7,874 research outputs found

    Radiomics strategies for risk assessment of tumour failure in head-and-neck cancer

    Full text link
    Quantitative extraction of high-dimensional mineable data from medical images is a process known as radiomics. Radiomics is foreseen as an essential prognostic tool for cancer risk assessment and the quantification of intratumoural heterogeneity. In this work, 1615 radiomic features (quantifying tumour image intensity, shape, texture) extracted from pre-treatment FDG-PET and CT images of 300 patients from four different cohorts were analyzed for the risk assessment of locoregional recurrences (LR) and distant metastases (DM) in head-and-neck cancer. Prediction models combining radiomic and clinical variables were constructed via random forests and imbalance-adjustment strategies using two of the four cohorts. Independent validation of the prediction and prognostic performance of the models was carried out on the other two cohorts (LR: AUC = 0.69 and CI = 0.67; DM: AUC = 0.86 and CI = 0.88). Furthermore, the results obtained via Kaplan-Meier analysis demonstrated the potential of radiomics for assessing the risk of specific tumour outcomes using multiple stratification groups. This could have important clinical impact, notably by allowing for a better personalization of chemo-radiation treatments for head-and-neck cancer patients from different risk groups.Comment: (1) Paper: 33 pages, 4 figures, 1 table; (2) SUPP info: 41 pages, 7 figures, 8 table

    Medical Image Analytics (Radiomics) with Machine/Deeping Learning for Outcome Modeling in Radiation Oncology

    Full text link
    Image-based quantitative analysis (radiomics) has gained great attention recently. Radiomics possesses promising potentials to be applied in the clinical practice of radiotherapy and to provide personalized healthcare for cancer patients. However, there are several challenges along the way that this thesis will attempt to address. Specifically, this thesis focuses on the investigation of repeatability and reproducibility of radiomics features, the development of new machine/deep learning models, and combining these for robust outcomes modeling and their applications in radiotherapy. Radiomics features suffer from robustness issues when applied to outcome modeling problems, especially in head and neck computed tomography (CT) images. These images tend to contain streak artifacts due to patients’ dental implants. To investigate the influence of artifacts for radiomics modeling performance, we firstly developed an automatic artifact detection algorithm using gradient-based hand-crafted features. Then, comparing the radiomics models trained on ‘clean’ and ‘contaminated’ datasets. The second project focused on using hand-crafted radiomics features and conventional machine learning methods for the prediction of overall response and progression-free survival for Y90 treated liver cancer patients. By identifying robust features and embedding prior knowledge in the engineered radiomics features and using bootstrapped LASSO to select robust features, we trained imaging and dose based models for the desired clinical endpoints, highlighting the complementary nature of this information in Y90 outcomes prediction. Combining hand-crafted and machine learnt features can take advantage of both expert domain knowledge and advanced data-driven approaches (e.g., deep learning). Thus, we proposed a new variational autoencoder network framework that modeled radiomics features, clinical factors, and raw CT images for the prediction of intrahepatic recurrence-free and overall survival for hepatocellular carcinoma (HCC) patients in this third project. The proposed approach was compared with widely used Cox proportional hazard model for survival analysis. Our proposed methods achieved significant improvement in terms of the prediction using the c-index metric highlighting the value of advanced modeling techniques in learning from limited and heterogeneous information in actuarial prediction of outcomes. Advances in stereotactic radiation therapy (SBRT) has led to excellent local tumor control with limited toxicities for HCC patients, but intrahepatic recurrence still remains prevalent. As an extension of the third project, we not only hope to predict the time to intrahepatic recurrence, but also the location where the tumor might recur. This will be clinically beneficial for better intervention and optimizing decision making during the process of radiotherapy treatment planning. To address this challenging task, firstly, we proposed an unsupervised registration neural network to register atlas CT to patient simulation CT and obtain the liver’s Couinaud segments for the entire patient cohort. Secondly, a new attention convolutional neural network has been applied to utilize multimodality images (CT, MR and 3D dose distribution) for the prediction of high-risk segments. The results showed much improved efficiency for obtaining segments compared with conventional registration methods and the prediction performance showed promising accuracy for anticipating the recurrence location as well. Overall, this thesis contributed new methods and techniques to improve the utilization of radiomics for personalized radiotherapy. These contributions included new algorithm for detecting artifacts, a joint model of dose with image heterogeneity, combining hand-crafted features with machine learnt features for actuarial radiomics modeling, and a novel approach for predicting location of treatment failure.PHDApplied PhysicsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/163092/1/liswei_1.pd

    Deep learning analysis of the myocardium in coronary CT angiography for identification of patients with functionally significant coronary artery stenosis

    Full text link
    In patients with coronary artery stenoses of intermediate severity, the functional significance needs to be determined. Fractional flow reserve (FFR) measurement, performed during invasive coronary angiography (ICA), is most often used in clinical practice. To reduce the number of ICA procedures, we present a method for automatic identification of patients with functionally significant coronary artery stenoses, employing deep learning analysis of the left ventricle (LV) myocardium in rest coronary CT angiography (CCTA). The study includes consecutively acquired CCTA scans of 166 patients with FFR measurements. To identify patients with a functionally significant coronary artery stenosis, analysis is performed in several stages. First, the LV myocardium is segmented using a multiscale convolutional neural network (CNN). To characterize the segmented LV myocardium, it is subsequently encoded using unsupervised convolutional autoencoder (CAE). Thereafter, patients are classified according to the presence of functionally significant stenosis using an SVM classifier based on the extracted and clustered encodings. Quantitative evaluation of LV myocardium segmentation in 20 images resulted in an average Dice coefficient of 0.91 and an average mean absolute distance between the segmented and reference LV boundaries of 0.7 mm. Classification of patients was evaluated in the remaining 126 CCTA scans in 50 10-fold cross-validation experiments and resulted in an area under the receiver operating characteristic curve of 0.74 +- 0.02. At sensitivity levels 0.60, 0.70 and 0.80, the corresponding specificity was 0.77, 0.71 and 0.59, respectively. The results demonstrate that automatic analysis of the LV myocardium in a single CCTA scan acquired at rest, without assessment of the anatomy of the coronary arteries, can be used to identify patients with functionally significant coronary artery stenosis.Comment: This paper was submitted in April 2017 and accepted in November 2017 for publication in Medical Image Analysis. Please cite as: Zreik et al., Medical Image Analysis, 2018, vol. 44, pp. 72-8

    Computational methods for the analysis of functional 4D-CT chest images.

    Get PDF
    Medical imaging is an important emerging technology that has been intensively used in the last few decades for disease diagnosis and monitoring as well as for the assessment of treatment effectiveness. Medical images provide a very large amount of valuable information that is too huge to be exploited by radiologists and physicians. Therefore, the design of computer-aided diagnostic (CAD) system, which can be used as an assistive tool for the medical community, is of a great importance. This dissertation deals with the development of a complete CAD system for lung cancer patients, which remains the leading cause of cancer-related death in the USA. In 2014, there were approximately 224,210 new cases of lung cancer and 159,260 related deaths. The process begins with the detection of lung cancer which is detected through the diagnosis of lung nodules (a manifestation of lung cancer). These nodules are approximately spherical regions of primarily high density tissue that are visible in computed tomography (CT) images of the lung. The treatment of these lung cancer nodules is complex, nearly 70% of lung cancer patients require radiation therapy as part of their treatment. Radiation-induced lung injury is a limiting toxicity that may decrease cure rates and increase morbidity and mortality treatment. By finding ways to accurately detect, at early stage, and hence prevent lung injury, it will have significant positive consequences for lung cancer patients. The ultimate goal of this dissertation is to develop a clinically usable CAD system that can improve the sensitivity and specificity of early detection of radiation-induced lung injury based on the hypotheses that radiated lung tissues may get affected and suffer decrease of their functionality as a side effect of radiation therapy treatment. These hypotheses have been validated by demonstrating that automatic segmentation of the lung regions and registration of consecutive respiratory phases to estimate their elasticity, ventilation, and texture features to provide discriminatory descriptors that can be used for early detection of radiation-induced lung injury. The proposed methodologies will lead to novel indexes for distinguishing normal/healthy and injured lung tissues in clinical decision-making. To achieve this goal, a CAD system for accurate detection of radiation-induced lung injury that requires three basic components has been developed. These components are the lung fields segmentation, lung registration, and features extraction and tissue classification. This dissertation starts with an exploration of the available medical imaging modalities to present the importance of medical imaging in today’s clinical applications. Secondly, the methodologies, challenges, and limitations of recent CAD systems for lung cancer detection are covered. This is followed by introducing an accurate segmentation methodology of the lung parenchyma with the focus of pathological lungs to extract the volume of interest (VOI) to be analyzed for potential existence of lung injuries stemmed from the radiation therapy. After the segmentation of the VOI, a lung registration framework is introduced to perform a crucial and important step that ensures the co-alignment of the intra-patient scans. This step eliminates the effects of orientation differences, motion, breathing, heart beats, and differences in scanning parameters to be able to accurately extract the functionality features for the lung fields. The developed registration framework also helps in the evaluation and gated control of the radiotherapy through the motion estimation analysis before and after the therapy dose. Finally, the radiation-induced lung injury is introduced, which combines the previous two medical image processing and analysis steps with the features estimation and classification step. This framework estimates and combines both texture and functional features. The texture features are modeled using the novel 7th-order Markov Gibbs random field (MGRF) model that has the ability to accurately models the texture of healthy and injured lung tissues through simultaneously accounting for both vertical and horizontal relative dependencies between voxel-wise signals. While the functionality features calculations are based on the calculated deformation fields, obtained from the 4D-CT lung registration, that maps lung voxels between successive CT scans in the respiratory cycle. These functionality features describe the ventilation, the air flow rate, of the lung tissues using the Jacobian of the deformation field and the tissues’ elasticity using the strain components calculated from the gradient of the deformation field. Finally, these features are combined in the classification model to detect the injured parts of the lung at an early stage and enables an earlier intervention

    Texture Analysis Platform for Imaging Biomarker Research

    Get PDF
    abstract: The rate of progress in improving survival of patients with solid tumors is slow due to late stage diagnosis and poor tumor characterization processes that fail to effectively reflect the nature of tumor before treatment or the subsequent change in its dynamics because of treatment. Further advancement of targeted therapies relies on advancements in biomarker research. In the context of solid tumors, bio-specimen samples such as biopsies serve as the main source of biomarkers used in the treatment and monitoring of cancer, even though biopsy samples are susceptible to sampling error and more importantly, are local and offer a narrow temporal scope. Because of its established role in cancer care and its non-invasive nature imaging offers the potential to complement the findings of cancer biology. Over the past decade, a compelling body of literature has emerged suggesting a more pivotal role for imaging in the diagnosis, prognosis, and monitoring of diseases. These advances have facilitated the rise of an emerging practice known as Radiomics: the extraction and analysis of large numbers of quantitative features from medical images to improve disease characterization and prediction of outcome. It has been suggested that radiomics can contribute to biomarker discovery by detecting imaging traits that are complementary or interchangeable with other markers. This thesis seeks further advancement of imaging biomarker discovery. This research unfolds over two aims: I) developing a comprehensive methodological pipeline for converting diagnostic imaging data into mineable sources of information, and II) investigating the utility of imaging data in clinical diagnostic applications. Four validation studies were conducted using the radiomics pipeline developed in aim I. These studies had the following goals: (1 distinguishing between benign and malignant head and neck lesions (2) differentiating benign and malignant breast cancers, (3) predicting the status of Human Papillomavirus in head and neck cancers, and (4) predicting neuropsychological performances as they relate to Alzheimer’s disease progression. The long-term objective of this thesis is to improve patient outcome and survival by facilitating incorporation of routine care imaging data into decision making processes.Dissertation/ThesisDoctoral Dissertation Biomedical Informatics 201

    Assessment of the response of hepatocellular carcinoma to interventional radiology treatments

    Get PDF
    According to Barcelona Clinic Liver Cancer (BCLC) guidelines, interventional radiology procedures are valuable treatment options for many hepatocellular carcinomas (HCCs) that are not amenable to resection or transplantation. Accurate assessment of the efficacy of therapies at earlier stages enables completion of treatment, optimal follow-up and to prevent potentially unnecessary treatments, side effects and costly failure. The goal of this review is to summarize and describe the radiological strategies that have been proposed to predict survival and to stratify HCC responses after interventional radiology therapies. New techniques currently in development are also described

    Computed tomography image analysis for the detection of obstructive lung diseases

    Get PDF
    Damage to the small airways resulting from direct lung injury or associated with many systemic disorders is not easy to identify. Non-invasive techniques such as chest radiography or conventional tests of lung function often cannot reveal the pathology. On Computed Tomography (CT) images, the signs suggesting the presence of obstructive airways disease are subtle, and inter- and intra-observer variability can be considerable. The goal of this research was to implement a system for the automated analysis of CT data of the lungs. Its function is to help clinicians establish a confident assessment of specific obstructive airways diseases and increase the precision of investigation of structure/function relationships. To help resolve the ambiguities of the CT scans, the main objectives of our system were to provide a functional description of the raster images, extract semi-quantitative measurements of the extent of obstructive airways disease and propose a clinical diagnosis aid using a priori knowledge of CT image features of the diseased lungs. The diagnostic process presented in this thesis involves the extraction and analysis of multiple findings. Several novel low-level computer vision feature extractors and image processing algorithms were developed for extracting the extent of the hypo-attenuated areas, textural characterisation of the lung parenchyma, and morphological description of the bronchi. The fusion of the results of these extractors was achieved with a probabilistic network combining a priori knowledge of lung pathology. Creating a CT lung phantom allowed for the initial validation of the proposed methods. Performance of the techniques was then assessed with clinical trials involving other diagnostic tests and expert chest radiologists. The results of the proposed system for diagnostic decision-support demonstrated the feasibility and importance of information fusion in medical image interpretation.Open acces
    • …
    corecore