=V
=?@ = ∑ ∑ 𝑄,$,.,,𝑃𝑆,$,.,)𝑃𝑆,$,.,U=V 	∀𝑝 ∈.∈U:"$,$∈7U"

𝑃𝐸(\P/ , 𝑒 ∈ 𝐸𝑜𝑢𝑡03
=?@  

(G-136) 

∑ 𝑃𝐹(,)
=?@

)∈=AJ∩=%& = 1		∀	𝑒 ∈ 𝐸𝑜𝑢𝑡03
=?@  (G-137) 

𝑄𝐹(4 ≤ 𝑄𝐹(
=?@ ≤ 𝑄𝐹(7		∀𝑒 ∈ 𝐸𝑜𝑢𝑡03

=?@  (G-138) 

𝑃𝐹,,) = 𝑃𝑆,,.,) = 𝑃𝐹(,)
=?@ 	∀	𝑢 ∈ 𝑈𝐸𝑜𝑢𝑡03

=?@ , 𝑒 ∈ 𝐸𝑜𝑢𝑡03
=?@ , 𝑝 ∈ 𝑃𝐸(  (G-139) 

𝑃𝐹(,)4 ≤ 𝑃𝐹(,)
=?@ ≤ 𝑃𝐹(,)7 	∀𝑒 ∈ 𝐸𝑜𝑢𝑡03

=?@ , 𝑝 ∈ 𝑃𝐸(  (G-140) 

Equations for internal units in PTQ: 

𝑓,,.»𝑄𝐹,, 𝑄𝑆,,.	, 𝑃𝐹,,)	, 𝑦+,,¼ = 0			∀	𝑠 ∈ 𝑆𝑂,, 𝑢 ∈ 𝑈𝐼𝑛𝑡=?@  (G-141) 
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𝑔,,)»𝑄𝐹,, 𝑃𝐹,,)	, 𝑄𝑆,,.	, 𝑃𝑆,,.,)	, 𝑦+,,¼ = 0			∀	𝑠 ∈ 𝑆𝑂,	, 𝑝 ∈ 𝑃𝑂,,., 𝑢 ∈ 𝑈𝐼𝑛𝑡=?@  (G-142) 

∑ 𝑦+,,,∈>75 ≤ 1	∀𝑤 ∈ 𝑊8A  (G-143) 

𝑐𝑎𝑝+4 . 𝑠𝑓+ . 𝑦+,, ≤ 𝑄𝐹, ≤ 𝑐𝑎𝑝+7 . 𝑠𝑓+ . 𝑦+,,	∀𝑤 ∈ 𝑊8A , 𝑢 ∈ 𝑈𝑊+  (G-144) 

𝑐𝑎𝑝+4 . 𝑠𝑓+ ≤ ∑ 𝑄𝐹,,∈7>5 ≤ 𝑐𝑎𝑝+7 . 𝑠𝑓+ 	∀𝑤 ∈ 𝑊\𝑊8A  (G-145) 

If a specific unit does not have several G-149 operating modes, 	𝑤 = 𝑢, 𝑦,,, = 1 

𝑃𝐹,,)4 ≤ 𝑃𝐹,,) ≤ 𝑃𝐹,,)7 		∀𝑢 ∈ 𝑈𝐼𝑛𝑡=?@ , 𝑝 ∈ 𝑃𝐼,  (G-146) 

𝑄𝑆,,.4 ≤ 𝑄𝑆,,. ≤ 𝑄𝑆,,.7 		∀𝑢 ∈ 𝑈𝐼𝑛𝑡=?@ , 𝑠 ∈ 𝑆𝑂,  (G-147) 

𝑃𝑆,,.,)4 ≤ 𝑃𝑆,,.,) ≤ 𝑃𝑆,,.,)7 		∀𝑢 ∈ 𝑈𝐼𝑛𝑡=?@ , 𝑠 ∈ 𝑆𝑂,, 𝑝 ∈ 𝑃𝑂,,.  (G-148) 

∑ 𝑃𝐹,,))∈=^"∩=%& = 1		∀𝑢 ∈ 𝑈𝐼𝑛𝑡=?@  (G-149) 

∑ 𝑃𝑆,,.,))∈=:*,"∩=%& = 1			∀𝑠 ∈ 𝑆𝑂,, 𝑢 ∈ 𝑈𝐼𝑛𝑡=?@  (G-150) 

𝑄𝐹, = ∑ ∑ 𝑄,$,.,,.∈U:"$,$∈7U" 	∀𝑢 ∈ 𝑈𝐼𝑛𝑡=?@  (G-151) 

𝑄𝐹,𝑃𝐹,,) = ∑ ∑ 𝑄,$,.,,𝑃𝑆,$,.,)	∀	𝑢 ∈ 𝑈𝐼𝑛𝑡=?@ , 𝑝 ∈ 𝑃𝐼, ∩ 𝑃/.∈U:"$,$∈7U"   (G-152) 

𝑄𝐹,𝑃𝐹,,)𝑃𝐹,,U=V = ∑ ∑ 𝑄,$,.,,𝑃𝑆,$,.,)𝑃𝑆,$,.,U=V 	∀𝑢 ∈ 𝑈𝐼𝑛𝑡=?@ , 𝑝 ∈.∈U:"$,$∈7U"

𝑃𝐼,\𝑃/  
(G-153) 

𝑄𝑆,,. = ∑ 𝑄,,.,,$$ 		∀	𝑢 ∈ 𝑈𝐼𝑛𝑡=?@ , 𝑠 ∈ 𝑆𝑂,,$$∈7:"   (G-154) 

𝑄,,.,,$$
4 ≤ 𝑄,,.,,$$ ≤ 𝑄𝑆,,.,,$$

7 		∀𝑢 ∈ 𝑈𝐼𝑛𝑡=?@ , 𝑠 ∈ 𝑆𝑂,, 𝑢TT ∈ 𝑈𝑂,  (G-155) 

The nonconvexities in problem PTQ arise from Eqs. G-121, G-122, G-128, G-129, G-135, G-

136, G-141, G-142, G-152, G-153. 
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Fuel blending (FB) model 

The fuel blending (FB) optimisation problem is QCQP, where objective function 𝐎𝐅𝐅𝐁 

represents the profit to be maximized.  The nonconvexities arise from mixing on volume (Eq. G-

176) and weight (Eq. G-177) basis to estimate stream properties. 

𝑓F03(𝑥03) = 𝑝𝑟𝑜𝑓𝑖𝑡03 = 𝑡𝑜𝑡𝑎𝑙𝑟𝑒𝑣𝑒𝑛𝑢𝑒03 − 𝑡𝑜𝑡𝑎𝑙𝑐𝑜𝑠𝑡03  (𝐎𝐅𝐅𝐁) 

Where 𝑥03 is denoting the continuous variables. No binary variables are present in FB 

optimisation problem. 

𝑡𝑜𝑡𝑎𝑙𝑟𝑒𝑣𝑒𝑛𝑢𝑒03 = ∑ 𝛼)* . 𝑄𝐹)*03)*∈=<&4   (G-156) 

𝑡𝑜𝑡𝑎𝑙𝑐𝑜𝑠𝑡03 = ∑ 𝜆(
<A0,03 . 𝑄𝐹(03(∈A"1-M&

&4 +∑ ∑ 𝜆(,)
<A0,03 . 𝑃𝐹(,)03)∈=AJ(∈A"1-M&

&4 +

+∑ 𝜆(
=?@,03 . 𝑄𝐹(03(∈A"1,OP

&4 + ∑ ∑ 𝜆(,)
=?@,03 . 𝑃𝐹(,)03)∈=AJ(∈A"1,OP

&4 +

∑ 𝛽*+ 	. 𝑄𝐹*+03 +∑ 	𝛾!2	. 𝑄𝑇!203!2∈8?&4*+∈<>&4   

(G-157) 

s. t.  

Transport capacity for FB: 

𝑄𝑇!203 = ∑ 𝑄,)*,)*,!2(,)*,)*)∈7=<!6
&4 +∑ 	𝑄!2,*+,,*+(*+,,*+)∈7<>!6

&4 ∀	𝑚𝑡 ∈ 𝑀𝑇03  (G-158) 

𝑄𝑇!24 ≤ 𝑄𝑇!203 ≤ 𝑄𝑇!27 ∀𝑚𝑡 ∈ 𝑀𝑇03  (G-159) 

Equations for units in FB receiving raw materials (diesel, gasoline). In this type of units 𝑒 = 𝑠 =

𝑟𝑤: 

𝑄𝐹*+03 = ∑ 𝑄,,.,,$$ 		∀	𝑟𝑤 ∈,$$∈7:" 𝑅𝑊03 , 𝑢 ∈ 𝑈03 ∩ 𝑈<>  (G-160) 

𝑄𝐹*+4 ≤ 𝑄𝐹*+03 ≤ 𝑄𝐹*+7 	∀	𝑟𝑤 ∈ 𝑅𝑊03  (G-161) 

𝑄,,.,,$$
4 ≤ 𝑄,,.,,$$

03 ≤ 𝑄,,.,,$$
7 	∀	𝑢 ∈ 𝑈03 ∩ 𝑈<> , 𝑠 ∈ 𝑅𝑊03 , 𝑢TT ∈ 𝑈𝑂,  (G-162) 

𝑃𝑆,,.,) = 𝑃𝐹*+,)03 	∀	𝑢 ∈ 𝑈03 ∩ 𝑈<> , 𝑟𝑤 ∈ 𝑅𝑊03 , 𝑝 ∈ 𝑃𝐸*+  (G-163) 
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𝑃𝑆,,.,)4 ≤ 𝑃𝑆,,.,) ≤ 𝑃𝑆,,.,)7 	∀	𝑢 ∈ 𝑈03 ∩ 𝑈<> , 𝑠 ∈ 𝑅𝑊03 , 𝑝 ∈ 𝑃𝐸*+  (G-164) 

Equations for units in FB receiving linking streams from REF. 

𝑄𝐹(03 = ∑ 𝑄,,.,,$$,$$∈7:" ∀𝑒 ∈ 𝐸𝑖𝑛<A003 , 𝑢 ∈ 𝑈𝐸𝑖𝑛<A003   (G-165) 

𝑄𝐹(4 ≤ 𝑄𝐹(03 ≤ 𝑄𝐹(7∀𝑒 ∈ 𝐸𝑖𝑛<A003   (G-166) 

𝑄,,.,,$$
4 ≤ 𝑄,,.,,$$ ≤ 𝑄𝐹,,.,,$$

7 ∀𝑢 ∈ 𝑈𝐸𝑖𝑛<A003 , 𝑠 ∈ 𝐸𝑖𝑛<A003 , 𝑢TT ∈ 𝑈𝑂,  (G-167) 

𝑃𝑆,,.,) = 𝑃𝐹(,)03 , ∀𝑒 ∈ 𝐸𝑖𝑛<A003 , 𝑝 ∈ 𝑃𝐸(  (G-168) 

𝑃𝑆,,.,)4 ≤ 𝑃𝑆,,.,) ≤ 𝑃𝑆,,.,)7 ∀𝑠 ∈ 𝐸𝑖𝑛<A003 , 𝑝 ∈ 𝑃𝐸(  (G-169) 

Equations for units in FB receiving linking streams from PTQ: 

𝑄𝐹(03 = ∑ 𝑄,,.,,$$,$$∈7:" ∀𝑒 ∈ 𝐸𝑖𝑛=?@03 , 𝑢 ∈ 𝑈𝐸𝑖𝑛=?@03    (G-170) 

𝑄𝐹(4 ≤ 𝑄𝐹(03 ≤ 𝑄𝐹(7∀𝑒 ∈ 𝐸𝑖𝑛=?@03   (G-171) 

𝑄,,.,,$$
4 ≤ 𝑄,,.,,$$ ≤ 𝑄𝐹,,.,,$$

7 ∀𝑢 ∈ 𝑈𝐸𝑖𝑛=?@03 , 𝑠 ∈ 𝐸𝑖𝑛=?@03 , 𝑢TT ∈ 𝑈𝑂,  (G-172) 

𝑃𝑆,,.,) = 𝑃𝐹(,)03 , ∀𝑒 ∈ 𝐸𝑖𝑛=?@03 , 𝑝 ∈ 𝑃𝐸(  (G-173) 

𝑃𝑆,,.,)4 ≤ 𝑃𝑆,,.,) ≤ 𝑃𝑆,,.,)7 ∀𝑠 ∈ 𝐸𝑖𝑛=?@03 , 𝑝 ∈ 𝑃𝐸(  (G-174) 

Equations for units in FB delivering final products to the external market. (In this type of units, 

e = 𝑠 = 𝑝𝑟, 𝑄𝐹, = 𝑄𝑆,,. = 𝑄𝐹)*03): 

𝑄𝐹)*03 = ∑ ∑ 𝑄,$,.,,.∈U:"$,$∈7U" 		∀	𝑝𝑟 ∈ 𝑃𝑅03 , 𝑢 ∈ 𝑈03 ∩ (𝑈=<)   (G-175) 

𝑄𝐹)*03 . 𝑃𝐹)*,)03 = ∑ ∑ 𝑄,$,.,,𝑃𝑆,$,.,)	∀𝑝 ∈ 𝑃𝐸)* ∩ 𝑃/.∈U:"$,$∈7U" , 𝑝𝑟 ∈ 𝑃𝑅03  (G-176) 

𝑄𝐹)*03 . 𝑃𝐹)*,)03 . 𝑃𝐹)*,U=V03 = ∑ ∑ 𝑄,$,.,,𝑃𝑆,$,.,)𝑃𝑆,$,.,U=V 	∀𝑝 ∈.∈U:"$,$∈7U"

𝑃𝐸)*\𝑃/ , 𝑝𝑟 ∈ 𝑃𝑅03  
(G-177) 

∑ 𝑃𝐹)*,)03
)∈=^"∩=%& = 1			∀	𝑝𝑟 ∈ 𝑃𝑅03  (G-178) 

𝑄𝐹)*4 ≤ 𝑄𝐹)*03 ≤ 𝑄𝐹)*7 		∀𝑝𝑟 ∈ 𝑃𝑅03  (G-179) 
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𝑃𝐹,,) = 𝑃𝑆,,.,) = 𝑃𝐹)*,)03 		∀𝑢 ∈ 𝑈03 ∩ 𝑈=< , 𝑝𝑟 ∈ 𝑃𝑅03 , 𝑝 ∈ 𝑃𝐸)*  (G-180) 

𝑃𝐹)*,)4 ≤ 𝑃𝐹)*,)03 ≤ 𝑃𝐹)*,)7 		∀𝑝𝑟 ∈ 𝑃𝑅03 , 𝑝 ∈ 𝑃𝐸)*  (G-181) 

The performance of local solvers such as SBB and DICOPT for solving problem the short-term 

IRPC planning problem was also investigated and their results are shown in the Table G. 1.  For 

the BCS scenario, the local solution (1.367 MMUSD/day) reached for these solvers is 54% worse 

than the best solution found (2.964 MMUSD/day), which corresponds to the clustering approach 

with six clusters. Similar figures are reported by SBB and DICOPT for the WRPS and DRS 

scenarios, with a local optimal about 48% and 64% worse than the best solutions found, which 

again correspond to six clusters. Interestingly, for the LDS scenario, the local solvers reached an 

optimal value, representing a loss in profit of 0.152 MMUSD/day. Recall that the best solution 

reported for this scenario is 2.664 MMUSD/day.  

These findings highlight the relevance of an initialization procedure to provide good initial points 

to the local solvers and on the other hand, the potential benefits in profit that can be achieved 

applying global optimisation techniques, such as the Lagrangean-based decomposition and the 

clustering approach. 

Overall, local solvers such as SBB and DICOPT are not reliable to solve the large-scale MIQCQP 

addressed in this work, since they might provide a poor local optimal solution or as in the logistic 

disruption scenario (LDS) they can reach a local optimal representing a loss in profit. Recall that 

for the LDS the best solution found is 2.664 MMUSD/day. 
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Table G. 1. Results from local MINLP solvers SBB and DICOPT compared to the Lagrangean decomposition algorithm and the 
Clustering approach. 

 Base case scenario (BCS) 

 LB 

[kUSD/day] 

UB  

[kUSD/day] 

|Relaxation 

Gap [%] 

Runtime  

[h] 

Lagrangean Decomposition*  2,953 3,181 7.2% 10.03 

Clustering Approach** 2,964 3,205 7.5% 5.70 

SBB/DICOPT*** 1,367 N/A N/A 0.002 

 Without refinery-petrochemical integration scenario (WRPS) 

 LB 

[kUSD/day] 

UB  

[kUSD/day] 

Relaxation Gap 

[%] 

Runtime  

[h] 

Lagrangean Decomposition*  2,006 2,022 0.8% 0.72 

Clustering Approach** 2,009 2,233 10.0% 5.84 

SBB/DICOPT*** 1,050 N/A N/A 0.002 

 Logistic disruption scenario (LDS) 

 LB 

[kUSD/day] 

UB  

[kUSD/day] 

Relaxation 

Gap[%] 

Runtime  

[h] 

Lagrangean Decomposition* 2,661 2,814 5.4% 10.08 

Clustering Approach** 2,664 3,050 12.7% 3.68 

SBB/DICOPT*** -152 N/A N/A 0.002 

 Demand reduction scenario (DRS) 

 LB 

[kUSD/day] 

UB  

[kUSD/day] 

Relaxation 

Gap[%] 

Runtime  

[h] 

Lagrangean Decomposition*  2,804 2,908 3.6% 5.84 

Clustering Approach** 2,833 3,090 8.3% 5.80 

SBB/DICOPT*** 1,008 N/A N/A 0.002 

*Using three subproblems: CM, RB and PTQ 

**Using six clusters 

*** Optimality gap is applied for SBB and DICOPT 
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Appendix H. PRELIMINARY RESULTS 

NMDT IN THE CLUSTERING APPROACH 

The performance for the NMDT relaxation integrated into the clustering decomposition approach 

is shown in Figure H. 1, Figure H. 2 and Figure H. 3 for WRPS, LDS and DRS scenarios, 

respectively. By applying NMDT (problem PR’), we were able to reach a better lower bound for 

the BCS and WRPS scenarios, whilst for LDS and DRS scenarios the LB obtained for PCM 

(problem PR) and NMDT are the same. This finding highlights the capability of the algorithm to 

integrate both approaches. However, in terms of duality gap, the NMDT led to the worst figures 

for all the scenarios. Thus, there is not strong evidence that applying NMDT we can obtain at least 

similar results as the PCM. This is a further research topic.  

 

 
Figure H. 1. Clustering approach performance for NMDT applied to WRPS. 
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Figure H. 2. Clustering approach performance for NMDT applied to LDS. 

 

 
Figure H. 3. Clustering approach performance for NMDT applied to DRS. 
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