14 research outputs found

    Representing Variability in Software Architecture: A Systematic Literature Review

    Get PDF
    Variability in software - intensive systems is the ability of a software artefact (e.g., a system, subsystem, or component) to be extended, customised or configured for deployment in a specific context. Software Architecture is a high - level description of a software - intensive system that abstracts the system implementation details allowing the architect to view the system as a whole. Although variability in software architecture is recognised as a challenge in multiple domains, there has been no formal consensus on how variability should be captured or represented. The objective of this research was to provide a snapshot of the state - of - the - art on representing variability in software architecture while assessing the nature of the different approaches. To achieve this objective, a Systematic Literature Review (SLR) was conducted covering literature produced from January 1991 until June 2016. Then, grounded theory was used to conduct the analysis and draw conclusions from data, mini mising threats to validity. In this paper , we report on the findings from the study

    Representing Variability in Software Architecture

    Get PDF
    Software Architecture is a high level description of a software intensive system that enables architects to have a better intellectual control over the complete system. It is also used as a communication vehicle among the various system stakeholders. Variability in software-intensive systems is the ability of a software artefact (e.g., a system, subsystem, or component) to be extended, customised, or configured for deployment in a specific context. Although variability in software architecture is recognised as a challenge in multiple domains, there has been no formal consensus on how variability should be captured or represented. In this research, we addressed the problem of representing variability in software architecture through a three phase approach. First, we examined existing literature using the Systematic Literature Review (SLR) methodology, which helped us identify the gaps and challenges within the current body of knowledge. Equipped with the findings from the SLR, a set of design principles have been formulated that are used to introduce variability management capabilities to an existing Architecture Description Language (ADL). The chosen ADL was developed within our research group (ALI) and to which we have had complete access. Finally, we evaluated the new version of the ADL produced using two distinct case studies: one from the Information Systems domain, an Asset Management System (AMS); and another from the embedded systems domain, a Wheel Brake System (WBS). This thesis presents the main findings from the three phases of the research work, including a comprehensive study of the state-of-the-art; the complete specification of an ADL that is focused on managing variability; and the lessons learnt from the evaluation work of two distinct real-life case studies

    The Application of Computer Techniques to ECG Interpretation

    Get PDF
    This book presents some of the latest available information on automated ECG analysis written by many of the leading researchers in the field. It contains a historical introduction, an outline of the latest international standards for signal processing and communications and then an exciting variety of studies on electrophysiological modelling, ECG Imaging, artificial intelligence applied to resting and ambulatory ECGs, body surface mapping, big data in ECG based prediction, enhanced reliability of patient monitoring, and atrial abnormalities on the ECG. It provides an extremely valuable contribution to the field

    Speech Recognition

    Get PDF
    Chapters in the first part of the book cover all the essential speech processing techniques for building robust, automatic speech recognition systems: the representation for speech signals and the methods for speech-features extraction, acoustic and language modeling, efficient algorithms for searching the hypothesis space, and multimodal approaches to speech recognition. The last part of the book is devoted to other speech processing applications that can use the information from automatic speech recognition for speaker identification and tracking, for prosody modeling in emotion-detection systems and in other speech processing applications that are able to operate in real-world environments, like mobile communication services and smart homes

    Variabilities as first-class elements in product line architectures of homecare systems

    No full text

    Safety and Reliability - Safe Societies in a Changing World

    Get PDF
    The contributions cover a wide range of methodologies and application areas for safety and reliability that contribute to safe societies in a changing world. These methodologies and applications include: - foundations of risk and reliability assessment and management - mathematical methods in reliability and safety - risk assessment - risk management - system reliability - uncertainty analysis - digitalization and big data - prognostics and system health management - occupational safety - accident and incident modeling - maintenance modeling and applications - simulation for safety and reliability analysis - dynamic risk and barrier management - organizational factors and safety culture - human factors and human reliability - resilience engineering - structural reliability - natural hazards - security - economic analysis in risk managemen

    Bioinspired metaheuristic algorithms for global optimization

    Get PDF
    This paper presents concise comparison study of newly developed bioinspired algorithms for global optimization problems. Three different metaheuristic techniques, namely Accelerated Particle Swarm Optimization (APSO), Firefly Algorithm (FA), and Grey Wolf Optimizer (GWO) are investigated and implemented in Matlab environment. These methods are compared on four unimodal and multimodal nonlinear functions in order to find global optimum values. Computational results indicate that GWO outperforms other intelligent techniques, and that all aforementioned algorithms can be successfully used for optimization of continuous functions

    Experimental Evaluation of Growing and Pruning Hyper Basis Function Neural Networks Trained with Extended Information Filter

    Get PDF
    In this paper we test Extended Information Filter (EIF) for sequential training of Hyper Basis Function Neural Networks with growing and pruning ability (HBF-GP). The HBF neuron allows different scaling of input dimensions to provide better generalization property when dealing with complex nonlinear problems in engineering practice. The main intuition behind HBF is in generalization of Gaussian type of neuron that applies Mahalanobis-like distance as a distance metrics between input training sample and prototype vector. We exploit concept of neuron’s significance and allow growing and pruning of HBF neurons during sequential learning process. From engineer’s perspective, EIF is attractive for training of neural networks because it allows a designer to have scarce initial knowledge of the system/problem. Extensive experimental study shows that HBF neural network trained with EIF achieves same prediction error and compactness of network topology when compared to EKF, but without the need to know initial state uncertainty, which is its main advantage over EKF

    Preface

    Get PDF

    Intelligent technologies for the aging brain: opportunities and challenges

    Get PDF
    Intelligent computing is rapidly reshaping healthcare. In light of the global burden of population aging and neurological disorders, dementia and elderly care are among the healthcare sectors that are most likely to benefit from this technological revolution. Trends in artificial intelligence, robotics, ubiquitous computing, neurotechnology and other branches of biomedical engineering are progressively enabling novel opportunities for technology-enhanced care. These Intelligent Assistive Technologies (IATs) open the prospects of supporting older adults with neurocognitive disabilities, maintain their independence, reduce the burden on caregivers and delay the need for long-term care (1, 2). While technology develops fast, yet little knowledge is available to patients and health professionals about the current availability, applicability, and capability of existing IATs. This thesis proposes a state-of-the-art analysis of IATs in dementia and elderly care. Our findings indicate that advances in intelligent technology are resulting in a rapidly expanding number and variety of assistive solutions for older adults and people with neurocognitive disabilities. However, our analysis identifies a number of challenges that negatively affect the optimal deployment and uptake of IATs among target users and care institutions. These include design issues, sub-optimal approaches to product development, translational barriers between lab and clinics, lack of adequate validation and implementation, as well as data security and cyber-risk weaknesses. Additionally, in virtue of their technological novelty, intelligent technologies raise a number of Ethical, Legal and Social Implications (ELSI). Therefore, a significant portion of this thesis is devoted to providing an early ethical Technology Assessment (eTA) of intelligent technology, hence contributing to preparing the terrain for its safe and ethically responsible adoption. This assessment is primarily focused on intelligent technologies at the human-machine interface, as these applications enable an unprecedented exposure of the intimate dimension of individuals to the digital infosphere. Issues of privacy, integrity, equality, and dual-use were addressed at the level of stakeholder analysis, normative ethics and human-rights law. Finally, this thesis is aimed at providing evidence-based recommendations for guiding participatory and responsible development in intelligent technology, and delineating governance strategies that maximize the clinical benefits of IATs for the aging world, while minimizing unintended risks
    corecore