5 research outputs found

    Single-Frequency Network Terrestrial Broadcasting with 5GNR Numerology

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Advanced constellation and demapper schemes for next generation digital terrestrial television broadcasting systems

    Get PDF
    206 p.Esta tesis presenta un nuevo tipo de constelaciones llamadas no uniformes. Estos esquemas presentan una eficacia de hasta 1,8 dB superior a las utilizadas en los últimos sistemas de comunicaciones de televisión digital terrestre y son extrapolables a cualquier otro sistema de comunicaciones (satélite, móvil, cable¿). Además, este trabajo contribuye al diseño de constelaciones con una nueva metodología que reduce el tiempo de optimización de días/horas (metodologías actuales) a horas/minutos con la misma eficiencia. Todas las constelaciones diseñadas se testean bajo una plataforma creada en esta tesis que simula el estándar de radiodifusión terrestre más avanzado hasta la fecha (ATSC 3.0) bajo condiciones reales de funcionamiento.Por otro lado, para disminuir la latencia de decodificación de estas constelaciones esta tesis propone dos técnicas de detección/demapeo. Una es para constelaciones no uniformes de dos dimensiones la cual disminuye hasta en un 99,7% la complejidad del demapeo sin empeorar el funcionamiento del sistema. La segunda técnica de detección se centra en las constelaciones no uniformes de una dimensión y presenta hasta un 87,5% de reducción de la complejidad del receptor sin pérdidas en el rendimiento.Por último, este trabajo expone un completo estado del arte sobre tipos de constelaciones, modelos de sistema, y diseño/demapeo de constelaciones. Este estudio es el primero realizado en este campo

    Transmit and Receive Signal Processing for MIMO Terrestrial Broadcast Systems

    Full text link
    [EN] Multiple-Input Multiple-Output (MIMO) technology in Digital Terrestrial Television (DTT) networks has the potential to increase the spectral efficiency and improve network coverage to cope with the competition of limited spectrum use (e.g., assignment of digital dividend and spectrum demands of mobile broadband), the appearance of new high data rate services (e.g., ultra-high definition TV - UHDTV), and the ubiquity of the content (e.g., fixed, portable, and mobile). It is widely recognised that MIMO can provide multiple benefits such as additional receive power due to array gain, higher resilience against signal outages due to spatial diversity, and higher data rates due to the spatial multiplexing gain of the MIMO channel. These benefits can be achieved without additional transmit power nor additional bandwidth, but normally come at the expense of a higher system complexity at the transmitter and receiver ends. The final system performance gains due to the use of MIMO directly depend on physical characteristics of the propagation environment such as spatial correlation, antenna orientation, and/or power imbalances experienced at the transmit aerials. Additionally, due to complexity constraints and finite-precision arithmetic at the receivers, it is crucial for the overall system performance to carefully design specific signal processing algorithms. This dissertation focuses on transmit and received signal processing for DTT systems using MIMO-BICM (Bit-Interleaved Coded Modulation) without feedback channel to the transmitter from the receiver terminals. At the transmitter side, this thesis presents investigations on MIMO precoding in DTT systems to overcome system degradations due to different channel conditions. At the receiver side, the focus is given on design and evaluation of practical MIMO-BICM receivers based on quantized information and its impact in both the in-chip memory size and system performance. These investigations are carried within the standardization process of DVB-NGH (Digital Video Broadcasting - Next Generation Handheld) the handheld evolution of DVB-T2 (Terrestrial - Second Generation), and ATSC 3.0 (Advanced Television Systems Committee - Third Generation), which incorporate MIMO-BICM as key technology to overcome the Shannon limit of single antenna communications. Nonetheless, this dissertation employs a generic approach in the design, analysis and evaluations, hence, the results and ideas can be applied to other wireless broadcast communication systems using MIMO-BICM.[ES] La tecnología de múltiples entradas y múltiples salidas (MIMO) en redes de Televisión Digital Terrestre (TDT) tiene el potencial de incrementar la eficiencia espectral y mejorar la cobertura de red para afrontar las demandas de uso del escaso espectro electromagnético (e.g., designación del dividendo digital y la demanda de espectro por parte de las redes de comunicaciones móviles), la aparición de nuevos contenidos de alta tasa de datos (e.g., ultra-high definition TV - UHDTV) y la ubicuidad del contenido (e.g., fijo, portable y móvil). Es ampliamente reconocido que MIMO puede proporcionar múltiples beneficios como: potencia recibida adicional gracias a las ganancias de array, mayor robustez contra desvanecimientos de la señal gracias a la diversidad espacial y mayores tasas de transmisión gracias a la ganancia por multiplexado del canal MIMO. Estos beneficios se pueden conseguir sin incrementar la potencia transmitida ni el ancho de banda, pero normalmente se obtienen a expensas de una mayor complejidad del sistema tanto en el transmisor como en el receptor. Las ganancias de rendimiento finales debido al uso de MIMO dependen directamente de las características físicas del entorno de propagación como: la correlación entre los canales espaciales, la orientación de las antenas y/o los desbalances de potencia sufridos en las antenas transmisoras. Adicionalmente, debido a restricciones en la complejidad y aritmética de precisión finita en los receptores, es fundamental para el rendimiento global del sistema un diseño cuidadoso de algoritmos específicos de procesado de señal. Esta tesis doctoral se centra en el procesado de señal, tanto en el transmisor como en el receptor, para sistemas TDT que implementan MIMO-BICM (Bit-Interleaved Coded Modulation) sin canal de retorno hacia el transmisor desde los receptores. En el transmisor esta tesis presenta investigaciones en precoding MIMO en sistemas TDT para superar las degradaciones del sistema debidas a diferentes condiciones del canal. En el receptor se presta especial atención al diseño y evaluación de receptores prácticos MIMO-BICM basados en información cuantificada y a su impacto tanto en la memoria del chip como en el rendimiento del sistema. Estas investigaciones se llevan a cabo en el contexto de estandarización de DVB-NGH (Digital Video Broadcasting - Next Generation Handheld), la evolución portátil de DVB-T2 (Second Generation Terrestrial), y ATSC 3.0 (Advanced Television Systems Commitee - Third Generation) que incorporan MIMO-BICM como clave tecnológica para superar el límite de Shannon para comunicaciones con una única antena. No obstante, esta tesis doctoral emplea un método genérico tanto para el diseño, análisis y evaluación, por lo que los resultados e ideas pueden ser aplicados a otros sistemas de comunicación inalámbricos que empleen MIMO-BICM.[CA] La tecnologia de múltiples entrades i múltiples eixides (MIMO) en xarxes de Televisió Digital Terrestre (TDT) té el potencial d'incrementar l'eficiència espectral i millorar la cobertura de xarxa per a afrontar les demandes d'ús de l'escàs espectre electromagnètic (e.g., designació del dividend digital i la demanda d'espectre per part de les xarxes de comunicacions mòbils), l'aparició de nous continguts d'alta taxa de dades (e.g., ultra-high deffinition TV - UHDTV) i la ubiqüitat del contingut (e.g., fix, portàtil i mòbil). És àmpliament reconegut que MIMO pot proporcionar múltiples beneficis com: potència rebuda addicional gràcies als guanys de array, major robustesa contra esvaïments del senyal gràcies a la diversitat espacial i majors taxes de transmissió gràcies al guany per multiplexat del canal MIMO. Aquests beneficis es poden aconseguir sense incrementar la potència transmesa ni l'ample de banda, però normalment s'obtenen a costa d'una major complexitat del sistema tant en el transmissor com en el receptor. Els guanys de rendiment finals a causa de l'ús de MIMO depenen directament de les característiques físiques de l'entorn de propagació com: la correlació entre els canals espacials, l'orientació de les antenes, i/o els desequilibris de potència patits en les antenes transmissores. Addicionalment, a causa de restriccions en la complexitat i aritmètica de precisió finita en els receptors, és fonamental per al rendiment global del sistema un disseny acurat d'algorismes específics de processament de senyal. Aquesta tesi doctoral se centra en el processament de senyal tant en el transmissor com en el receptor per a sistemes TDT que implementen MIMO-BICM (Bit-Interleaved Coded Modulation) sense canal de tornada cap al transmissor des dels receptors. En el transmissor aquesta tesi presenta recerques en precoding MIMO en sistemes TDT per a superar les degradacions del sistema degudes a diferents condicions del canal. En el receptor es presta especial atenció al disseny i avaluació de receptors pràctics MIMO-BICM basats en informació quantificada i al seu impacte tant en la memòria del xip com en el rendiment del sistema. Aquestes recerques es duen a terme en el context d'estandardització de DVB-NGH (Digital Video Broadcasting - Next Generation Handheld), l'evolució portàtil de DVB-T2 (Second Generation Terrestrial), i ATSC 3.0 (Advanced Television Systems Commitee - Third Generation) que incorporen MIMO-BICM com a clau tecnològica per a superar el límit de Shannon per a comunicacions amb una única antena. No obstant açò, aquesta tesi doctoral empra un mètode genèric tant per al disseny, anàlisi i avaluació, per la qual cosa els resultats i idees poden ser aplicats a altres sistemes de comunicació sense fils que empren MIMO-BICM.Vargas Paredero, DE. (2016). Transmit and Receive Signal Processing for MIMO Terrestrial Broadcast Systems [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/66081TESISPremiad

    Potentzia domeinuko NOMA 5G sareetarako eta haratago

    Get PDF
    Tesis inglés 268 p. -- Tesis euskera 274 p.During the last decade, the amount of data carried over wireless networks has grown exponentially. Several reasons have led to this situation, but the most influential ones are the massive deployment of devices connected to the network and the constant evolution in the services offered. In this context, 5G targets the correct implementation of every application integrated into the use cases. Nevertheless, the biggest challenge to make ITU-R defined cases (eMBB, URLLC and mMTC) a reality is the improvement in spectral efficiency. Therefore, in this thesis, a combination of two mechanisms is proposed to improve spectral efficiency: Non-Orthogonal Multiple Access (NOMA) techniques and Radio Resource Management (RRM) schemes. Specifically, NOMA transmits simultaneously several layered data flows so that the whole bandwidth is used throughout the entire time to deliver more than one service simultaneously. Then, RRM schemes provide efficient management and distribution of radio resources among network users. Although NOMA techniques and RRM schemes can be very advantageous in all use cases, this thesis focuses on making contributions in eMBB and URLLC environments and proposing solutions to communications that are expected to be relevant in 6G

    Full Stack 5G Physical Layer Transceiver Design for NOMA in Mobile Heterogeneous Networks

    Get PDF
    The Fifth Generation (5G) and Beyond 5G (B5G) wireless networks are emerging with a variety of new capabilities, focusing on Massive Machine-Type Communications (mMTC), enabling new use cases and services. With this massive increment of mMTC along with increasing users, higher network capacity is a must for 5G and B5G. The integration of mMTC with traditional user traffic creates a heterogeneous network landscape. To address this challenge, future network designs must prioritize optimizing spectrum efficiency while meeting diverse service demands. Non-Orthogonal Multiple Access (NOMA) stands out as a promising technology for enhancing both system capacity and operational efficiency in such heterogeneous networks. Due to its non-orthogonal resource allocation, NOMA outperforms Orthogonal Multiple Access (OMA) in spectral efficiency, throughput, and user capacity, while also offering superior scalability and adaptability to network heterogeneity. Despite its promising advantages, large-scale implementation of NOMA in cellular systems remains elusive due to various challenges, making it a focal point of current research in cellular network technology. While there has been considerable progress in implementing NOMA for broadcast and multicast services, notably with Layer Division Multiplexing (LDM) in next-generation digital TV, the challenges of unicast downlink transmission in NOMA remain largely unexplored. Unicast transmission requires a highly tailored network configuration adaptable to individual user requirements and dynamic channel conditions. Clustering users under a single NOMA channel must be both efficient and adaptive to ensure successful transmission, especially for mobile receiver. Besides, the interplay between NOMA and other 5G technologies remains insufficiently explored, in part due to the lack of an established NOMA-5G framework. Specifically, the collective impact of 5G physical layer technologies such as Low-Density Parity Check (LDPC) coding, Multiple-Input Multiple-Output (MIMO) Beamforming, and mmWave transmission on NOMA’s performance has not been comprehensively studied. Furthermore, in NOMA schemes involving more than two multiplexed users, known as Multilayer NOMA (N-NOMA), the system becomes increasingly complex and susceptible to noise. While N-NOMA holds considerable promise for scalability, its performance metrics are not yet fully characterized, due to challenges ranging from resource allocation complexities to transceiver design issues. Additionally, existing analytical models for performance evaluation are developed for orthogonal systems, are not fully applicable for assessing NOMA performance. Developing new models that incorporate the impact of non-orthogonality could provide more accurate performance assessments and offer valuable insights for future NOMA research. Initially this thesis investigates the feasibility of LDM for unicast & multicast downlink transmission scenarios for Internet of Things (IoT)- user pairs. The findings indicate the Core Layer (CL) performance aligns with IoT requirements while Enhance Layer (EL) layer is suitable for users. A specialized Bit Error Rate (BER) expression is formulated to precisely predict CL performance, considering Lower Layer (LL) interference with predefined power ratio. Subsequently, the thesis employs a novel surface mobility model and adaptive power ratio allocation to evaluate LDM pair sustainability under various receiver mobility conditions. Extending the LDM-Orthogonal Frequency Division Multiplexing (OFDM) model, this thesis presents a Third Generation Partnership Project (3GPP)-compliant 5G transceiver incorporating N-NOMA. This design incorporates a strategically-arranged set of NOMA functionalities and undergoes a rigorous performance evaluation. In particular, the transceiver provides a comprehensive assessment of N-NOMA performance, considering various transmission parameters such as LDPC code rate, MIMO order, modulation schemes, and channel specifications. These considerations not only provide new insights into non-orthogonal access technologies but also highlight dependencies on these factors for network configuration and optimization. To further advance this work, a one-shot N-NOMA multiplexing technique is developed and implemented, simplifying multi-layer standard sequential combiners to reduce transmission latency and transceiver complexity. A more accurate analytical BER expression is also formulated that considers the impact of both residual and non-residual Successive Interference Cancellation (SIC) errors across NOMA layers. To build upon these advancements, an adaptive Power Allocation (PA) technique is introduced to optimize NOMA cluster sustainability and throughput. Employing a greedy algorithmic approach, this method uses real-time transmission feedback to dynamically allocate power across NOMA layers. In addition, a new Three Dimensional (3D) mobility model has been developed, consistent with existing 3GPP standards, capturing vehicular and pedestrian movement across urban and rural macro & micro-cell environments. When integrated with the PA technique, this model allows for real-time adjustments in the NOMA power ratio, effectively adapting to fluctuating receiver channel conditions. Collectively, the findings from this research not only indicate significant physical layer performance improvements but also provide new insights into the potential of non-orthogonal access technologies. In the LDM-OFDM setup presented in Chapter 3, the EL layer needs 15 dB more Signal-to-Noise Ratio (SNR) than the CL to achieve the same BER, but allows for higher data rates. When it comes to mobility, IoT movement accounts for about 70% of link terminations in scenarios with similar mobility patterns. The N-NOMA-5G shows significant improvement in low SNR performance compared to existing literature. The 3 layer simulations shows on average a 60% reduction in the SNR requirements to achieve similar BER. The implementation of a one-shot multiplexer has demonstrated a substantial reduction in N-NOMA multiplexing time, particularly with the growing number of NOMA layers, as detailed in Chapter 4. Notably, the simulation outcomes spanning 2 to 10 layers of NOMA multiplexing indicate an remarkable 52% reduction in processing time. This underscores the effectiveness of the one-shot multiplexer in enhancing efficiency, particularly as the complexity of the NOMA setup intensifies. The developed analytical model also shows over 95% similarities with the simulation results. The impact of dynamic PA for both static and mobile receivers demonstrates on average, over 40% improvements in link sustainability time for mobile users and for static users, it achieves optimal PA and fast convergence within just 12 iterations, as detailed in Chapter 5
    corecore