4 research outputs found

    A generic hierarchical clustering approach for detecting bottlenecks in manufacturing

    Get PDF
    The advancements in machine learning (ML) techniques open new opportunities for analysing production system dynamics and augmenting the domain expert\u27s decision-making. A common problem for domain experts on the shop floor is detecting throughput bottlenecks, as they constrain the system throughput. Detecting throughput bottlenecks is necessary to prioritise maintenance and improvement actions and obtain greater system throughput. The existing literature provides many ways to detect bottlenecks from machine data, using statistical-based approaches. These statistical-based approaches can be best applied in environments where the statistical descriptors of machine data (such as distribution of machine data, correlations and stationarity) are known beforehand. Computing statistical descriptors involves statistical assumptions. When the machine data doesn\u27t comply with these assumptions, there is a risk of the results being disconnected from actual production system dynamics. An alternative approach to detecting throughput bottlenecks is to use ML- based techniques. These techniques, particularly unsupervised ML techniques, require no prior statistical information on machine data. This paper proposes a generic, unsupervised ML-based hierarchical clustering approach to detect throughput bottlenecks. The proposed approach is the outcome of systematic and careful selection of ML techniques. It begins by generating a time series of the chosen bottleneck detection metric and then clustering the time series using a dynamic time-wrapping measure and a complete-linkage agglomerative hierarchical clustering technique. The results are clusters of machines with similar production dynamic profiles, revealed from the historical data and enabling the detection of bottlenecks. The proposed approach is demonstrated in two real-world production systems. The approach integrates the concept of humans in-loop by using the domain expert\u27s knowledge

    Serial production line performance under random variation:Dealing with the ‘Law of Variability’

    Get PDF
    Many Queueing Theory and Production Management studies have investigated specific effects of variability on the performance of serial lines since variability has a significant impact on performance. To date, there has been no single summary source of the most relevant research results concerned with variability, particularly as they relate to the need to better understand the ‘Law of Variability’. This paper fills this gap and provides readers the foundational knowledge needed to develop intuition and insights on the complexities of stochastic simple serial lines, and serves as a guide to better understand and manage the effects of variability and design factors related to improving serial production line performance, i.e. throughput, inter-departure time and flow time, under random variation

    Artificial intelligence for throughput bottleneck analysis – State-of-the-art and future directions

    Get PDF
    Identifying, and eventually eliminating throughput bottlenecks, is a key means to increase throughput and productivity in production systems. In the real world, however, eliminating throughput bottlenecks is a challenge. This is due to the landscape of complex factory dynamics, with several hundred machines operating at any given time. Academic researchers have tried to develop tools to help identify and eliminate throughput bottlenecks. Historically, research efforts have focused on developing analytical and discrete event simulation modelling approaches to identify throughput bottlenecks in production systems. However, with the rise of industrial digitalisation and artificial intelligence (AI), academic researchers explored different ways in which AI might be used to eliminate throughput bottlenecks, based on the vast amounts of digital shop floor data. By conducting a systematic literature review, this paper aims to present state-of-the-art research efforts into the use of AI for throughput bottleneck analysis. To make the work of the academic AI solutions more accessible to practitioners, the research efforts are classified into four categories: (1) identify, (2) diagnose, (3) predict and (4) prescribe. This was inspired by real-world throughput bottleneck management practice. The categories, identify and diagnose focus on analysing historical throughput bottlenecks, whereas predict and prescribe focus on analysing future throughput bottlenecks. This paper also provides future research topics and practical recommendations which may help to further push the boundaries of the theoretical and practical use of AI in throughput bottleneck analysis

    Variability and the fundamental properties of production lines

    No full text
    The concept of variability has been commonly used in practice and it is an important performance index of manufacturing systems. In this study, the definition of system variability is given through the insight of Kingman’s approximation. The explicit expression for the variability of a production line is derived based on intrinsic ratios and contribution factors. With the derived results, properties of variability for a production line in terms of job arrival rate, service rate and bounds on variability are examined. Simulation results are given to validate the derived properties. The result can be used to guide the design and operations of manufacturing systems.MOE (Min. of Education, S’pore)Accepted versio
    corecore