

REPRESENTING VARIABILITY IN SOFTWARE
ARCHITECTURE

UMAIMA HAIDER

A thesis submitted in partial fulfilment of the requirements of the University of East
London for the degree of Doctor of Philosophy

April 2016

i

Abstract

Software Architecture is a high level description of a software intensive system that

enables architects to have a better intellectual control over the complete system. It is also

used as a communication vehicle among the various system stakeholders. Variability in

software-intensive systems is the ability of a software artefact (e.g., a system, subsystem,

or component) to be extended, customised, or configured for deployment in a specific

context. Although variability in software architecture is recognised as a challenge in

multiple domains, there has been no formal consensus on how variability should be

captured or represented.

In this research, we addressed the problem of representing variability in software

architecture through a three phase approach. First, we examined existing literature using

the Systematic Literature Review (SLR) methodology, which helped us identify the gaps

and challenges within the current body of knowledge. Equipped with the findings from

the SLR, a set of design principles have been formulated that are used to introduce

variability management capabilities to an existing Architecture Description Language

(ADL). The chosen ADL was developed within our research group (ALI) and to which

we have had complete access. Finally, we evaluated the new version of the ADL produced

using two distinct case studies: one from the Information Systems domain, an Asset

Management System (AMS); and another from the embedded systems domain, a Wheel

Brake System (WBS).

This thesis presents the main findings from the three phases of the research work,

including a comprehensive study of the state-of-the-art; the complete specification of an

ADL that is focused on managing variability; and the lessons learnt from the evaluation

work of two distinct real-life case studies.

ii

Table of Contents

Abstract .. i

List of Figures .. vi

List of Tables .. viii

Acronyms .. ix

Acknowledgment ... x

Dedication .. xi

Part I: INTRODUCTION ... 1

Chapter 1: Introduction ... 2

 1.1 Motivation .. 2

 1.2 Problem Statement: Research Questions ... 5

 1.3 Contributions .. 5

 1.4 Organisation of Thesis ... 8

Chapter 2: Research Methodology .. 12

 2.1 Introduction .. 12

 2.2 Systematic Literature Review (SLR) ... 13

2.2.1 SLR Review Protocol .. 14

2.2.2 SLR Research Questions ... 15

2.2.3 Search Strategy.. 15

2.2.4 Study Selection.. 18

2.2.5 Quality Assessment Criteria .. 20

2.2.6 Data Extraction and Synthesis ... 21

 2.3 Language and Framework Design ... 23

 2.4 Case Study Research .. 25

 2.5 Summary .. 26

Part II: STATE-OF-THE-ART ... 28

Chapter 3: Background .. 29

 3.1 Introduction .. 29

 3.2 Concepts and Terminology .. 29

3.2.1 Software Architecture ... 29

3.2.2 Variability ... 31

 3.3 Architecture Description Languages (ADLs) .. 32

3.3.1 Analysis of existing ADLs .. 34

3.3.2 Limitations in existing ADLs .. 42

 3.4 Conclusion ... 44

file:///C:/Users/Umaima/Desktop/ALI/THESIS/Parts/Chapters%201-9.docx%23_Toc447460114
file:///C:/Users/Umaima/Desktop/ALI/THESIS/Parts/Chapters%201-9.docx%23_Toc447460119
file:///C:/Users/Umaima/Desktop/ALI/THESIS/Parts/Chapters%201-9.docx%23_Toc447460132

iii

Chapter 4: Systematic Literature Review... 46

 4.1 Introduction .. 46

 4.2 Data and Analysis .. 47

4.2.1 Demographic Data .. 47

4.2.2 Geographical Distribution ... 49

 4.3 Discussion of SLR Research Questions ... 50

4.3.1 SLR.RQ1: What approaches have been proposed to represent variability in software

architecture? ... 50

4.3.2 SLR.RQ2: What is the quality of the research conducted in the reported approaches? 55

4.3.3 SLR.RQ3: What is the context and areas of research of the studies employing variability in

software architecture? ... 58

4.3.4 SLR.RQ4: What are the limitations of the existing approaches to represent variability in

software architecture? ... 63

 4.4 Threats to Validity & Limitations .. 63

 4.5 SLR Update: Work beyond Search Period ..66

 4.6 Conclusion ... 67

Part III: ALI ... 69

Chapter 5: ALI Initial Version .. 70

 5.1 Introduction .. 70

 5.2 Rationale .. 71

5.2.1 Flexible interface description .. 72

5.2.2 Architectural pattern description ... 73

5.2.3 Formal syntax for capturing meta-information ... 75

5.2.4 Linking the feature and architecture spaces .. 76

 5.3 ALI Constructs and Notations .. 76

5.3.1 Meta Types .. 77

5.3.2 Interface Types .. 79

5.3.3 Connector Types ... 81

5.3.4 Component Types ... 84

5.3.5 Pattern Templates .. 91

5.3.6 Features ... 94

5.3.7 System ... 96

 5.4 Limitations in original version ... 98

5.4.1 Architectural artefact reusability ... 98

5.4.2 Limited support for behavioural description ... 99

5.4.3 Lack of support for graphical representation ... 100

5.4.4 Lack of support for architectural views ... 101

 5.5 Summary .. 102

file:///C:/Users/Umaima/Desktop/ALI/THESIS/Parts/Chapters%201-9.docx%23_Toc447460141
file:///C:/Users/Umaima/Desktop/ALI/THESIS/Parts/Chapters%201-9.docx%23_Toc447460154

iv

Chapter 6: ALI V2 .. 104

 6.1 Introduction .. 104

 6.2 Design Principles ... 105

 6.3 Conceptual Model .. 109

 6.4 Textual Constructs and Notations .. 111

6.4.1 Meta Types .. 112

6.4.2 Features ... 114

6.4.3 Interface Templates ... 115

6.4.4 Interface Types .. 118

6.4.5 Connector Types ... 119

6.4.6 Component Types ... 121

6.4.7 Pattern Templates .. 125

6.4.8 Product Configurations ... 126

6.4.9 Events .. 127

6.4.10 Conditions ... 127

6.4.11 Scenarios ... 128

6.4.12 Transaction Domains... 128

6.4.13 Viewpoints .. 132

6.4.14 System ... 132

 6.5 Graphical Constructs and Notations... 133

6.5.1 Structural Notation .. 133

6.5.2 Behavioural Notation .. 136

 6.6 Semantics ... 140

6.6.1 Structural Semantics .. 141

6.6.2 Behavioural Semantics .. 142

 6.7 Summary and Changes to ALI Initial Version .. 146

Part IV: CASE STUDIES .. 150

Chapter 7: Case Study:Asset Management System ... 151

 7.1 Introduction .. 151

 7.2 Description of the AMS Case Study .. 152

 7.3 AMS Architecture Representation Using ALI V2 ... 154

7.3.1 AMS Meta Types .. 154

7.3.2 AMS Features.. 155

7.3.3 AMS Interface Templates ... 156

7.3.4 AMS Interface Types .. 157

7.3.5 AMS Connector Types .. 159

7.3.6 AMS Component Types .. 160

7.3.7 AMS Product Configurations .. 165

7.3.8 AMS Events .. 166

7.3.9 AMS Conditions.. 167

7.3.10 AMS Scenarios.. 168

file:///C:/Users/Umaima/Desktop/ALI/THESIS/Parts/Chapters%201-9.docx%23_Toc447460175
file:///C:/Users/Umaima/Desktop/ALI/THESIS/Parts/Chapters%201-9.docx%23_Toc447460202

v

7.3.11 AMS Transaction Domains ... 169

7.3.12 AMS Viewpoint .. 176

7.3.13 Asset Management System (AMS) ... 176

 7.4 AMS Evaluation ... 178

 7.5 Discussion .. 184

Chapter 8: Case Study: Wheel Brake System .. 186

 8.1 Introduction .. 186

 8.2 Description of the WBS Case Study .. 187

 8.3 WBS Architecture Representation Using ALI V2 ... 189

8.3.1 WBS Meta Types .. 189

8.3.2 WBS Features.. 190

8.3.3 WBS Interface Template ... 191

8.3.4 WBS Interface Types .. 192

8.3.5 WBS Component Types .. 193

8.3.6 WBS Product Configuration ... 197

8.3.7 WBS Events .. 197

8.3.8 WBS Conditions.. 198

8.3.9 WBS Scenarios.. 199

8.3.10 WBS Transaction Domain .. 199

8.3.11 WBS Viewpoint .. 206

8.3.12 Wheel Brake System (WBS) ... 206

 8.4 WBS Evaluation ... 209

 8.5 Discussion .. 215

Part V: CONCLUSION ... 217

Chapter 9: Conclusion and Future Perspectives .. 218

 9.1 Summary and Conclusion .. 218

 9.2 Future Perspectives .. 223

9.2.1 Short Term .. 223

9.2.2 Long Term ... 225

References .. 228

Appendices ... 242

 Appendix A: Systematic Literature Review (SLR) ... A-1

 Appendix B: ALI V2 Event Traces Notation Comparison .. B-1

 Appendix C: ALI V2 BNF ... C-1

 Appendix D: AMS Case Study .. D-1

 Appendix E: WBS Case Study ... E-1

file:///C:/Users/Umaima/Desktop/ALI/THESIS/Parts/Chapters%201-9.docx%23_Toc447460221
file:///C:/Users/Umaima/Desktop/ALI/THESIS/Parts/Chapters%201-9.docx%23_Toc447460240

vi

List of Figures

Figure 1: Organisation of thesis ___ 9

Figure 2: SLR review protocol___ 14

Figure 3: The search and selection process _________________________________ 20

Figure 4: ALI redesign process __ 24

Figure 5: Publications per year __ 47

Figure 6: Publication outlet ___ 48

Figure 7: Highly occurring publication venues ______________________________ 49

Figure 8: Primary study distribution per country _____________________________ 50

Figure 9: Quality assessment scores of studies (overall) _______________________ 56

Figure 10: Overall quality assessment scores per question _____________________ 57

Figure 11: Research context ___ 59

Figure 12: Research relevance ___ 61

Figure 13: Breakdown of primary studies over research areas __________________ 62

Figure 14: An example architecture of a simple web service (Bashroush et al., 2006) 73

Figure 15: A simple architecture assembled from a number of components using two

pattern templates: PipesAndFilters and ClientServer (Bashroush et al., 2006)

 __ 74

Figure 16: ALI V2 conceptual model ____________________________________ 110

Figure 17: Graphical structural representation for a system ___________________ 135

Figure 18: Graphical behavioural representation of transaction domain

TransactionDomain1 __ 138

Figure 19: Component Comp1 interactions in transaction domain TransactionDomain1

 ___ 140

Figure 20: AMS component type Internal_EquityData _______________________ 162

Figure 21: Graphical behavioural representation of transaction domain

PortfolioValuation __ 173

Figure 22: Graphical structural representation of transaction domain PortfolioValuation

 ___ 174

Figure 23: AMS component Portfolio_GUI interactions in transaction domain

PortfolioValuation __ 175

Figure 24: Wheel Brake System (ARP4761, 1996) __________________________ 188

Figure 25: WBS component type Aircraft_BrakePedal _______________________ 194

vii

Figure 26: Graphical behavioural representation of transaction domain

WheelDecelerationOnGround _________________________________ 204

Figure 27: WBS component Electrical_Pedal interactions in transaction domain

WheelDecelerationOnGround _________________________________ 205

Figure 28: WBS graphical structural notation ______________________________ 208

viii

List of Tables

Table 1: Manually searched conferences and workshops ______________________ 17

Table 2: Data extraction form ___ 23

Table 3: Variability representation approaches ______________________________ 51

Table 4: Quality assessment scores of studies (per question) ___________________ 57

Table 5: Research context with study identifier ______________________________ 59

Table 6: Research relevance with study identifier ____________________________ 60

Table 7: Breakdown of primary studies over research areas ____________________ 62

Table 8: ALI V2 transaction domain textual notation ________________________ 129

Table 9: ALI V2 graphical structural notation ______________________________ 134

Table 10: ALI V2 event traces notation ___________________________________ 137

Table 11: ALI initial version Vs ALI V2 __________________________________ 149

Table 12: List of acronyms for AMS component types interfaces ______________ 163

Table 13: AMS interface templates notations ______________________________ 163

Table 14: List of acronyms for AMS connector interfaces ____________________ 165

Table 15: AMS evaluation ___ 183

Table 16: List of acronyms for WBS component types interfaces ______________ 195

Table 17: WBS evaluation ___ 210

Table 18: Case studies criteria __ 222

ix

Acronyms

AADL Architecture Analysis Description Language

ADL Architecture Description Language

ADLARS Architecture Description Language for Real-time Systems

ALI Architecture Description Language for Industrial Applications

AMS Asset Management System

BNF Backus Naur Form

CASE Computer Aided Software Engineering

CSP Communicating Sequential Processes

EBNF Extended Backus Naur Form

IoT Internet of Things

IS Information System

JavaCC Java Compiler Compiler

SLR Systematic Literature Review

SOA Service Oriented Architecture

SPL Software Product Lines

UCM Use Case Maps

UI User Interface

UML Unified Modelling Language

WBS Wheel Brake System

WSDL Web Services Description Language

x

Acknowledgment

This project is by far the most significant accomplishment in my life. Various people

deserve my sincere thanks for their immeasurable help to me throughout the course of

this thesis. I must offer my profoundest gratitude to my thesis advisor and director of

study, Dr Rabih Bashroush. He has inspired me to become an independent researcher

and helped me realise the power of critical reasoning. He also demonstrated what a

brilliant and hard-working scientist can accomplish. His unreserved help and guidance

has led me to finish my thesis step by step. His words can always inspire me and bring

me to a higher level of thinking. What I learnt from him is not just how to write a thesis

to meet the graduation requirement, but how to view this world from a new perspective.

Without his kind and patient instruction, it was impossible for me to finish this thesis.

My sincere thanks must also go to the member of my thesis advisory Dr Usman

Naeem. He generously gave his time to offer me valuable comments toward

improving my work.

I also want to give gratitude to Dr John McGregor from Clemson University, South

Carolina, USA, who helped and offered me his inspiring suggestions for my research

work.

I would also like to express my thankfulness to the School of Architecture, Computing

and Engineering (ACE) and Graduate School at University of East London (UEL) for

their support in my research.

 Last but not least, I would like to express my gratitude to my parents for their unfailing

emotional support and also, thank for heart-warming kindness.

xi

Dedication

I would like to dedicate this Doctoral dissertation to my lovely parents. There is no

doubt in my mind that without their constant loves, endless support and encouragements

I could not have completed process.

1

Part I

INTRODUCTION

2

1
Chapter One

Introduction

 “The secret of getting ahead is getting started.”

 --Mark Twain

1.1 Motivation

Within the software engineering community, the concept of software architecture

started to emerge as a distinct discipline in 1990 (Kruchten, Obbink and Stafford, 2006)

which led to an explosion of interest during the 1990s and 2000s, referred to as the

“Golden Age of Software Architecture” (Shaw and Clements, 2006). Today, software

architecture has moved towards the point of growing from its adolescence in research

laboratories to the responsibilities of maturity, which was predicted by Shaw (Shaw,

2001) over a decade ago. However this does not mean that the time for research,

innovation, and enhancement is a thing of the past. In fact, it brings an additional

responsibility to show not just that ideas are promising (adequate grounds to continue

research) but also that they are effective (indispensable grounds to move into practice)

(Shaw, 2001). In other words, it is a coupling between ongoing research and practical

application to make new ideas practical. For this reason, software architecture has drawn

considerable attention from both academia and industry.

The increasing complexity of software and the critical nature of its use are driving a

rapid maturation of the field of software architecture. According to Garlan (Garlan, 2014),

a critical issue in the design and construction of any complex software system is its

architecture: that is, its organization as a collection of interacting elements – modules,

components, services, etc. Thus, a well-designed architecture ensures the quality and

3

longevity of a software system. A number of approaches exist that can describe a software

architecture, ranging from formal notations (e.g. ADLs), semi-formal (e.g. UML) and

informal (e.g. boxes and lines, videos, etc.).

Architecture Description Languages (ADLs) are currently considered to be viable

tools for formally representing the architectures of systems at a reasonably high level of

abstraction to enable better intellectual control over the systems (Bass, Clements and

Kazman, 2012). An ideal ADL is considered to be both human-readable and machine

readable. An ADL must be simple, understandable, encompassed by multiple

architectural views and syntactically flexible. With regards to this, Lago et al. (Lago et

al., 2015) presented a general framework of requirements for the next generation

architectural languages by taking into account current architectural needs of both the

academic and industrial worlds.

Over the past two decades, a vast number of ADLs have been developed as compared

to the number of ADLs reported in (Clements, 1996; Medvidovic and Taylor, 2000) but

the majority of the problems still remain the same. Among those, the most common

problem is that ADLs have gained wide acceptance in the research community as a means

of describing system designs but their current industrial adoption level is still reported to

be as low as before with some exceptions, for example, in the embedded systems domain

(Bashroush et al., 2005; Cuenot et al., 2010; Feiler, Gluch and Hudak, 2006; Ommering

et al., 2000). This could be due to a number of reasons identified in (Bashroush et al.,

2006; Malavolta et al., 2013; Woods and Hilliard, 2005), including the mismatch between

their strengths and the needs of practitioners.

Many existing ADLs tend to focus on a specific aspect of a system (e.g. system

structure), or are geared towards a particular application domain (e.g. embedded systems).

While domain specific notations can be well tailored to serve particular application area

4

needs, todays systems (and systems of systems) cross traditional design boundaries,

where software persists across various layers (e.g. Cyber-physical systems, Smart Cities

systems, etc.). Thus, to be able to use an ADL in such domains, it would need to have the

flexibility and expressiveness that allows it to stretch beyond a single application domain.

Moreover, there has recently been an increase in the usage of variability mechanisms

at the architectural level (e.g. to represent product families or runtime system adaptation).

Variability management allows a) the development and evolution of different versions of

software and product variants, b) planned reuse of software artefacts, and c) well-

organized instantiation and assessment of architecture variants (Galster et al., 2014). An

ADL with the capability to capture and express such complex variability exhibited in

software systems would empower architects to build and model more sophisticated

systems.

 To overcome these aforementioned limitations, there is a need for an ADL which will

be designed as a comprehensive language, suited for different types of systems, from

individual systems, to product lines, and system-of-systems. A major goal of that ADL

should be to provide a blend of flexibility and formalism. Flexibility is based on ease of

use and be informative enough to convey the needed information to the stakeholders

involved in the architecting phase. Formalism, on the other hand, paves the way for

developing better tool support and automated analysis. Lastly, most importantly, the

design of an ADL is to be highly customisable to provide support for a wide range of

application domains.

5

1.2 Problem Statement: Research Questions

The goal of this thesis is to answer the following research questions:

RQ1. What approaches have been proposed to represent the variability in

software architecture and what are the limitations of these approaches?

RQ2. How can variability be represented formally throughout the

architectural description? Furthermore, how will this representation

assist in addressing the system’s stakeholder concerns, particularly in

large-scale industrial systems?

RQ3. Which architectural description constructs (textual and graphical) are

required to best capture system behaviour, while maintaining support

for variability?

RQ4. How can ADLs be extended to support system modelling that spans

multiple application domains?

This thesis proposes an approach to formally designing a system architecture that helps

in answering these research questions, with a focus on its applicability in multi-scale

industrial projects.

1.3 Contributions

The primary contribution of this research is a novel approach to designing the

architecture of a software system, by adapting a formal process which must be both

valuable and practical. More specifically, this thesis details a software architecture

description technique, which has been formalised through an ADL, in order to design a

system that conforms to the needs of practitioners. Furthermore, the proposed software

6

architecture description also focuses on natively representing the system’s variability.

The contributions of this thesis are as follows:

 A comprehensive review on representing variability in software architecture.

To conduct this review in a formal way, a Systematic Literature Review (SLR)

methodology has been adopted in order to have a credible, repeatable and fair

evaluation of the available studies in this area. This review captures and

summarises the state-of-the-art in representing variability in software architecture

in a manner accessible to practitioners working in this area. This allows

practitioners to choose the best approach to describe variability that fits into their

system, and assists researchers in identifying areas requiring further research.

Furthermore, this review assesses the quality of the literature and the nature of the

different approaches used to represent variability in software architecture.

 Identification of flexible ADL design principles to facilitate representation of

today’s multi-domain systems of systems. The design principles satisfy the

current industrial requirements of practitioners that are required when designing

an architectural language. In addition, principles have been designed that consider

both the structural and behavioural architectural descriptions of the system.

 Enrichment of an existing ADL from the perspective of its industrial

adoption. ALI (Architecture Description Language for Industrial Applications),

an academia originated ADL has been enhanced (referred as ALI V2 in this thesis)

by considering the needs of the industrial practitioners in the following ways:

 Strengthened variability representation in the architecture

description accommodates a variety of products, including a product with

7

variable features. Variability has been considered as a first-class element

that is treated equally in both the structural and behavioural descriptions

of the language. Furthermore, variability is taken into consideration from

the initial requirements stage through to the architectural design stage, as

a collection of features and conditions.

 A high-level description of the architectural language in the form of a

conceptual model. This is designed to demonstrate the relationship

between the structural and behavioural constructs of the language.

 Introduction of a new behaviour description section including: events,

transactions and transaction domains. This aspect of the architectural

description is given detailed exposition, with a clear separation of concern

from the structural description (in terms of both textual and graphical

representation) of the system, while maintaining consistency and

completeness.

 Introduction of graphical notation for representing architectural

behaviour, which has been designed so that it can be easily understood by

different system stakeholders, such as management and technical

stakeholders. The notation has been designed and configured as an event

trace that demonstrates a particular functional behaviour of the system.

Along with this, components involved in a particular functional behaviour

have been visualised with their own interactions in a well-defined

sequential manner.

 Formal modelling of the notation semantics have been provided for both

the structural and behavioural descriptions of the language, in a stand-

alone fashion. The language semantics have been defined using a formal

8

language, as it affords precise and unambiguous semantics. The formal

languages used were: mathematical set theory to define structural

semantics, and CSP (Communicating Sequential Processes) to define

behavioural semantics of the language.

 Evaluation of the ADL in multiple domains using two case studies. The

proposed ADL (i.e. ALI V2) has been applied to two different case studies which

have different natures and sizes. They are: 1) an Asset Management System

(AMS) which is a generic information system that helps in managing investment

decisions of a large-scale investment portfolio for a bank, and 2) a Wheel Brake

System (WBS) which is an embedded system that stops/decelerates the wheels of

a commercial aircraft.

1.4 Organisation of Thesis

This thesis is structured into nine chapters, each devoted to describing a specific aspect

of the research, and the structure is illustrated in Figure 1.

9

Chapter 1:

Introduction

Chapter 2:

Research Methodology

Chapter 3:

Background

Chapter 4:

Systematic Literature Review

Chapter 5:

ALI Initial Version

Chapter 6:

ALI V2

Chapter 7:

Case Study: Asset

Management System

Chapter 8:

Case Study: Wheel Brake

System

Chapter 9:

Conclusion and Future

Perspectives

Figure 1: Organisation of thesis

Chapter 2 presents the research methods used to carry out this research work. Here,

the current state-of-the-art on representing variability in software architecture is captured

through a SLR. Then, the ALI language is redesigned to meet the current industrial

requirements, and is subsequently evaluated on two real-life case studies.

Chapter 3 provides background information on the research areas of this thesis.

Specifically, the concepts of software architecture, variability and ADL re described. In

addition to this, a critical analysis of existing ADLs is presented, which focuses on the

areas that are relevant to this thesis, along with a discussion of their limitations.

10

Chapter 4 presents a detailed analysis of the primary studies identified in the previous

chapter, regarding the representation of variability in software architecture. The nature of

the different approaches used to represent variability in software architecture, the quality

of the work conducted, the research context and area, and the limitations within the

studies, are all assessed.

Chapter 5 describes the original form of ALI, which was the version prior to the

commencement of this research. The chapter discusses its rationale and basic language

constructs. Furthermore, this chapter reveals the limitations that exist within this version,

which are identified by considering the current challenges in architectural languages,

especially from an industrial perspective.

Chapter 6 introduces the latest form of ALI (referred as ALI V2), which is the current

at the time of publication of this thesis. This chapter presents the design principles on

which the ALI V2 is based on and how they have been leveraged in order to tackle the

research problems addressed in this thesis. This chapter also describes the conceptual

model, as well as the language constructs (structural and behavioural both) of the ALI V2

and its formal semantic definition.

Chapter 7 presents a case study where the proposed software architectural language,

ALI V2, has been applied. The case study is called the Asset Management System (AMS),

part of the Information System (IS) domain, and it is a system that supports decision-

making and executing investment decisions for a large-scale investment portfolio in an

investment bank. At the end of this chapter, the AMS has been evaluated with respect to

the limitations identified in the current ADL literature in Chapter 2 and how it addresses

the ALI V2 design principles explained in Chapter 6. Finally, the results obtained from

the AMS architectural design have been discussed.

11

Chapter 8 presents a second case study where the proposed software architectural

language, ALI V2, has been applied. The case study is called the Wheel Brake System

(WBS), part of the embedded system domain, and it is a system that controls braking the

wheels of a commercial aircraft. As in Chapter 7, this chapter concludes with an

evaluation of WBS with respect to the limitations identified in the current ADL research

literature and how the system addresses the ALI V2 design principles explained in

Chapter 6. The chapter concludes with a discussion of the results obtained from the WBS

architectural design.

Chapter 9 concludes this thesis by providing a comprehensive summary of the

proposed approach for developing a system architecture, with a focus on its industrial

adoption. This chapter also discusses the future directions for this research.

12

2
Chapter Two

Research Methodology

 “Highly organized research is guaranteed to produce nothing new.”

 --Frank Herbert, Dune

2.1 Introduction

This chapter details the research methodology employed in this thesis, which is guided

towards representing variability in software architecture. Furthermore, the research

methodology is outlined in such a way that it addresses the research questions (described

in Section 1.2) for this thesis.

Three main research methods were determined for this thesis. Firstly, the objective

was to provide a snapshot of the state-of-the-art on representing variability in software

architecture while assessing the quality of work conducted and the nature of the different

approaches. A systematic literature review (SLR) was conducted to achieve this objective.

Subsequently, grounded theory was used to conduct the analysis and to draw conclusions

from the data, thus minimising threats to validity.

Secondly, Architecture Description Language (ADL), a formal architecture-

description technique used to represent variability in software architecture was adopted

as a result of the SLR. This was done by redesigning an existing ADL –ALI (Bashroush

et al., 2008) that captures the architectural description (both structural and behavioural),

while maintaining the support for variability. The language was also designed with the

intention of meeting the current industrial requirements, which can then easily be applied

to any system irrespective of their size.

13

Lastly, the proposed language has been evaluated via its implementation in two

different real-life case studies. Both the case studies comprise distinct characteristics that

demonstrate the broader scope of the proposed language.

The following section describes how the SLR was conducted. Section 2.3 presents the

strategy followed to design the language, while the methodology to evaluate the language

via case studies is described in Section 2.4. Finally, Section 2.5 summarises the defined

research methods used to carry out the work in this thesis.

2.2 Systematic Literature Review (SLR)

The main objective of the proposed research methodology was to identify, summarize

and analyse all approaches that have been proposed or used to represent variability in

software architecture. To achieve this, a SLR referred to as systematic review or review

hereafter is conducted. A systematic review is a well-defined and methodical way to

identify, evaluate, and synthesize the available evidence concerning a particular

technology to understand the current direction and status of research or to provide

background in order to identify research challenges (Kitchenham and Charters, 2007).

This method was chosen because of the requirement to have a credible, repeatable and

fair evaluation of the available studies on representing variability in software

architectures.

In this section, SLR review protocol is defined in Section 2.2.1 and subsequently, its

steps (Section 2.2.2 – 2.2.6) that are used to identify the current literature on representing

variability in software architecture.

14

2.2.1 SLR Review Protocol

A significant step of the systematic literature review process is the development of the

protocol (Figure 2). The protocol specifies all of the steps and procedures followed by

researchers during a review to neutralize author bias and minimize threats to validity

(discussed in Chapter 4). The review protocol is one of the main aspects that differentiate

SLRs from conventional literature reviews. The protocol adopted for this work was

reviewed by an independent researcher.

Figure 2: SLR review protocol

The protocol starts by defining the research questions, followed by a definition of the

search strategy process to be followed (Sections 2.2.2 and 2.2.3). Then, inclusion and

exclusion criteria are developed to provide a systematic way of selecting among identified

primary studies (Section 2.2.4). Clear criteria for assessing the quality of studies are then

identified (Section 2.2.5). Finally, the data elements to be extracted from the primary

studies to help answer the research questions are identified (Section 2.2.6). Once the data

is extracted, grounded theory is used to help analyse and draw conclusions to minimize

threats to validity (discussed in Chapter 4).

Identify
research
questions

(Section 2.2.2)

Define search
strategy

(Section 2.2.3)

Define study
selection
criteria

(Section 2.2.4)

Define quality
criteria

(Section 2.2.5)

Define data
extraction and

synthesis
(Section 2.2.6)

15

2.2.2 SLR Research Questions

We aim at research questions important not only to researchers, but also to

practitioners. Therefore, SLR covers the following research questions:

SLR.RQ1: What approaches have been proposed to represent variability in

software architecture?

SLR.RQ2: What is the quality of the research conducted in the reported

approaches?

SLR.RQ3: What is the context and areas of research of the studies employing

variability in software architecture?

SLR.RQ4: What are the limitations of the existing approaches to represent

variability in software architecture?

SLR.RQ1 is motivated by the need to describe the state-of-the art of how existing

approaches represent variability. In order to understand the overall quality of the research

conducted in the domain, SLR.RQ2 was formulated. SLR.RQ3 helps better understand

the applicability of each of the identified approaches, and to analyse any recurring

patterns in different domain, while helping practitioners navigate through the reviewed

approaches. We pose SLR.RQ4 to provide an overview of existing challenges in order to

provide the directions for further research.

 2.2.3 Search Strategy

The search string used in this review was constructed using the following strategy and

criteria:

 Derive main terms based on the topics being researched and research questions;

16

 Determine and include synonyms, related terms, and alternative spelling for major

terms;

 Check the keywords in all relevant papers that the researchers were already aware

of and using initial searches on the relevant databases;

 Include other relevant terms where there is a possibility of identifying further

material related to the topic.

 Incorporate alternative spellings and synonyms using Boolean “OR”;

 Link main terms using Boolean “AND”;

 Pilot different combinations of the search terms.

Following this strategy, and after a series of test executions and reviews, the search

string was constructed which is defined below:

<< (Variability OR Variabilities) AND (reference architecture OR

software architecture OR architectural) >>

The primary studies in seven digital sources (1. IEEExplore; 2. ACM Digital library;

3. Citeseer; 4. SpringerLink; 5. Google Scholar; 6. ScienceDirect and 7. SCOPUS) were

searched. As an indication of inclusiveness, the results were checked against relevant

literature the researchers were aware of, and all of the papers checked were found in the

identified primary studies. Papers that were not able to access online were acquired by

contacting the relevant authors via email.

As an additional measure to ensure the comprehensiveness of the review, a manual

check was conducted of the proceedings of the major conferences and workshops that the

researchers were aware of that published relevant papers. Table 1 presents the list of

conferences and workshops that were searched manually. SATURN conference were also

17

considered due to its relevance; however, as the conference only publishes presentations

rather than full research papers, it was excluded for failing to meet one of our inclusion

criteria (discussed in the next section).

SOURCE ACRONYM YEAR

International Conference

on Software Engineering
ICSE 1991-2015

Foundation of Software

Engineering
FSE 1991-2014

Working IEEE/IFIP

Conference on Software

Architecture

WICSA 2004-2015

Workshop on Variability

Modeling of Software-

Intensive Systems

VaMoS
2007-2015

Quality of Software

Architecture
QoSA 2005-2015

European Conference on

Software Architecture
ECSA 2007-2014

Systems and Software

Product Line Conference
SPLC 1996-2015

Table 1: Manually searched conferences and workshops

The publication lists of known researchers publishing in the area were also checked

manually. Finally, for the primary studies identified, forward and backward reference

checking was conducted. For backward reference checking, the reference list of the

papers searching for any potential primary studies that had been missed were examined.

Similarly, for forward reference checking, search engines to identify citations to the

primary studies that could be relevant to the review were used. This process helped to

identify a number of additional potential primary studies. In terms of timeline, the primary

studies published between January 1991 and July 2015 were searched. The start date was

set to be as early as possible (the earliest relevant primary studies identified were

published in 2002). The search stage of this SLR was concluded in July 2015 (hence the

end date), after that, the data extraction stage commenced.

18

2.2.4 Study Selection

The outcome from the different initial searches on digital libraries, manual searches,

and known author searches, produced 1045 primary studies. After initial screening of this

SLR based on title, abstract and keywords and excluding papers that were irrelevant or

duplicates, 131 primary studies were selected. These remaining primary studies were

subject to a more detailed review (of the full papers) where each paper was checked

thoroughly. This process resulted in 25 papers being excluded. Of the remaining 106

primary studies, forward references (papers citing the primary study) and backward

references (papers cited in the primary study) were followed which helped to identify a

further 11 studies. The resulting 117 papers were then reviewed by applying the following

inclusion and exclusion criteria:

- Inclusion criteria:

IC1: The primary study proposes or uses an approach to represent variability

in software architecture;

IC2: When several reports of the same study existed in different sources, the

most complete and recent version of the study was included in the

review.

- Exclusion criteria:

EC1: The primary study addresses variability but not in software architecture

domain.

EC2: The primary study is in the domain of software architecture, but does

not consider variability. A paper that does not address variability along

with software architecture has no value to answer our research

questions.

19

EC3: Lack of enough details about representing variability in software

architecture to make any useful contribution towards addressing

research questions.

EC4: The primary study is a short (less than 3000 words) or symposium

paper, abstract, keynote, opinion, tutorial summary, panel discussion,

technical report, presentation slides, compilation of work (for instance,

from a conference or workshop or special issue) or a book chapter.

Books/book chapters were only included if they were

conference/workshop proceedings (e.g., as part of the LNCS or LNBIP

series) and are available through data sources are included in our

review.

This led to the exclusion of 59 papers leaving us with 58 primary studies. The study

selection process is summarized in Figure 3.

20

Figure 3: The search and selection process

2.2.5 Quality Assessment Criteria

We adopted the quality assessment strategy defined by (Kitchenham and Charters,

2007) where each primary study was assessed using the following quality criteria:

QA.Q1. Is there a rationale for why the study was undertaken?

QA.Q2. Is there an adequate description of the context (e.g. industry, laboratory

setting, products used, etc.) in which the research was carried out?

QA.Q3. Did the paper present sufficient detail about the software architecture

variability approach to allow it to be understood and assessed?

QA.Q4. Did the case study (if exist) employ a single or multiple case research

design?

Searching digital
libraries, known
publication outlets,
and known
researcher
publication lists

• Produced:
1045 papers

Initial screening
using paper titile,
abstract and
keywords

• Produced:
131 papers

Full paper
screening (three
reviewers per
paper)

• Produced:
106 papers

Forward and
backward reference
checking

• Produced:
117 papers

Full paper review
using the identified
inclusion/exclusion
criteria

• Produced: 58
papers

21

QA.Q5. Did the case study consider construction validity, internal validity, external

validity, and reliability to the study?

QA.Q6. Is there a description and justification of the research design, including a

statement of what the result should be (e.g. a construct, a model, a method,

or an instantiation)?

QA.Q7. Is there a clear statement of findings with sufficient data to support any

conclusions?

QA.Q8. Do the authors discuss the credibility of their findings?

QA.Q9. Are the limitations of the study discussed explicitly?

A ternary (‘‘Yes’’, ‘‘Partially’’ or ‘‘No’’) scale was used to grade the reviewed studies

on each element of the quality assessment criteria. By including ‘‘Partially’’ in the scale

is to make sure that statements where authors only provided limited information to answer

the quality assessment questions were not totally neglected. To quantify the results, these

values: 1 to Yes, 0.5 to Partially, and 0 to No were assigned. Then, a quality assessment

score was given to each study by aggregating the scores of all questions.

The quality assessment criteria were used for synthesis purposes and not for filtering

papers. The calculated quality scores were used as one of the factors to validate all of the

primary studies that were reviewed. This assessment is also used to answer SLR.RQ2 and

the results are provided in Chapter 4.

2.2.6 Data Extraction and Synthesis

On completion of the search, selection and quality assessment steps, data extraction

was then conducted on the selected 58 primary studies to help answer the research

questions defined in Section 2.2.2. Appendix A1 shows the complete list of the primary

22

studies that were included in this systematic literature review. Data was extracted using a

data extraction form whose fields are shown in Table 2. In addition, Table 2 shows the

mapping between the data extraction questions and the research questions (excluding

SLR.RQ2 which is solely quality assessment question, discussed in prior section) that

they help to answer.

During data extraction, information related to the paper synopsis (DE.Q5) to define

the identified approach more elaborately, variability approach (DE.Q8) and the

limitations (DE.Q10) were also captured. Every effort was made to capture as much

information as possible, but at the same time, kept the data as succinct as possible in order

to avoid any potential influence of a taxonomic or classification framework on our results.

GoogleDocs was used to collect the extracted data from the different researchers and

the aggregated results were made available in Excel spreadsheets for analysis. Finally,

sanity checks are performed on the results and the differences were reconciled

collaboratively.

23

DATA FIELD

RELATED

CONCERN/RESEARCH

QUESTION

DE.Q1 Paper title

Documentation

DE.Q2 Year of publication

Documentation

DE.Q3 Type of publication (e.g. Journal, Conference,

etc.)

Reliability of review

DE.Q4 Publication outlet (conference name, etc.)

Reliability of review

DE.Q5 Brief description (synopsis)

SLR.RQ1

DE.Q6 Research Context (e.g. industry, academic, etc.)

SLR.RQ3

DE.Q7 Research Area (e.g. SPL, SOA, etc.)

SLR.RQ3

DE.Q8 Proposed approach for representing variability

in software architectures (please provide

category [UML, ADL, etc.] and an

example/sample if possible)

SLR.RQ1

DE.Q9 Relevance (Research/ Practice/Both)

SLR.RQ3

DE.Q10 Research limitations as reported in the paper SLR.RQ4

Table 2: Data extraction form

2.3 Language and Framework Design

Different approaches were identified via an SLR that represents variability in software

architecture (as reported in Chapter 4). Of these, ADL (after UML, which is a semi-formal

notation) is the most common formal architectural description notation in the existing

literature that is used to represent variability in software architecture.

Therefore, ADL was chosen as an approach to represent variability in software systems

at the architectural level. For this, ALI ADL (Bashroush et al., 2008), which was initially

designed within our research group, was adopted due to its strengths (such as a flexible

24

way to design architectural elements, meta-information and so on), and its applicability

for industrial systems.

Redesigning the ALI ADL (named as ALI V2 in this thesis) was done in such a way

that it overcame the current limitations (such as limited support for variability

management, restrictive syntax and the like) that exists in the architectural languages, as

discussed in the next chapter. In particular, it addresses the current challenges faced by

industrial practitioners when designing the architecture of large-scale systems; these

challenges were not addressed in the initial versions (in other words, versions that existed

before this research work for this thesis started), as explained in Chapter 5. These include

limited support for behavioural descriptions and multiple architectural views.

Figure 4: ALI redesign process

An agile approach was adopted for redesigning the language, whereby changes were

introduced in small increments and the ALI V2 was then tested and validated using a

snippet of the Asset Management System’s (AMS) case study, which was used as one of

the real-life case studies to evaluate ALI V2. This ensured that we avoided any major

surprises in the final evaluation stage. Thus, the redesigning of the ALI V2 language is a

recursive process, as demonstrated in Figure 4.

Identify ALI-ADL
redesign element

Implement
change

Validate outcome

25

In addition, the ALI V2 framework was enhanced in the form of a conceptual model

that demonstrates the high-level (abstract) description of the language, which was not

considered previously in its original version (described in Chapter 5).

2.4 Case Study Research

After the completion of the language and the design of the framework, the final version

of ALI V2 was evaluated using the two real-life case studies to serve as a benchmark.

The two case studies were chosen to demonstrate the broader scope of the ALI V2

language due to their distinct characteristics.

The first case study corresponded to the information system (IS) domain; namely, an

Asset Management System (AMS) that described how a portfolio for a financial

instrument (equity) was managed by the fund manager (or fund management team) within

an investment bank. The operational description of AMS was obtained by conducting a

detailed interview with some of the finance personnel from the leading investment banks.

In addition, while designing the AMS architecture using the ALI V2 language, the finance

personnel analysed each complete aspect in segments. This was to ensure its

computational correctness, and to make sure that it fulfilled the real-life AMS requirement

in terms of managing the portfolio, as well as to avoid any major consequences at the end.

Another case study corresponded to the embedded system domain, namely the Wheel

Brake System (WBS), which described how brakes can be applied to decelerate/stop the

wheels of commercial aircraft during landing or parking. WBS is a standardised case

study that was obtained from the SAE Standard Aerospace Recommended Practice (ARP)

4761, Guidelines and Methods for Conducting the Safety Assessment Process on Civil

Airborne Systems and Equipment (ARP4761, 1996).

26

In addition to this, a number of selection criteria were applied for deciding these two

best case studies, including: distinct application domains (to demonstrate cross domain

modelling capabilities); existence of inherent variability in the application domain;

varying types of connectivity between components; different complexity levels

(information overload); varied emphasis on behavioural versus structural descriptions;

potential for artefact reusability within the case study; and last but not least, access to full

technical details.

The detailed description of both case studies, together with their architectural

implementation using ALI V2 language has been described thoroughly in Chapter 7 and

Chapter 8. These sections also present an evaluation in accordance with the ALI V2

design principles and the results obtained after the implementation.

2.5 Summary

The research methodology described in this chapter addresses the research questions

(see Chapter 1) determined for this thesis, which demonstrate how variability can be

represented in software systems at the architectural level. RQ1 has been addressed

through an SLR, while language and the framework design addresses RQ2 and RQ3. The

case study research method addresses RQ4.

In the SLR research method, five protocols were developed to identify the current

state-of-the-art on representing variability in software architecture. Of these, the search

strategy and the selection criteria to identify the existing papers in the research literature

were defined. Following the search strategy, and considering the pre-defined inclusion

and exclusion criteria, 58 papers (termed primary studies in SLR) were selected.

Moreover, to assess the quality of each primary study, nine quality assessment questions

27

were defined. Subsequently, ten different questions were defined to extract the data to

answer the research questions that were described as part of the review protocol.

Based on the SLR findings, ALI V2 language was redesigned in such a way that it

provided a flexible method of representing variability conjunction with its other

properties in order for practitioners to use it to model their systems with ease. To validate

it, ALI V2 was evaluated via two distinct, real-life case studies.

In the next section, Chapter 3, the theoretical background to the terminology used in

this research, as well as the analysis of the existing ADLs and their limitations

(particularly from industrial perspectives) is presented. A detailed analysis of the primary

studies identified via the SLR research method is provided in Chapter 4.

28

Part II

STATE-OF-THE-ART

29

3
Chapter Three

Background

 “There is nothing so practical as a good theory.”

 --Ludwig Boltzman

3.1 Introduction

This chapter gives an overview of the basic concepts and related work that are most

closely related to this thesis work. Firstly, software architecture and variability concepts

are outlined in Section 3.2. This is followed by a brief overview of the Architecture

Description Language (ADL) in Section 3.3, which also includes detailed analysis of the

existing ADLs followed by their limitations. Section 3.4 concludes the information

analysed from the current research literature.

3.2 Concepts and Terminology

This section discusses some conceptual background information this thesis work is

based on. Basic concepts about software architecture and variability are presented in this

section.

3.2.1 Software Architecture

The field of software architecture addresses notations and methodologies that can help

abstract large-scale systems in order to enable better intellectual control over the system

as a whole (Bass et al., 2012). In a simpler way, software architecture acts as a skeleton

for the software development, usually designed at the early stages of the software

30

development lifecycle once initial requirements are understood. Then the whole

development process rotates around this skeleton, keeping into account the constraints

and facilities implied by the software architecture. Nowadays, it has been observed that

software architecture is widely visible as an important and explicit design activity in

software development. Typically, it plays a key role as a bridge between requirements

and implementation (Garlan, 2014).

There are several published definitions for Software Architecture, such as those of the

Software Engineering Institute’s architecture practice site. For example, one definition

states that:

“The software architecture of a program or computing system is

the structure or structures of the system, which comprise software

elements, the externally visible properties of those elements, and

the relationships among them” (Bass et al., 2012).

Kruchten et al. (Kruchten et al., 2006) elucidates that software architecture seizures

and preserves designers’ intentions about system structure and behaviour, thereby

providing a resistance against design decay as a system ages. In addition to this, it

involves two things: 1) the structure and organization of the modern system components

and subsystems by which they interact to form systems, and 2) the properties of systems

that can be best designed along with the analysis at the system level (Kruchten et al.,

2006). A software architecture can also be defined as the “blueprint” of a system at the

highest level of abstraction, describing the main components and their important

interconnections (Yao et al., 2010).

Basically, software architecture is the ‘first cut’ at solving a problem and designing a

system. The importance of software architecture lies in its ability to: a) represent earliest

design decisions; b) abstract system details to provide a holistic view of the system (the

31

big picture); and c) allow for systematic reuse (e.g. reuse of large components and

frameworks into which components can be integrated).

A precise description of the software architecture of a system provides considerable

benefits for the system’s stakeholders. For instance, the system allows an early analysis

of whether the system can meet its requirements from the description of a software

architecture; it may be used as a centre of discussion by system stakeholders; and it allows

for reasoning on the system from the very early stages of its development life-cycle.

3.2.2 Variability

Variability in software-intensive systems is commonly understood as the ability of a

software artefact (e.g., a system, subsystem, or component) to be changed for deployment

in a specific context (Galster et al., 2014).In addition to this, variability is often

understood as “anticipated” change, i.e., change that is mostly foreseen, with predefined

points of potential change and adaptation, as well as options for how to adapt software

systems (Galster and Avgeriou, 2011b). Variability management helps organise the

commonalities and differences amongst software systems. More specifically, variability

management allows for a) the development and evolution of different versions of software

and product variants, b) planned reuse of software artefacts, c) well-organized

instantiation and assessment of architecture variants, and d) runtime adaptations of

deployed systems (Galster et al., 2014).

Variability is pervasive, thus, architects need adequate support for dealing with it.

Therefore, it is essential for the architect to have suitable methods and tools for handling

(i.e., representing, managing and reasoning about) variability (Galster and Avgeriou,

2011a). As discussed in (Galster and Avgeriou, 2011a), software architecture considers

32

variability in a broader scope and acknowledges that variability is a concern of different

stakeholders, and in turn affects other concerns.

There are several mechanisms that can accommodate variability such as software

product lines, variant management tools, configuration tools, configuration interfaces of

software components, or the dynamic runtime composition of web services (Galster et

al., 2014). So far, variability has primarily been studied in the software product line (SPL)

domain. But as compared to software architectures, product line architectures have a

limited scope with regard to variability (Chen et al., 2009). Bachmann and Bass raised

two causes of variability in the software architecture of a product line: (1) at design time

many alternatives may exist and need to be captured, and (2) software product line

architectures comprises of a collection of different alternatives that must be resolved

during product configuration (Bachmann and Bass, 2001).

3.3 Architecture Description Languages (ADLs)

Architecture Description Languages (ADLs) proliferated in the 1990s as a formal

modelling notation to describe the architecture of the software systems. It provides the

embodiment of early design decisions prior to the detailed design and implementation of

a system.

According to the (ISO/IEC/IEEE 42010, 2011), an architectural language is:

“Any form of expression for use in architecture descriptions”.

In theory ADLs differ from requirements languages, because ADLs are rooted in the

solution space, whereas requirements define problem spaces. Moreover, they also differ

from programming languages, because ADLs do not bind architectural abstractions to

specific point solutions.

33

Basically, ADLs result from a linguistic (informal, such as box-and-line) approach to

the formal representation of architectures but still its designing intends to be readable to

both human and machines. It permits analysis and assessment of architectures, for

completeness, consistency, ambiguity, and performance. Also, it can support automatic

generation of software systems. Despite of several advantages of the ADLs, there is still

a consensus in the research community on what an ideal ADL is and what aspects of an

architecture should be modelled in an ADL, especially when it comes to its applicability

into large-scale industrial systems.

Following are some of the common definitions given by different researchers which

have been usually taken into account by ADL creators while designing the language:

“An ADL for software applications focuses on the high-level

structure of the overall application rather than the

implementation details of any specific source module” (Vestal,

1993).

“Architecture description languages (ADLs) are formal

languages that can be used to represent the architecture of a

software-intensive system” (Clements, 1996).

In addition to above definitions, Software Engineering Institute (SEI)

defined ADLs as:

“A language (graphical, textual, or both) for describing a

software system in terms of its architectural elements and the

relationships among them” (Software Engineering Institute (SEI)

/ Carnegie Mellon University (CMU)).

The above SEI definition can be interpreted as ADLs provide abstractions for

representing architectures through architectural elements (components and connectors)

and their configurations. In that, components represent software functionalities,

connectors are communication elements, and configurations describe the relationship

between components and connectors (Medvidovic and Taylor, 2000).

34

The ADL community also generally agrees that software architecture is a set of

components and the connections among them conforming to a set of constraints. Thus, it

means components, connectors and architectural configurations are the basic building

block for the architectural designing of a system.

There are several ADLs designed by researchers and practitioners that had made an

attempt to address the problems of modelling a system architecture in some way. Those

ADLs have been discussed and analysed in detail in the following section:

3.3.1 Analysis of existing ADLs

Since the early 90’s, a thread of research on formal architecture description languages

(ADLs) has evolved. Numerous ADLs have been proposed in the literature for modelling

architectures both within a particular domain, and general-purpose architecture modelling

notations.

All the classical ADLs (also considered first generation ADLs (Oquendo, 2004))

compared and analysed by Medvidovic and Taylor (Medvidovic and Taylor, 2000) were

conceptually based on structural architecture modelling features (components,

connectors, interfaces and architectural configuration) and tool support. Another ADL

survey was conducted by Clements (Clements, 1996) in the same era. Some of the second

generation ADLs have been compared in (Yao et al., 2010) but it covers a very limited

number of characteristics of the languages.

Looking at the existing literature, it was interesting to note that very few ADLs were

originated in industry. The main three are described here.

Architecture Analysis & Design Language (AADL) (Feiler, Gluch and Hudak, 2006)

derived from the MetaH (Binns et al., 1996) ADL, is a SAE standard formal modelling

35

language for describing software and hardware system architectures and uses a

component-based notation for the specification of task and communication. It provides

precise execution semantics for system components, such as threads, processes, memory,

and buses. All external interaction points of a component are defined as features. Data

and events flow through and across multiple components. The AADL Behavioural annex

describes nominal component behaviour and the Error annex describes flows in the

presence of errors.

Koala (Ommering et al., 2000) is a component oriented ADL based on key concepts

from Darwin (Magee and Kramer, 1996). Basically, it was designed with the aim of

achieving a strict separation between component and configuration development in order

to reuse software components in many different configurations for different product

variants, while controlling cost and complexity.

EAST-ADL (Cuenot et al., 2010) defines an approach for describing automotive

electronic systems through an information model that captures engineering information

in a standardized form, provides separation of concerns and embraces the de-facto

architecture of automotive software – AUTOSAR (Qureshi et al., 2011). It covers a

variety of aspects -functions, requirements, variability, software components, hardware

components and communication.

Although these ADLs come from different industries, they all relate to the embedded

systems domain. AADL and EAST-ADL emerged from the avionics and automotive

industries and are currently widely used in their respective domains. Koala, on the other

hand, was developed within the consumer electronics domain, though its use hasn’t seen

the same proliferation as the previous two.

On the academic side, a large number of ADLs have been proposed, each characterised

by slightly different conceptual architectural elements; different syntax or semantics;

36

varying emphasis on a single view (structural or behavioural) or operational domain such

as embedded system; or for specific analysis techniques.

Below are some of the main ADLs developed in academia:

 ACME (Garlan, Monroe and Wile, 1997) is a general purpose ADL proposed as an

architectural interchange language.

 Darwin is a declarative ADL which is intended to be a general purpose notation for

specifying the structure of distributed systems composed from diverse component

types using diverse interaction mechanisms (Magee and Kramer, 1996)

 UniCon (Shaw et al., 1995) creates a useful, pragmatic and extensible test-bed that

would allow the architectural abstractions used by practitioners (such as pipes,

filters, objects, clients and servers) to be captured and reasoned about in a

systematic manner.

 xADL(Dashofy, van der Hoek and Taylor, 2005), an XML based architecture

description language, is defined as a set of XML schemas and has been designed to

use the standard XML infrastructure and to be easily extensible using standard

XML-Schema extension mechanisms.

 C2 is a component- and message-based ADL which simplifies the definition of

architectures following the Chiron-2 (“C2”) style (Medvidovic, Taylor and

Whithead, 1996).

 Rapide (Luckham et al., 1995) is an event-based concurrent object-oriented

language specifically designed for prototyping architectures of distributed systems.

 WRIGHT (Allen and Garlan, 1997) is designed with an emphasis on analysis of

communication protocols and provides formal semantics for an entire architectural

description by extending CSP. Wright has been extended, termed Dynamic

37

WRIGHT (Allen, Douence and Garlan, 1998), with the ability to handle foreseen

dynamic reconfiguration aspects of architecture.

Apart from the ADLs mentioned above, we examined a number of other ADLs with

varying degree of maturity.

According to the ANSI/IEEE 1471-2000 standard, structural and behavioural

viewpoints are the two most important and frequently used viewpoints for architectural

description. The specification of each viewpoint with their entities is elucidated in

(ISO/IEC/IEEE 42010, 2011; Oquendo, 2004). A great challenge for an ADL is being

able to describe static and dynamic software architectures from structural and behavioural

perspectives.

ADLs like ACME (Garlan, Monroe and Wile, 1997), Aesop (Garlan, Allen and

Ockerbloom, 1994), Aspectual-ACME (Garcia et al., 2006), Darwin (Magee and Kramer,

1996), Koala (Ommering et al., 2000), MontiArcHV (Haber et al., 2011c), UniCon (Shaw

et al., 1995), Weaves (Gorlick and Razouk, 1991) and xADL (Dashofy, van der Hoek and

Taylor, 2005) were focused largely on the structural concerns of software architecture.

On the other hand, some ADLs covered both behavioural and structural specifications,

including: AADL (Feiler, Gluch and Hudak, 2006), ABC/ADL (Mei et al., 2002),

ADLARS (Bashroush et al., 2005), ADML (Wang et al., 2012), C2 (Medvidovic, Taylor

and Whithead, 1996), CBabel (Rademaker, Braga and Sztajnberg, 2005), EAST-ADL

(Cuenot et al., 2010), LEDA (Canal, Pimentel and Troya, 1999), MetaH (Binns et al.,

1996), PrimitiveC (Magableh and Barrett, 2010), PRISMA (Perez et al., 2003), Rapide

(Luckham et al., 1995), SOADL (Xiangyang et al., 2007), xADL (Dashofy, van der Hoek

and Taylor, 2005), XYZ/ADL (Zhang, Shi and Rong, 2011), vADL (Zhang, Xiang and

Wang, 2005), WRIGHT (Allen, Douence and Garlan, 1998; Allen and Garlan, 1997),

Zeta (Alloui and Oquendo, 2002), π-ADL (Oquendo, 2004) and π-SPACE (Chaudet and

38

Oquendo, 2000). While some only covered behavioural aspects, such as Monterey

Phoenix (Auguston, 2009).

Most of these languages (except (Allen and Garlan, 1997; Magee and Kramer, 1996))

define structural elements using their own bespoke notation. Some ADLs (such as AADL

and ADLARS) used their own structural notation to describe the behavioural architecture.

Some used different processes to define the behavioural description. For example, Rapide

describes behaviour through partially ordered event sets (or “posets”); Wright uses CSP

with minor extensions; LEDA, PRISMA, SOADL, vADL, π-ADL and π-SPACE use the

π-calculus. It is useful to mention that despite the presence of a π –calculus model for

Darwin’s structural descriptions, it does not provide an adequate basis for analysis of the

behaviour of an architecture.

Generally, the overall architectural structure of ADLs focuses on the basic component,

connector and system paradigm. All ADLs that have been analysed so far treat

components as first class citizens, but in some languages (Bashroush et al., 2005; Canal,

Pimentel and Troya, 1999; Cassou et al., 2009; Chang and Seongwoon, 1999; Feiler,

Gluch and Hudak, 2006; Haber et al., 2011; Klien, 2010; Luckham et al., 1995; Magee

and Kramer, 1996; Ommering et al., 2000; Binns et al., 1996; Poizat and Royer, 2006;

Pinto, Fuentes and Troya, 2003; Faulkner and Kolp, 2003; Zhang, Xiang and Wang,

2005) there is no notion of connectors as first class citizens. Connectors are not even

defined. This does not mean that we cannot create a useful language without first class

connectors. There are viable and potentially useful architectural languages that have been

created without them, like (Feiler, Gluch and Hudak, 2006; Luckham et al., 1995; Magee

and Kramer, 1996; Ommering et al., 2000). (Alloui and Oquendo, 2002; Canal, Pimentel

and Troya, 1999; Chang and Seongwoon, 1999; Su, De Fraine and Vanderperren, 2005;

Gorlick and Razouk, 1991; Klien, 2010; Ubayashi, Nomura and Tamai, 2010; Wang et

al., 2012; Zhang, Xiang and Wang, 2005) do not support an architectural configuration

39

as a first class element. Neither connector nor architectural configuration was considered

first class citizens in (Canal, Pimentel and Troya, 1999; Chang and Seongwoon, 1999;

Klien, 2010; Zhang, Xiang and Wang, 2005).

There are few second generation academic ADLs that focus mainly on the behavioural

modelling in a slightly different way as compared to traditional ADLs. Monterey Phoenix

(Auguston, 2009) is an ADL in which behaviour of the system is defined as a set of events

(event trace) with two basic relations: precedence and inclusion. Different types of

patterns (such as alternative, optional, etc.) are defined in the form of an event trace that

occurs in a transaction. But they lack the unique visual notation for each of these event

patterns. A schema is defined as a set of transactions that includes all possible event

traces. It can be tedious to understand (especially visually) and sometimes becomes more

complicated when it is encapsulated with several pattern types in a single schema,

particularly, in case of large-scale and complex systems.

PrimitiveC-ADL (Magableh and Barrett, 2010) is a component-based language that

modifies the application architecture by subdividing components into subsystems of static

and dynamic elements. A design pattern typically shows relationships and interactions

between components’ dynamic behaviour parts. The decision policy proposes the use of

a design pattern and the application of the decision policy depends on a scenario. The

main problem in (Magableh and Barrett, 2010) and other ADLs (Oquendo, 2004; Zhang,

Xiang and Wang, 2005) is that while they define the behaviour of the system within a

component or in their configuration, behavioural elements are not explicitly defined. In

other words, it provides a single view of the system which is not suitable for a large-scale

industrial system where component behaviour varies enormously. In that case, component

definition becomes complex and it is difficult to differentiate static and dynamic parts.

40

AspectLEDA (Navasa, Pérez-Toledano and Murillo, 2009) is an ADL that provides

behavioural specification of the system using the UML use case and activity diagrams by

adopting the Aspect-Oriented (AO) approach. Each use case diagram represents a

component that constitutes the system and its interactions are expressed in the form of

sequence diagrams. Subsequently, a sequence diagram for every use case contains by

default an aspect component as each use case is extended with an aspect. In other words,

it describes the interactions among components visually via a UML sequence diagram

with its dependency on an AO approach. Looking at this, component interactions need to

be more elaborative in a sense by considering component interfaces (or ports) that are

involved in the interaction which would be helpful to design complex systems.

Another major element that needs attention with regards to ADLs, is the concept of

variability. This is a very important and critical area when it comes to its use in the

architectural description, especially in large-scale industrial applications (Bashroush et

al., 2005; Svahnberg and Bosch, 2000). Variability is the ability to design for a planned

set of changes for deployment in specific contexts (Galster et al., 2014a). It facilitates the

development of different versions of a system architecture. Variability is largely taken

into account in the architecture and design phase of software engineering (Galster et al.,

2014b). Although there are several ADLs where variability has been studied, variation is

specific to describing a set of related products as in a software product line (SPL). Among

the ADLs are: PL-AspectualACME (Barbosa et al., 2011), ADLARS, EAADL (Oh et al.,

2007), LightPL-ACME (Silva et al., 2013), vADL and the recently DSOPL (Adjoyan and

Seriai, 2015). Other ADLs that consider variability as a separate entity are: MontiArcHV

and ∆-MontiArc (Haber et al., 2013).

Software architecture typically plays a key role as a bridge between requirements and

implementation (Garlan, 2014). In terms of ADLs, a challenge in bridging this gap is how

to trace feature (requirements) into the architecture description particularly, into each

41

architectural element. So far, in the research literature, ADLARS and LightPL-ACME

are the only two ADLs that made an attempt to capture the relationship between the

system's features and the architectural structures. Both assumed a feature model as a

precursor to the architecture design process and were limited to specifying a product line.

It is worth mentioning that there are few ADLs that try to represent different aspects

and domains in the architecture by presenting it in the form of different versions. Each

focuses on a particular aspect/domain. For instance, ACME has been extended to

AspectualACME with its descendant PL-AspectualACME, LightPL-ACME, Cloud-

ADL (Cavalcante, Medeiros and Batista, 2013) and ADML; MontiArc (Haber, Ringert

and Rumpe, 2012) to MontiArcHV, ∆-MontiArc and MontiArcAutomaton (Ringert,

Rumpe and Wortmann, 2013).

There is a framework known as ByADL (Build Your ADL) (Ruscio et al., 2010) that

supports a software architecture team in defining their own ADL by allowing software

architects to (i) extend existing ADLs with domain specificities, new architectural views,

or analysis aspects, (ii) integrate an ADL with development processes and methodologies,

and (iii) customise an ADL. Basically, it takes the meta-model of the ADL to be extended

as an input.

Overall, a common pitfall for the discussed ADLs is their limited ability to support

large-scale real-life applications. Some possible reasons behind this are discussed in

(Bashroush et al., 2006; Malavolta et al., 2013). Limitations are further discussed in the

next section.

42

3.3.2 Limitations in existing ADLs

After critically analysing the existing ADL literature, particularly around scalability

and uptake (industrial adoption), it was evident that only ADLs that were originated in

industry saw some level of industrial adoption. This has been attributed to potential

misalignment between practitioner needs and the academic focus (Malavolta et al., 2013).

Below, we summarise some of the main limitations identified in ADLs that emerged

from academic research, but failed to achieve any notable industrial adoption:

L1: Limited support for variability management

To manage the size and complexity of industrial systems, and with the current trend

of delaying architectural decisions as much as economically feasible (and the shift of

variability from hardware to software), it is valuable to have the capability of

modelling variability adequately in the architecture design.

L2: No explicit mechanism to link requirements to architectural artefacts

Requirements traceability has emerged as a main objective in industry. Yet, without

the support for capturing such relationships at the architecture description stage, the

link between requirements and implementation becomes difficult to establish and

maintain. For example, although AADL does not support modelling such relationships

natively, tools such as AADL’s OSATE provide such mechanisms outside the ADL.

43

L3: Domain dependency

As can be seen from the previous section, many ADLs are tailored for a particular

domain, with embedded systems having the majority of such systems. However, given

the way today’s systems are evolving with Systems-of-Systems, Cyber-Physical

Systems, Smart Cities Systems, etc., for an ADL to be capable of modelling a complete

solution, it needs to cross cut multiple domains.

L4: Restrictive syntax

Many ADLs impose a strict syntax and design principles on the architect (e.g.

layered model, network model, etc.). Building ADLs in such a way allows the ADL

designer to provide various automated architectural analysis. However, from a

practitioner perspective, the last thing needed is to be forced to reason about the system

in a specific way, or end up writing code twice.

L5: Lack of support for architectural artefact reusability

Existing ADLs have been designed to support the abstraction of details; however,

support for architectural artefact reuse across multiple projects is lacking. While

architecture reuse has seen some success in specific domains, e.g. the automotive

domain using AADL (Feiler, Gluch and Hudak, 2006), the granularity of reuse remains

relatively small. In order to support large-scale reuse, ADL’s would need to provide

mechanisms to capture some degree of variability in the description of artefacts (and

their interfaces) to enable redeployment in multiple contexts.

44

L6: Overloaded architectural views

Given that one of the main benefits of having an overall system architecture

description is to use it as a communication vehicle among the various stakeholders,

not all the information captured within the architecture tend to relate to every

stakeholder. Accordingly, ADLs providing one or two architectural views tend to

suffer from information overload. The importance of having multiple architectural

views has also been highlighted in (ISO/IEC/IEEE 42010, 2011).

L7: Focus on structure more than behavioural architectural aspects

The structural description of a system changes less frequently compared to the

behavioural description because systems can serve different objectives with the same

structural description. In other words, the structural description can encapsulate more

than one behavioural description. Yet, it can be said that most ADLs still overlook the

importance of behavioural description. While it is viewed as a major construct in some

(Feiler, Gluch and Hudak, 2006; Luckham et al., 1995), it is not covered in many

(Allen and Garlan, 1997; Gorlick and Razouk, 1991; Shaw et al., 1995), with fewer

ADLs supporting the representation of behavioural architectural knowledge

graphically (Brown et al., 2006).

3.4 Conclusion

Software architecture is widely visible as an important and explicit design activity to

develop a software system. However, the changing face of technology raises a number of

challenges for software architecture. Among those, the most important challenge is how

45

to capture a higher degree of variability in the software architecture (as observed in this

chapter).

Representing variability in software architecture not only allows for large grain reuse

of artefacts, but also permits tracing requirements into the system implementation and

deployment. So it raises a critical question for software architects regarding how to

describe the architectural description for the system (particularly, large-scale industrial

systems) that captures variability and fulfils other requirements of practitioners.

Ideally, architectural descriptions should express their design intent clearly to others

and also require low overhead to create and maintain the system architecture. For this,

ADL provides both a conceptual framework and a concrete syntax for formal modelling

of software architectures.

A number of different ADLs exist, largely within academia (as analysed in Section

3.3.1). However, during the increasingly in-depth study and wide application of ADLs,

there is a gradual recognition that conventional ADLs lack various concepts, which

restricts their uptake into real-life industrial applications. Some of those concepts are:

support for managing variability as an integral part of the system; domain dependency;

restrictive syntax; and architectural artefact reusability (as explained in Section 3.3.2).

 The current state-of-the-art that has been identified through an SLR (in the previous

chapter) on representing variability in software architecture is analysed in detail in the

next chapter.

46

4
Chapter Four

Systematic Literature Review

 “A man should look for what is, and not for what he thinks should be.”

 --Albert Einstein

4.1 Introduction

Over the last 15 years, a lot of work has been reported that addresses the representation

of variability in software architecture in different domains. Some approaches have

defined variability in software architecture as a way of representing and reasoning about

alternative system implementations (Bachmann and Bass, 2001; Galster and Avgeriou,

2011). Similarly, a number of different mechanisms have been used to represent

variability at the architecture level (e.g. Software Product Lines (SPL), Service-oriented

architecture (SOA)). Although it is generally agreed that variability representation is a

key step of the development process, which can affect the success or failure of a system

or a product line (Bashroush, 2010), there seems to be little consensus on how the

representation is best conducted.

In this chapter, a Systematic Literature Review (SLR) is presented which is conducted

to summarize the current state-of-the-art in representing variability in software

architecture. The analysis in this chapter is based on the data collected from the quality

assessment and data extraction phases described in the research methodology chapter,

Section 2.2.5 and 2.2.6 respectively, through a SLR review protocol (see Section 2.2.1).

The presentation of the work in this chapter will benefits practitioners working in the

area who are looking to choose the best variability approach that fits their design needs,

as well as researchers trying to identify areas that require further investigation.

47

The rest of the chapter is organised as follows: Section 4.2 provides the data and its

analysis of the selected primary studies in relation to their publication type, venues and

trends, and their geographical distribution. Section 4.3 provides the analysis and

discussion of the collected data in order to answer the research questions set for this SLR.

Threats to the validity of the data and limitations of this SLR is presented in Section 4.4.

The most recent work on representing variability in software architecture after the data

analysis were summarised in Section 4.5. Finally, outcome of the analysed data for

representing variability in software architecture is concluded in Section 4.6.

4.2 Data and Analysis

Once the data extraction phase has been completed, data synthesis and analysis was

conducted on the collected information. This section provides an analysis of the 58

selected primary studies (listed in Appendix A1) in relation to their publication type,

venues and trends, and their geographical distribution.

4.2.1 Demographic Data

Figure 5: Publications per year

15%

38%

47%

0

5

10

15

20

25

30

1991-1995 1996-2000 2001-2005 2006-2010 2011-2015

N
u

m
b

er
 o

f
P

ap
er

s

Year

CONFERENCE WORKSHOP JOURNAL

48

Although our search period is set to start from January 1991 but unfortunately no

studies were found in the 90s decade, the earliest primary studies identified were

published in 2002. This could be due to the timing of the first major paper on the topic of

Software Architecture by Shaw et al. (Shaw et al., 1995) in mid 90’s. Figure 5 shows the

number of primary studies identified, along with the breakdown of numbers of papers

published via each publication outlet type (Conference, Journal or Workshop). The data

presented shows papers bundled in 5 year brackets to smooth the effect of conference

frequency (e.g. some conferences happen every 18 months, while others every 12 months)

and public funding call trends (e.g. EU funded research projects addressing a specific

challenge tend to start and end during the same time frame leading to increased paper

publications in the area around the end of the funding period). Looking at the chart, it can

be seen that there is an uptrend in research publications relating to variability in software

architecture. It is worth mentioning here that the primary studies identified in 2015 only

covered the ones published up until July, when the search and selection process of this

study was completed (thus 2015 is partially covered).

Figure 6: Publication outlet

49

Figure 6 shows a pie chart of the publication outlet of the selected primary studies. As

can be seen, the majority of the primary studies were published in the proceedings of

conferences, followed by Workshops, and then Journals.

Figure 7: Highly occurring publication venues

Venues identified in Figure 7 encapsulates 32% (19 papers) of the total primary studies

(and were the only venues with more than one primary study published). The primary

studies were most commonly found in the proceedings of conferences such as

WICSA/ECSA (17%) and SPLC (8%). The reason for amalgamation of WICSA/ECSA

is because these conferences were co-located twice (in 2009 and 2012). A tabular form

of the data with their acronyms can be found in Appendix A2.

 4.2.2 Geographical Distribution

A detailed list of publications per country is provided in Figure 8. Countries of all

authors named on a primary study were accounted (hence the discrepancy between the

number of papers and number of papers per country). The data is plotted in Figure 8,

which shows Germany and Brazil as the most popular countries in terms of research on

capturing variability in software architecture.

50

Figure 8: Primary study distribution per country

4.3 Discussion of SLR Research Questions

This section attempts to answer the SLR research questions (defined in the Chapter 2)

by synthesizing and analysing the data extracted from the 58 selected primary studies

listed in Appendix A1.

4.3.1 SLR.RQ1: What approaches have been proposed to

represent variability in software architecture?

Two major approaches for representing variability in software architecture were

identified in the primary studies: (1) defining variability using Unified Modelling

Language (UML) or one of its extension in the form of another method, domain-ontology

9
8

7

7

5

5

5

4
4

3

2

1
1

1

1
1
1

1

1
1

1

1

1

0 2 4 6 8 10

Germany

Brazil

Korea

USA

Finland

Spain

United Kingdom

Austria

Netherlands

China

Sweden

Chile

Colombia

Singapore

Iran

Turkey

Greece

Portugal

Romania

Canada

Belgium

France

Venezuela

Number of Papers

Primary Studies by Country

51

etc., and (2) using an ADL with explicit variability representation mechanisms. A detailed

classification can be found in Table 3.

From the 58 selected primary studies, 45% (26 papers) of the primary studies presented

various variability through UML, in which 21% (12 papers) used a form of meta-model

based on UML class diagram. While 16% (9 papers) represented variability using other

UML diagrams such as component diagram (e.g. S12, S17, S23, S29, S51), activity

diagram (e.g. S38, S51) and sequence diagram (e.g. S58). Finally, 9% (5 papers) extended

the UML notation into UML PLUS (Product Line UML based Software Engineering)

method (S48, S50); Kumbang (S13, S41), a modelling language and an ontology for

modelling variability in software product line architectures from feature and component

points of view; and KumbangSec (S57).

Notation
Total

Papers
Percentage Study Identifier

UML

Class Diagram 12 21%
S1, S10, S15, S19, S25, S26,

S27, S30, S31, S38, S43, S49

Other (Component,

Activity etc.)

9 16%
S12, S17, S23, S26, S29, S31,

S32, S51, S58

Extension (PLUS,

Kumbang etc.)
5 9% S13, S41, S48, S50, S57

 26 45%

ADL 14 24%

S3 - S5, S14, S18, S20, S24,

S34, S36, S37, S39, S40, S42,

S54

OVM 4 7% S17, S26, S45, S53

XML 2 3% S31, S41

Other (CVL, LISA etc.) 20 34%

S2, S6 - S9, S11, S16, S21,

S22, S25, S28, S29, S33, S35,

S44, S46, S47, S52, S55, S56
Table 3: Variability representation approaches

52

24% (14 papers) of the selected primary studies described how to represent variability

using an ADL, with a number of different ADLs adopted. The ADLs used for addressing

variability were:

xADL 2.0: S3 uses xADL 2.0 together with several tools to express variability

in xADL (MÉNAGE) and to select a particular system instance out of product

line architecture (SELECTORDRIVER). S24 uses xADL 2.0 describing

operators and process for merging reference architecture and application

architecture. The result embodies all the application differences by new

variation points, which makes it possible to synchronize application and

component architectures.

vADL: S4 is an ADL that extends the framework of traditional ADL, and

provides variability mechanisms, such as: Customized Interface, Variable

Instance, Guard Condition, Variant Mapping, etc. vADL is able to describe

the assembly of variability in product line architecture.

ADLARS: S5 presents the ADL "ADLARS", a 3-view description of

software architecture. This is an ADL with first class support for embedded

systems product lines. It captures the relationship with explicit support for

variability between the system's feature model and the architectural structures

(using keywords like “supported”, “unsupported” and “otherwise” in the

description).

53

ACME: S14 describes two modelling notations, Forfamel for feature models

and ACME (Garlan, Monroe and Wile, 1997) for the architecture model.

They are evaluated using the Formal Concept Analysis (FCA) technique,

using a tool that generates a concept lattice graph that defines a mapping

relationship between feature and architecture components.

ALI: S18 presents an ADL called "ALI" (a descendent of "ADLARS" (S5))

that aims to support product line engineering (and therefore also variability)

as well as non-variant and individual system architectures.

Darwin: S20 presents a framework with the Darwin ADL (with elements

borrowed from one of its extensions, Koala (Ommering et al., 2000)). The

paper proposes a decision-making process to generate a generic software

design that can accommodate the full space of design alternatives from a goal

model with high variability in configurations.

MontiArc: an ADL designed to model architectures for asynchronously

communicating logically distributed systems. Two studies present extension

to MontiArc: (1) delta-modelling to represent variability - ∆-MontiArc in S36

and S40, and (2) using hierarchical variability modelling - MontiArcHV in

S39. The given examples were difficult to extend if one is not using

MontiArc, but the proposed variability modelling techniques were not new.

PL-AspectualACME: S37 presents PL-AspectualACME (an extension to

AspectualACME (Garcia et al., 2006)) with a graphical representation of the

architectural model. The associated tool interprets the annotations, adding or

54

removing the correct variant elements in the specification. S34 presents the

ADL PL-Aspectual ACME specifying the architecture for software product

lines. The description is related to a goal model described in a formal visual

notation PL-AOV Graph.

CBabel: S42 presents the CBabel language, with features to support software

architecture and contract description with a meta-model defined for

architectural contracts.

LightPL-ACME: S54 presents an ADL (an extension to ACME (Garlan,

Monroe and Wile, 1997)) with the aim of having a simple, lightweight

language for SPL architecture description. It enables the association between

the architectural specification and the artefacts involved in the SPL

development process, including the relationship with the feature model by

categorically defining the variability and the representation of both domain

and application engineering elements.

Most of the work reported on the use of UML and ADLs for capturing variability at

the architectural level was conducted by their original authors. A small proportion of these

papers (e.g. S23, S42, S50) reported on work conducted in an industrial setting, but the

rest used prototype implementations based in academia. We discuss the context of the

research in more detail under RQ3 analysis later in Section 4.3.3.

OVM (Orthogonal Variability Model) and XML (eXtensible Markup Language)

approaches represent variability in 7% (4 papers) and 3% (2 papers) of the selected

primary studies respectively. Other ways that were identified to capture variability in the

software architecture are: CVL (Common Variability Language) in S47; LISA (Language

for Integrated Software Architecture) in S45; formal modelling languages/framework

55

(e.g. S11, S16, S53) and modelling tools (e.g. S21, S28, S55, S56), and; formal/informal

textual and visual descriptions such as spreadsheets and process diagrams (e.g. S2, S9,

S22, S33, S44, S52).

It is important to state that the number of studies cross-cut multiple variability

approaches, and accordingly, appear under more than one category in Table 3 (hence the

total of 66 rather than 58). For instance, S17 and S26 covers UML and OVM; S45 covers

OVM and LISA; S31 and S41 covers UML and xml variability mechanisms

simultaneously. Also, S26 and S31 represent variability in both UML class and

component diagrams.

Overall, UML and ADLs seemed to be the most commonly used approaches for

capturing variability at an architectural level, making up 69% (40 papers) of the selected

primary studies. UML was used in almost half of the studies, where it was extended

through various mechanisms to support variability. While ADLs were mostly used in the

product line domain.

4.3.2 SLR.RQ2: What is the quality of the research conducted in

the reported approaches?

Based on the method described in the Chapter 2, each study received a quality score

totalling between 0 and 9 (given 9 questions with possible ratings of 0, 0.5 or 1 point

each). The list of studies along with their corresponding quality scores (per question) can

be found in Appendix A3. Figure 9 below shows the number of studies per quality score.

The chart shows a normal (Gaussian) distribution curve with a mean of 5.9 and variance

of 2.4. The most common scores were 6 and 6.5 (29% of the papers). The highest score

was 8.5 (two papers) with the lowest being 2 (one paper).

56

Figure 9: Quality assessment scores of studies (overall)

To further analyse the data, we broke down the quality assessment marks per question

as presented in Table 4. The first column of the table shows the quality assessment

question as discussed in Section 2.2.5. The remaining three columns show the number of

papers assigned to each score per question. The average mark per question is shown in

Figure 10.

0 0 0 0
1

2
1

2 2

5
6 6

8
9

3

7

4

2

0

1

2

3

4

5

6

7

8

9

10

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5

N
u

m
b

er
 o

f
P

ap
er

s

Quality Scores

57

NUMBER OF PAPERS ASSIGNED TO EACH SCORE

PER QUESTION
QUALITY SCORE

 0 0.5 1

QA.Q1: Is there a rationale for why the study was

undertaken?

0 8 50

QA.Q2: Is there an adequate description of the context (e.g.

industry, laboratory setting, products used, etc.) in

which the research was carried out?

1 16 43

QA.Q3: Did the paper present enough details about the

reference architecture variability approach?

2 14 42

QA.Q4: Is the case study (if exist) using a single or multiple

case research design?

10 18 30

QA.Q5: Does the case study consider construct validity,

internal validity, external validity, and reliability to

the study?

32 19 7

QA.Q6: Is there a description and justification of the

research design, including a statement of what the

result should be (e.g. a construct, a model, a

method, or an instantiation)?

4 16 38

QA.Q7: Is there a clear statement of findings with ‘sufficient'

data to support any conclusions?

3 26 29

QA.Q8: Do the authors discuss the credibility of their

findings?

6 30 22

QA.Q9: Are limitations of the study discussed explicitly? 49 4 5

Table 4: Quality assessment scores of studies (per question)

Figure 10: Overall quality assessment scores per question

0%

20%

40%

60%

80%

100%

0

10

20

30

40

50

60

P
er

ce
n

ta
g

e

T
o
ta

l
S

co
re

Quality Assessment Questions

TOTAL SCORE

PERCENTAGE

58

As can be seen from the above data, while almost all studies presented a rationale and

context description for the work conducted, few studies discussed the validity and

reliability of their findings, while even fewer studies addressed their limitations (which is

discussed under SLR.RQ4 analysis in Section 4.3.4). Thus, we concluded that work in

this area can be characterised to generally having a clear rationale and objectives, but

lacking proper validation. This might be attributed to the research context where most of

this work was conducted, namely academic research with little involvement from

industry. The research context is discussed further under the next research question.

4.3.3 SLR.RQ3: What is the context and areas of research of the

studies employing variability in software architecture?

4.3.3.1 Research Context (Academia vs. Industry)

The research context of each primary study was classified as either: Academia (if the

research was conducted in academia and by academics with no reference to industrial

usage); Industry (if the research was conducted by industry based researchers or had direct

industrial relevance); or both (when the research was a joint undertaking with both

academic and industrial relevance). From the selected primary studies, we identified that

only a small proportion of research (19%, 11 papers) was conducted in industry. 72% (42

papers) of the research surveyed was academic while 9% (5 papers) was classified as joint

context (both industry and academia). A detailed classification of each of the primary

studies is provided in Table 5.

59

Research

Context

Total

Papers
Study Identifiers

Academia

42

S3 - S6, S9 - S20, S22, S26, S27, S29 -

S32, S34- S36, S38 - S41, S43, S45 -

S49, S51 - S55, S57

Industry 11 S1, S8, S23, S25, S28, S33, S42, S44,

S50, S56, S58

Both 5 S2, S7, S21, S24, S37

Table 5: Research context with study identifier

Figure 11 shows that the majority of studies belong to the academia sector (72%), with

20% in industry and 8% joint. However, it was noticeable that the industry initiated papers

doubled between 2011-2015 compared with 2006-2010, while academic papers only gone

up by 17%. Yet, joint papers between industry and academia is going down with only 1

primary study published between 2011-2015.

Figure 11: Research context

0

5

10

15

20

25

30

2001 - 2005 2006 - 2010 2011 - 2015

N
u
m

b
er

 o
f

P
ap

er
s

Year

Academia Industry Both

60

4.3.3.2 Research Context (Theoretical vs. Practical)

Another way the research context of the primary studies was analysed was by checking

whether the reported research had a practical or theoretical focus, or both. The results are

reported in Figure 12, which shows the majority of the work conducted is theoretical work

with no direct application to practical problems.

Overall, 65% (38 papers) of the primary studies were focused purely on theoretical

work with only 14% (8 papers) addressing practical issues and another 21% (12 papers)

that can be classified as both. A full breakdown of the classification of the different

studies can be found in Table 6.

Research

Context

Total

Papers
Study Identifiers

Research

38

S1 - S6, S9 -S18, S20, S22, S27, S29 -

S32, S34, S35, S39, S40, S43, S45 - S48,

S50, S52, S53, S55, S57, S58

Practice 8 S8, S23, S28, S44, S49, S51, S54, S56

Both 12 S7, S19, S21, S24 - S26, S33, S36 - S38,

S41, S42

Table 6: Research relevance with study identifier

That said, Figure 12 also shows that the trend is changing with higher percentage of

papers with practical relevance appearing in the past 5 years compared to 2006-2010.

61

Figure 12: Research relevance

4.3.3.4 Research Area

During the analysis, it became clear that the primary studies can be categorised under

four main research areas:

1. Service Oriented Architecture (SOA)

2. Reference Architectures

3. Software Product lines (including Product Line Architectures -PLA and

Dynamic SPL -DSPL)

4. Other (general Software Architecture)

The breakdown of primary studies per research area is shown in the Table 7.

0

5

10

15

20

25

30

2001 - 2005 2006 - 2010 2011 - 2015
N

u
m

b
er

 o
f

P
ap

er
s

Year

Research Practice Both

62

Research Area
Total

Papers
Study Identifiers

SOA

2

S38, S44

Reference Architecture 4 S7, S8, S19, S44

Other (Software

Architecture)

10 S11, S17, S20, S27, S30, S41,

S43, S46, S48, S52

SPL/PLA/DSPL 48 S1 - S6, S9 - S18, S21 - S29,

S31 - S40, S42, S45, S47 - S51,

S53 - S58

 64§
 § A number of studies cross-cut multiple research areas, and accordingly, appear under more than

 one research area (hence the total of 64 rather than 58)

Table 7: Breakdown of primary studies over research areas

Figure 13 shows a graphical distribution of the primary studies over the different areas

identified. Noticeably, the work on variability in software architecture is dominated by

work in the area of Software Product Lines.

Figure 13: Breakdown of primary studies over research areas

3% 6%

16%

75%

0

10

20

30

40

50

60

SOA Reference

Architecture

Software

Architecture

SPL/PLA/DSPL

N
u

m
b

er
 o

f
P

ap
es

r

63

4.3.4 SLR.RQ4: What are the limitations of the existing

approaches to represent variability in software architecture?

Understanding the limitations of a particular piece of research is an important step

towards understanding its applicability and utility. Unfortunately, in the literature

reviewed for this study, 78% of the papers surveyed (45 of 58) did not make any attempt

to report limitations of the research performed and 2% (1 study) didn’t report the

limitations of the research explicitly.

This left 12 studies (20%) that fully or partially identified limitations of their work, so

helping to understand its maturity and the areas of its likely applicability. The limitations

reported can be categorised under the following headers:

 Technical limitations with the research methodology adopted: For

example, some papers only used one case study (S33, S49), while others

used small unrepresentative study groups (S9).

 Technical limitations with the approach presented: For example, only

addressing variability at either design time (S38) or runtime (S3, S27).

 Both of the above (such as S16, S25, S41 and S52).

In reality, almost any piece of research is likely to embody some limitations, so it is

surprising not to find all studies reporting limitations of either type.

4.4 Threats to Validity & Limitations

This section discusses the limitations and threats to validity of our study. As with most

research methods, there are some inherent limitations to the SLR methodology. The first

limitation is the possibility that the search and selection process may not have identified

all of the relevant primary studies. This can be due to various reasons such as the use of

64

different terminology in primary studies to the one we adopted in the search term

(particularly given that the work covered by this SLR cuts across multiple domains and

research communities). To address this limitation, the search protocol have been extended

and introduces a number of mitigating measures. First, automated searches was ran on

web sites of prominent publishers (e.g. IEEEXplore) as well as against general indexing

search engines (e.g. Google Scholar) which helps to ensure comprehensiveness of results

as different search engines use different ranking algorithms. Then, manual searches were

conducted on proceedings of known publication outlets and publication lists of known

authors in the domain and cross-examined the findings with the results produced from the

automated search. Finally, forward and backward reference were checked on the

identified primary studies to further ensure that all of the relevant literature was identified.

Another limitation of SLRs is the exclusion of grey literature, such as thesis

documents, white papers and technical reports. This could be a problem in some areas

such as those where the work is led by industry, as practitioners tend to publish less in

peer-reviewed outlets. However, looking at the analysis of SLR.RQ3, and to some extent

at the initial results obtained from the automated searches (conducted on general indexing

websites such as Google Scholar), it is being noticed that this study area is largely

dominated by academic researchers with minimal potential for grey literature. Last but

not least, there is the limitation of the language barrier where only primary studies

published in English were searched and analysed. This could potentially mean that

relevant primary studies published in other languages might have been missed. There is

not a strong mitigation to this threat other than noting that the majority of research in

these areas appears to be published in English and so we do not believe that there is a

high likelihood of significant research in this field remaining unpublished in English for

long.

65

Beyond the inherent SLR methodology limitations, threats to validity can be classified

under four main headers: construct, internal, external and conclusion (Matt and Cook,

1994).

Some of the threats to construct and internal validity have already been discussed

above. These threats arise from weaknesses in the execution of the research method

adopted. A popular construct validity problem in SLRs is author bias and we have

addressed this by having multiple independent reviewers each primary study and had the

overall process reviewed by an independent researcher. As discussed in the Chapter 2 on

research methodology.

On the other hand, the threat to external validity relates to the applicability of the

results of the study beyond the context where it was conducted. Given that this study was

not limited to one area, but studied multiple areas where variability in software

architecture is used, inductive generalization is considerably strengthened. Moreover, we

have made all of the raw data used for the study available for readers to better help them

understand the reasoning and analysis conducted.

Finally, conclusion validity threats relate to the robustness of conclusions made based

on the data available. A typical threat is when researchers gear conclusions to agree with

their initial hypotheses. In our case, the research did not set any initial hypotheses but

rather addressed the research questions with an open view. Additionally, all conclusions

are based on grounded theory (Martin and Turner, 1986) and other analysis methods

where multiple independent researchers were involved and independently agreed on the

conclusions made.

66

4.5 SLR Update: Work beyond Search Period

This section presents the latest updated information on the research studies that

represent variability in software architecture. That is, the research work that has been

done after the end of the SLR search period (i.e. August 2015) and before the submission

of the final version of this thesis (i.e. April 2016), in this area.

According to the SLR search strategy (defined in Chapter 2), the primary studies

published between August 2015 and April 2016 were searched. Moreover, the

conferences (listed in Table 1) that held between this time period were manually searched,

which are: ECSA 2015, FSE 2015, VaMoS 2016 and WICSA 2016. This led to the

identification of the two primary studies that met the inclusion criteria, and were

published in a conference (October 2015) and journal (December 2015), respectively.

Those two primary studies are summarized as:

1) A three-peaks process to derive incrementally high variability requirements,

behavioural and architecture models were presented (Angelopoulos, Souza and

Mylopoulos, 2015). In that, variations of a system's architectural structure is

modelled in terms of connectors and components, through UML class diagram.

The research context of this study is academia and correspond to the software

architecture research area.

2) An Ontology-based product Architecture Derivation (OntoAD) framework that

automates the derivation of product-specific architectures from an SPL

architecture (Duran-Limon et al., 2015). The framework used UML class and

component diagrams notations to represent variability in it. And, the research

context of this study is academia while the research area is SPL.

67

It is important to clarify here that these two new primary studies will not affect the

conclusion drawn from the SLR findings. This is because the most commonly used

notation to represent variability in software is still the same (i.e. UML) and also the work

is conducted within the academia sector only.

4.6 Conclusion

The work in this chapter aimed at cataloguing the state-of-the-art in representing

variability in software architecture, making it more accessible to practitioners and

researchers alike.

Overall, it can be said that this research area is witnessing an uptrend, especially since

2006 (see Figure 5), and that work in this domain is starting to mature. To conclude, we

found that:

 UML (including various extensions) and Architecture Description

Languages (ADL) were the most commonly used notations to represent

variability in software architecture.

 The work on variability representation at the software architecture level

can be largely mapped to three main research areas: Software Product

Lines (SPL); Reference Architecture; and Service Oriented Architecture

(SOA).

 Most of the work surveyed focused on proposing some form of new or

improved design process or traceability technique relating to the

development of systems that include variability.

 The majority of the work conducted (72%) was academically led, much of

it with a fairly theoretical focus (65%).

68

 Overall, the research in this domain was found to have clear rationale and

objectives, but generally lacking proper validation.

Finally, the top five countries publishing in this area were found to be Germany, Brazil,

Korea, USA and Finland.

As analysed in this chapter, ADL is most commonly used formal notation that

represents variability at the architectural level (as identified in Table 3), second to UML

which is considered as a semi-formal notation. Therefore, in this research work ADL is

chosen to represent variability in software architecture.

Considering this, next part of this thesis describes ALI, an ADL with its main focus to

support the architectural designing of the large-scale industrial systems along with

managing variability and other ADL properties. The initial version of ALI, which was

designed before this thesis work began is presented in the following chapter. While the

revised version (ALI V2), which overcomes the limitations that exists in its original

version has been described in Chapter 6. The revised version takes into consideration the

current industrial requirements from the architectural language perspectives.

69

Part III

ALI

70

5
Chapter Five

ALI Initial Version

 “If I have seen further it is by standing on the shoulders of giants.”

 -- Isaac Newton

5.1 Introduction

In this chapter, the Architecture Description Language for Industrial Applications, ALI

is introduced. The version of ALI (Bashroush et al., 2008) described in this section is the

initial version which existed before the research reported in this thesis began. This section

is largely based on (Bashroush et al., 2006; Bashroush et al., 2008).

The work on the ALI built on experiences gained with ADLARS (Bashroush et al.,

2005) and employed a number of successful concepts which existed in ADLARS to create

a more generic and flexible ADL. As the name says, ALI was designed with real-life

systems as the main focus.

An ALI model describes a system as a set of linked components and connectors where

they are considered as first class citizens. The interfaces that define the possible

interactions between components and connectors and their environment are also defined

at a meta-level, by their name, their syntax and their binding constraints.

The language meta type is rich enough to capture non-functional properties or

annotating the structure with additional information, at the cost of combining structural

and quality property information into a single data structure. Reusable architectural

structures can be defined using pattern templates that allow a named and parameterised

architectural structure to be reused across a number of architectural descriptions.

71

Variation in the architectural structure is achieved using a feature catalogue that

defines the set of features that the architecture can support. These features are then

referenced from within the architectural description by using conditional statements that

use the “supported” and “unsupported” keywords to vary the architectural description

according to the set of features currently enabled.

Architectural configurations are defined using the system construct, which defines a

set of components, connectors and a configuration that defines the bindings that define

how they are combined together. The top level of an ALI architectural description is a

“system” definition representing the system.

As well as describing single instance and single version systems, the design of ALI

has allowed the description of variant, evolving and product line systems via first class

language concepts.

The following section discusses the rationale behind ALI. Section 5.3 presents ALI’s

constructs and notations. This is followed by Section 5.4, which highlights a number of

limitations that exist within this version in relation to the need of a current architectural

language from an industrial context. Finally, Section 5.5 concludes with a summary.

5.2 Rationale

In this section, the rationale behind the ALI language which has been designed on the

basis of our previous work on ADLARS ADL has been introduced. It seeks to address a

number of limitations that were identified in (Bashroush et al., 2006). Among these

limitations are: over constraining syntax, single view presentation of the architecture and

lack of tool support. Further, it can be used across multiple application domains unlike

ADLARS that only support Software Product Lines (SPLs).

72

While adopting many of the solution space provided by ADLARS such as the

relationship between the feature model and the architectural structure, ALI introduces,

among other things, a high level of flexibility for interface description. Major concepts

behind the ALI ADL are as follows:

5.2.1 Flexible interface description

Current ADLs allow only for fixed interface types. For example, in ACME (Garlan,

Monroe and Wile, 1997) and WRIGHT (Allen and Garlan, 1997), the component

interfaces are described in terms of input and output ports, while in Rapide (Luckham et

al., 1995) and Koala (Ommering et al., 2000) interfaces are described in terms of provided

and required sets of function names. Thus, providing a specific interface type which

restricts the usage of an ADL to domains where most components would only have that

particular type of interface. In addition to this, it restricts software architect to use a

specific style of communication among components (e.g. message-based, method

invocation, hardware-like ports, etc.).

The ALI ADL attempts to address this issue by providing no pre-defined interface

types. Instead, ALI introduces a sub-language (which is a sub-set of the JavaCC (Java

Compiler Compiler tm (JavaCC tm)) notation) that gives users the flexibility to define

their own interface types.

For example, consider a simple web service having a WSDL (Web Services

Description Language) interface and containing a number of components which are

described with input/output ports as interfaces. Assume also, that each component

contains a number of objects/classes that have interfaces defined in terms of functions

provided/required as illustrated in Figure 14. Nowadays, this is a fairly standard level of

nesting/abstraction particularly within Service Oriented Architectures (SOA).

73

Figure 14: An example architecture of a simple web service (Bashroush et al., 2006)

If we were to model this using any of the existing ADLs, we would have to abstract

the different interface types with the single interface type supported by the ADL adopted.

By doing so, we would be unnecessarily abstracting away useful and important

architectural information - especially in domains such as SOA where interface

descriptions/types considered to be of important architectural value.

It would also be difficult to identify a comprehensive set of interface types beforehand

to be provided by an ADL due to the large number of interface types that already exist in

the literature. Moreover, new interface types emerge with the advancement of different

technologies (e.g. GWSDL emerging from the work on grid computing, etc.). So, an ADL

may benefit from a flexible mechanism that allows the software architect to define his/her

own interface types along with the binding constraints. This is the modelling strategy that

is adopted by ALI. Details of interface description are given in Section 5.3.

5.2.2 Architectural pattern description

Architectural patterns (or architectural styles) express a fundamental structural

organization or schema for software systems and sub-systems. As these patterns are often

74

reused within the same system (and sub-systems) or across multiple systems, providing

syntax for capturing/describing these patterns to enable better pattern reuse is important.

The importance of capturing and reusing patterns is carried over to the ALI ADL. ALI

envisages architectural patterns as the architectural level equivalent of functions

(methods) in programming languages.

Within ALI, patterns are defined as functions and can be (re)used throughout the

system description. Pattern templates are first defined by specifying the way components

are connected to form the architectural pattern. Then, these pattern templates are

instantiated throughout the architecture definition to connect sets of components (whose

interfaces are passed as arguments to the pattern template) according to the pattern

template definition (e.g. Figure 15).

ClientServer()

PipesAndFilters()

Comp A
i.A1 i.A2

Comp B
i.B1 i.B2

Comp C
i.C1 i.C2

Comp E
i.E1

Comp D
i.D1

Comp A
i.A1 i.A2

Comp B
i.B1 i.B2

Comp C
i.C1 i.C2

Comp A
i.A1 i.A2

Comp B
i.B1 i.B2

Comp D
i.D1

Comp E
i.E1

Comp C
i.C1 i.C2

Figure 15: A simple architecture assembled from a number of components using two pattern templates:
PipesAndFilters and ClientServer (Bashroush et al., 2006)

75

As can be seen from Figure 15, simple architectures can be constructed through the

usage of a number of patterns. Detailed description on the ALI notation used for

describing pattern templates is given in Section 5.3.

5.2.3 Formal syntax for capturing meta-information

Issues such as component implementation cost/benefit, design decisions, versions,

quality attributes, etc. have been overlooked by most of the existing ADLs. They focused

more on the structural aspects of the architecture. Although ADLs such as ADLARS and

few others allow the addition of free textual comments to the architecture description

using standard commenting syntax similar to that used in programming languages (e.g.

through the usage of “/*”, “//”, etc.). But it proves to be problematic if CASE tools are to

be used to analyse or produce useful documentation from the free textual comments.

One of the challenges with formalizing the syntax for capturing the meta-information

is in deciding what information need to be captured in the architecture description.

Although there is some information that is usually captured in most architecture

documentations (e.g. design decisions, quality attributes, etc.) while some other

information may vary from one domain to the other and from one enterprise to another

(depending on the nature of the domain, the structure of the enterprise, etc.).

A special syntax has been introduced in ALI that allows to create meta types. Different

meta types can be created within a system to act as packages of information (quality

attributes, versions, design decisions) which could be attached to different architectural

elements throughout the system description. How to create and use meta types is

demonstrated in Section 5.3.

76

5.2.4 Linking the feature and architecture spaces

As Feature Models (Kang et al., 1990) are built to capture end-users' and stake-holders'

concerns and architectures are designed from technical and business perspectives, a gap

exists between the two spaces. This gap introduces a number of challenges including:

feature (requirements) traceability into the architecture; the ability to verify variability

implementation (in SPL, a product with multiple variants), etc.

ALI attempts at bridging this gap by allowing the software architect to link directly

the architectural structures to the feature model. Within ALI, it is possible to relate

components, connectors, patterns etc. in an architecture description to features in the

feature model using first order logic. This permits the capture of complex relationships

that might arise between the two spaces in real-life systems.

ALI has adopted and enhanced this concept from ADLARS which was the first ADL

to introduce support for linking the feature space to architectural components.

5.3 ALI Constructs and Notations

In this section, the different parts of the ALI notations are discussed.

ALI is divided into seven parts:

1. meta types: provides a formal notation for capturing meta-information

2. interface types: provides a notation for creating types of interfaces

3. connector types: where architectural connectors are defined

4. component types: where architectural components are defined

5. pattern templates: where design patterns are defined

77

6. features: where the system features are catalogued

7. system: where the system architecture is described

Each of these notations is discussed in detail in the subsequent sections.

5.3.1 Meta Types

Meta types provide a formal syntactical notation for capturing (meta-)information

related to the architecture. A meta type is defined by the information it contains. The

information is captured within fields, where each field has a data type (text, number, etc.)

and a name (tag). Consider the example below for defining a meta type called

MyMetaType1:

meta type MetaType1 {

 tag creator, description: text;

 tag cost, version: number;

 tag edited*: date; }

In this example, the keyword “meta type” is used to begin a meta type definition.

MetaType1 is the name of the meta type being specified. Each meta type contains a

number of tags which can be either textual, numeral or date (if needed, the tag types could

be extended to include: enumeration, character, etc.). In the example above, five tags are

defined, two textual, two numeral and one date. The date tag edited is marked with an

asterisk ‘*’ to indicate an optional tag.

Once meta types are specified, meta objects conforming to these types can then be

created throughout in the designing of the system architecture. These meta objects are

attached to architectural elements (e.g. components, connectors, etc.) to provide a corner

for appending additional information related to these elements. Below is an example meta

object that conforms to the meta type given in the example above.

78

meta: MetaType1 {

 creator: “John Smith”;

 cost: 5,000;

 version: 1;

 edited: 12-02-2006; // optional

 description: “A GUI component ...”;

}

A meta object could also conform to more than one meta type. It is also possible to

create meta objects that do not conform to any meta type. This enhances the language

flexibility. However, little automated analysis can be done over such informally provided

information.

The formal specification of meta information would considerably enhance the

development of CASE tool support that could harness these meta objects and conduct

automated analysis on the data (e.g. cost/benefit analysis, project timing/scheduling, etc.

based on what meta information is available). Other meta information might include:

design decisions, component compatibility, etc. which, when extracted and formatted

using proper CASE tools, allow automated architecture documentation to be achieved on-

the-fly.

In general, it is expected that the meta types be created once and used repeatedly within

different systems developed by the same enterprise. A standard set of information

required (tags) may be first identified by the project management team (or any other

stakeholder), and then provided to architects to conform to. This ensures that critical

information is always provided within an architecture description. The flexible syntax

also allows the architect to augment this information with fields (tags) that they may need

temporarily or internally within the architecture team.

Meta information can be introduced anywhere in the architecture description

(component type definitions, connector type definitions, etc.). The meta information

79

would be attached to the placeholder of where it is defined. For example, if a meta object

is created within a connector type, then this information belongs to that connector type.

If a meta object is defined within an interface description within a component type, the

meta object then belongs to the interface, etc.

5.3.2 Interface Types

Interface types have been introduced to ALI to allow for the usage of multiple

interfaces within a system description. The idea is to create a set of common interface

types needed within an application domain once (e.g. WSDL, Functional, Invocation,

etc.), and then use these interfaces in the design of architectural elements (component,

connector, etc.) and systems.

The interface type definition is divided into the following two sections:

 Syntax definition: where the formal syntax of the interface description is specified

using a subset of the JavaCC (Java Compiler Compiler tm (JavaCC tm)) notation.

 Constraints: where the constraints for interface binding (connectivity) are specified as

follows:

- Should match: means that the terms (identified in the syntax definition section using

the JavaCC notation) should match between two interfaces to be considered

compatible (allowed to bind) are identified. For example, in a functional interface,

for two interfaces to be compatible, the function names and argument types should

match.

- Protocols supported: a list of the protocols for communication is provided that is

supported by this interface type. E.g.: IIOP, HTTP, method invocation, etc.

80

- Allow multiple bindings: This is a Boolean value that states whether multiple

binding is allowed on this interface or not. Example: this property is set to true on

a server socket interface to allow for binding multiple client socket interface while

it is set to false on the client socket interface.

- Factory: This is a Boolean value that states whether the interface is a factory or not.

A factory interface means that when a connection request is received on this

interface, a new connection dedicated interface is created to handle that particular

request while the main interface proceeds to listen to new incoming requests.

Example: server socket interfaces in java are factories. On contrary, C++ sockets

are not. In C++, the factory functionality is to be implemented by the programmer

if required.

- Persistent: This is a Boolean value which when set to true indicates a persistent

interface (the internal data of the interface component is kept unchanged after the

current connection has ended) and when set to false indicates a transient interface

(internal data is reset to initial values when the current connection is terminated).

Following is an example for defining an interface type functional:

interface type functional {

 syntax definition: {

 "Provided" ":" "{"

 ["function" <PROV_FUNCTION_NAME>

 "{"

 "impLanguage" ":" <PROV_LANGUAGE_NAME> ";"

 "innvocation" ":" <PROV_INVOCATION> ";"

 "paramterlist" ":" "("[<PROV_PARAMETER_TYPE> [","

 <PROV_PARAMETER_TYPE:]*]? ")" ";"

 "return type" ":" <PROV_RETURN_TYPE> ";"

 "}"]* "}"

 // Required: etc.

 }

81

constraints: {

 should match: {PROV_INVOCATION_NAME, PROV_PARAMETER_TYPE}

 protocols supported: {RMI-IIOP, JRMP}

 allow multiple bindings: false;

 factory: false;

 persistent: true;

 }

 }

For more information about the notation used for specifying the interface syntax,

please refer to JavaCC (Java Compiler Compiler tm (JavaCC tm)).

It is important to clarify here that the interface type definition is not meant to be read

by humans, but rather created once and then read by CASE tools that would verify the

interface descriptions and bindings made throughout the architecture definition.

5.3.3 Connector Types

As in ACME (Allen and Garlan, 1997) and other ADLs, connectors are considered

first class citizens in ALI descriptions. For this, a proper syntax was introduced to the

language to allow for creating connector types.

The following example shows how to create a connector type ConnectorType1 in

ALI:

 connector type ConnectorType1

{

 meta:

 {

 description: " something about the connector type ";

 }

 interfaces {

 a, b, c of type functional;

 // etc.

 }

82

 layout {

 connect all to all;

 if (supported(FEATURE_A))

 connect a and b;

 else

 connect a to all;

 connect a to c;

 }

 }

As shown above, it is possible to attach meta objects to connector types.

The connector type definition is divided into two parts:

 interfaces: where the connector interfaces are defined. These are the input and

output ports of the connector. A connector must have at least two interfaces (for

input and output) while theoretically there is no restriction on the maximum

number of interfaces. For example, a bus connector would need to have a number

of bi-directional interfaces to serve all components connected to the bus. On the

other hand, a simple connector has only two interfaces. In the example above, we

have defined three interfaces a, b and c to better demonstrate the functionality

of the connector type in terms of its configuration as discussed later in this section.

 layout: The layout section describes the internal configuration of the connector. It

shows how the connector interfaces are connected internally, that is, how the

traffic travels among the interfaces. There are two types of connections allowed

between connector interfaces:

- unidirectional connections (to): which specify that the data/requests

received on one interface be output on another interface. This is done using

the keywords: “connect“ and “to“. Example: connect a to b; outputs

the data/requests received on the a interface to the b interface.

83

- bi-directional connections (and): which specify that the data/requests

received on one interface be output on another interface and vice versa.

This is done using the keywords: “connect“ and “and”. Example:

connect a and b; outputs the data/requests received on the a interface

to the b interface and vice versa.

The keyword “all” can be used to connect a connector interface to all other interfaces

of the connector using a bi-directional or unidirectional communication as described

above. For example, connect a to all makes the input on interface a available as

output on all other interfaces of the connector. In contrast, connect a and all makes

the input on a available on all other interfaces and the input on all other interfaces

available on a. The statement: connect all to all can be used to create bi-directional

connections among all ports.

Like interface types and meta types, a set of connector types can be created per domain

that can then be reused across multiple projects within that domain.

The connector definition can be linked to the system feature model to allow for

connector customization based on features selected. This is done using the if/else structure

and the keywords “supported/unsupported.” So, in the example above, if the system

supports the FEATURE_A, interfaces a and b are connected as bi-directional (using “and”);

otherwise, they are connected as unidirectional (using “to”) as a to all and a to c.

This syntax introduces a high level of configurability to the connector definition which

provides better support for defining configurable and product line architectures.

Meta objects can be attached to connector types by simply defining the meta object (as

explained in Section 5.3.1) inside the connector type definition (anywhere between the

start and end brackets).

84

5.3.4 Component Types

This section will provide a formal syntax for the creation of component type which is

a crucial part of the ALI notation. Once a component type is created, multiple components

of that type can be instantiated, each customized based on the feature set it supports.

The component type definition is basically divided into two main sections:

 interfaces: which describes the different component type interfaces. These

interfaces are described conforming to defined interface types (defined in the

interface type section earlier). A component can have one or more interfaces of

different types.

 sub-system: where the internal structure (sub-system) of the component is

described. The sub-system section consists of three sections:

- Components: where the different sub-components included within the

component are defined

- Connectors: where the different connectors that will be used in connecting

sub-components are defined

- Configuration: where the way sub-components are connected is described.

Three methods can be used to connect components:

 Using a connector: where a connector mediates the connection

between two or more components.

 Direct connection: without the use of connectors by directly

binding the component interfaces together.

 Using patterns: predefined connection patterns can be used to

automatically connect components using pre-defined architectural

85

patterns. More information about on patterns are given in the next

section.

An example of the syntax used for defining component types is demonstrated below:

 component type ComponentType1

{

 meta: MetaType1, MetaType2

 {

 description: “this is an example component”;

 cost: 20,000;

 benefit: “increases system price by 5%!”;

 version: 3;

 Author: “John Smith”;

 Design_Decision: “this component has been designed…”;

 }

 interfaces:

 {

 Interface1 of type functional

 {

 Provided:

 {

 function myAddFunction

 {

 impLanguage: Java;

 invocation: add;

 parameter list: (int);

 return type: void;

 }

 function mySubtractFunction

 {

 impLanguage: Java;

 invocation: subtract;

 parameter list: (int);

 return type: void;

 }

 }

 }

 if (supported(Provide_WSDL_Interface_Feature))

86

 {

 Interface2 of type WSDL

 {

 // WSDL interface description

 }

 }

 }

 sub-system:

 {

 components

 {

 component1<customization_feature_set1>: ComponentType1;

 component2<customization_feature_set2>,

 component3<customization_feature_set3>: ComponentType2;

 if (supported(Some_Feature_A))

 component4<customization_feature_set4>: ComponentType3;

 else

 component4<customization_feature_set5>: ComponentType3;

 //etc.

 }

 connectors

 {

 connector1<customization_feature_set1>,

 connector2<customization_feature_set2>: ConnectorType1;

 connector3<customization_feature_set3>: ConnectorType2;

 if (supported(Some_Feature_B))

 connector4<customization_feature_set4>: ConnectorType2;

 // etc.

 }

 configuration

 {

 // 1 - connecting components using connectors

 connect component1.interface1 with connector1.a;

 connect component2.interface1 with connector1.b;

 // 2 - connecting components without connectors

 bind component3.interface1 with component1.interface2;

 // 3 - connecting components using defined patterns

 if (supported(Some_Feature_B)) {

 Client_Server(ServerComponent1.interface1,

 [ClientComponent1.interface1,

87

 ClientComponent2.interface1,

 ClientComponent3.interface2]);

 }

 else {

 PipesAndFilters([PipeComponent1.interface2,

 PipeComponent2.interface1,

 PipeComponent2.interface2,

 PipeComponent3.interface1]);

 }

 // connecting the component interface(s) with sub-

// components’ using the keyword “my” (explained later)

 bind component1.interface2 with my.Interface1;

 }

 }

In the example above, we begin the component description using the keyword

“component type” followed by the component type name, ComponentType1 in this

example.

The first section of the component definition contains a meta object which conforms

to two meta types: MetaType1 and MetaType2. These meta types are defined in the meta

type section.

The second section is the component interfaces section where two interfaces are

defined:

 Interface1: of type functional (an interface type that was defined as an example

in Section 5.3.2 - interface types)

 Interface2: of type WSDL that only exists if the feature

Provide_WSDL_Interface_Feature is supported by the system.

88

As described in Section 5.3.2, functional interfaces are defined in terms of the

functions they provide and require. So, in the example above, the interface Interface1

provides two functions and requires none; and so on.

We could define as many interfaces as we want, where we could link the existence of

interfaces to the support/unsupport of system features. We could also attach meta objects

to interfaces simply by defining them within the definition of the interface (somewhere

between the two curly brackets of the interface definition).

It is recommended that interface definitions conform to defined interface types as per

the example above (functional and WSDL types). However, to allow for maximum

flexibility, it is possible to define interfaces that do not conform to any pre-defined

interface type, in which case, no analysis or automated tool support can be enabled over

that interface definition or any connection made over it (similar to the concept of creating

arbitrary meta objects that do not adhere to any meta type definition). This is done by

dropping the interface type name that follows the interface name in the interface

definition. For example, one could define a port-like interface without having an interface

type readily available:

 myPortInterface3:

{

 input in1, in2, in3;

 output out1, out2, out3;

}

However, it will not be possible to validate whether the connection between this

interface and any other interface within the system is valid or not (as the interface syntax

and constraints are not formally defined). This could be practical at early design stages

when the exact interface type specification is not clear. When the interface type matures

enough throughout the design process, an interface type is defined for this type of

interface, and then the interface type name is appended to the interface definition above

89

to allow for verification, and perhaps automated analysis with the aid of appropriate

CASE tool support.

The third section in the component definition is the description of the sub-system. In

the example above, three components are defined in the components section, one of type

ComponentType1 and two of type ComponentType2, where each component is

customized with a different feature set. Also, a component of type ComponentType3 is

defined; however, its customisation is dependent on the existence of the feature

Some_Feature_A.

Similarly, a number of connectors are defined in the connectors section within the

sub-system description.

The configuration section shows how the components and connectors defined in the

sub-system section are configured (connected). As explained earlier, there are three

different ways in which components can be connected:

 using connectors: The syntax for connecting two component interfaces via a

connector is: connect interface1 with interface2, where interface1 and

interface2 are the interfaces of the component to be connected and the connector

to be used, respectively. This same statement is used again to connect the second

component to another interface of the connector. The direction of communication

between the components is governed by the connector depending on what

connector interface each component is connected to (due to the fact that connector

interfaces are specified as input, output, or bi-directional within the connector type

definition). A demonstration of this type of connection is found in the example

above:

 ...

connect component1.interface1 with connector1.a;

 connect component2.interface1 with connector1.b;

90

 ...

 direct connections: The syntax used to connect two components directly without

the use of connectors is: bind interface1 with interface2, where interface1

and interface2 are the interfaces of the two components to be connected. By

default, when two components are connected directly, bi-directional

communication between the components is allowed. A demonstration of this type

of connectivity is found in the example above:

...

bind component3.interface1 with component1.interface2;

...

 using patterns: To connect components using patterns, the patterns need to be

defined as pattern templates (explained in the next section). A pattern template

definition is similar to a function definition with the arguments being the

interfaces to be connected and the definition describing how these interfaces are

connected. Once a pattern template is defined, it can then be invoked to connect a

number of components using the specified pattern. This is done by providing the

component interfaces as arguments to the pattern template as demonstrated in the

example above:

...

Client_Server(ServerComponent1.interface1,

 [ClientComponent1.interface1,

 ClientComponent2.interface1,

 ClientComponent3.interface2]

);

...

Finally, the component interface can be connected to its sub-component interfaces

using the keyword “my” and the same syntax described above for connecting interfaces

91

(whether, direct, using connectors, or using patterns). This is demonstrated in the example

above in:

 ...

 bind component1.interface2 with my.Interface1;

 ...

Connectivity among components can be related to system features to allow for sub-

system re-configurability based on the feature set it supports (as shown in the example

above where the components are either connected in a Client/Server pattern or Pipes &

Filters pattern based on the availability of Some_Feature_B).

The following section explains more about design patterns and the use of pattern

templates.

5.3.5 Pattern Templates

Architectural patterns are common solutions to recurring problems at the design level.

To allow for better reuse of such patterns, ALI introduces pattern templates. Pattern

templates are used for defining bundled sets of architectural patterns that can be reused

throughout the architecture with a simple call to the pattern template needed. Pattern

templates take as an argument the component interfaces to be connected according to the

pattern template definition.

Pattern templates are defined in similar way to the definition of functions (methods)

in programming languages. A pattern template definition comprises of:

 Pattern name: a unique pattern name

 Arguments: set of component interfaces to be connected. You can specify as

arguments single interfaces and/or arrays of interfaces. In the case of arrays of

92

interfaces as arguments, you can also specify the minimum and maximum number

of interfaces passed (e.g. [MIN < N < MAX] where MIN is the minimum number

of interfaces and MAX the maximum number of interfaces). Specifying the

maximum number of interfaces is optional.

 Definition: the specification of how the interfaces are to be connected. The syntax

used for defining patterns is very simple and provides support for:

- connecting interfaces: using the same syntax used in the connections

section of the connector type definition (discussed in Section 5.3.3).

- defining loops: to allow for connecting arrays of interfaces. The syntax

used here is the same syntax used in C/C++ for creating for loops. Note

here that the arrays of interfaces start at index 1 and not at 0 (like in

C/C++).

Below is an example that defines two patterns: Client/Server and Pipes & Filters.

 pattern templates:

{

 Client_Server (server : InterfaceType1,

 clients [1 < N] : IntefaceType1)

 {

 for(i = 1 ; i <= N ; i ++)

 connect clients[i] and server;

 }

 PipesAndFilters (filters[2 < N]: InterfaceType3)

 {

 for(i = 1; i < N ; i += 2)

 connect filters[i] to filters[i+1];

 }

}

Consider the Client_Server pattern template definition in the example above. The

pattern takes as an argument one interface called server of type InterfaceType1, and

93

an array of interfaces called clients (with [1 < N] meaning a minimum of one client

interface) of type InterfaceType1. The pattern is defined as: for all N clients, create a

bi-directional connection with the server interface (refer to Section 5.3.3 for more about

the usage of the keywords: “connect”, “and”, and “to” for connecting interfaces).

PipesAndFilters, on the other hand, takes an array of interfaces called filters (with

a minimum of 2 filters) of type InterfaceType3. The pattern is defined as: for all N filter

interfaces, connect the first filter interface to the second, and the third to the fourth, the

fifth to the sixth, etc. This is due to the fact that the first and second interfaces are the

input and output interfaces of the first filter component; the third and fourth interfaces are

the input and output interfaces of the second component, and so on.

An example of how to use pattern templates in connecting a number of components

have been already illustrated in the previous section (Section 5.3.4) where we

demonstrated the use of the Client_Server and PipesAndFilters patterns.

As explained earlier, meta objects can be attached into the formal definition of any

architectural element in ALI. This implies to pattern templates as well. A typical meta

type that goes with patterns is:

meta type MetaPatterns

{

tag Intent*, Aliases*, Motivation*, Applicability*: text;

}

It can be noticed that all tags are made optional by appending an asterisk, “*”, to their

definition. A sample of meta object that conforms to MetaPatterns is described below

with the description of each of their tags:

meta: MetaPatterns

{

Intent: “What the pattern does”;

Aliases: “Other names used for this pattern”;

94

Motivation: “An example of a problem and how this pattern

 solves that problem”;

Applicability: “Scenarios to which this pattern applies”;

}

To attach meta objects to pattern template definitions, the meta object can be inserted

inside the definition of the pattern template as shown below:

 pattern templates:

{

 Client_Server (server : InterfaceType1,

 clients [1 < N] : IntefaceType1)

 {

meta: MetaPatterns

{

Intent: “What the Client Server pattern does”;

...

}

 for(i = 1 ; i <= N ; i++)

 connect clients[i] and server;

 }

 ...

 ...

 }

5.3.6 Features

The feature description section provides a catalogue of the features used within the

system. The feature definition consists of:

 Alternative names: the possible alternative names (if any) that are used to

reference the same feature within the different design and development groups

involved in the project.

 Feature parameters: A feature can carry a number of parameters (textual,

numerical, etc.). For example, if the feature is “Manual Gearbox”, the parameter

might be the “number of gears” available (a numerical value).

95

In addition to this, meta object is attached to features to provide more meta information

about the feature which is optional as discussed in Section 5.3.1.

An example below shows how features are defined in ALI:

 features

{

 featureA // feature name

 {

 meta: featureMeta

 {

 details: "A textual description of the feature";

 development_cost: 10000;

 employees_needed: "3 person/year";

 acceptance_level: "should work on all screen

 resolutions";

 }

 alternative names: { "Developer.XY ", "Evaluator.F124"}

 parameters: { (windowTitle: text),

 (windowWidth, windowHeight: number)}

 }

 featureB

 {

 ...

 }

 // etc.

}

In the example above, we see the definition of featureA which contains a meta object

that conforms to the featureMeta meta type. In the alternative names section, we

notice that featureA is referred to as XY by Developers and as F124 by Evaluators. In the

parameters section, the feature encompassses three parameters: windowTitle which is

a textual value; windowWidth and windowHeight which are numerical values.

The features defined in this section are usually derived from the feature model of the

system. This is usually carried out prior to embarking on the architecture design. In order

to read feature models and populate this section, CASE tools could be used. This is an

96

important part of the notation as it makes ALI independent of any particular feature

modelling technique.

5.3.7 System

The last part of the ALI language to be discussed is the system section. The system

section is where the overall product (or product line) architecture is specified.

The syntax used in this section is the same as the syntax used in the sub-system section

(described earlier in component types, Section 5.3.4) with the major difference that the

system section is not contained in any component definition but rather provides the

description of the overall system architecture. Therefore, the keyword “my” used in the

sub-system section to reference the component interfaces is not supported in this section;

however, a new keyword “external” is used in place of it to reference interfaces of

external systems (if needed) to provide a means to define how the system interacts with

its environment (operating system, other systems, etc.).

The example shows a sample system description using the same example described in

Section 5.3.4 but without the use of the “my” keyword and showing how the “external”

keyword can be used (at the end of the example):

 system:

 {

components

 {

component1<customization_feature_set1>: ComponentType1;

component2<customization_feature_set2>,

component3<customization_feature_set3>: ComponentType2;

if (supported(Some_Feature_A))

 component4<customization_feature_set4>: ComponentType3;

 else

 component4<customization_feature_set5>: ComponentType3;

 //etc.

97

 }

 connectors

 {

 connector1<customization_feature_set1>,

 connector2<customization_feature_set2>: ConnectorType1;

 connector3<customization_feature_set3>: ConnectorType2;

 if (supported(Some_Feature_B))

 connector4<customization_feature_set4>: ConnectorType2;

 // etc.

 }

 configuration

 {

 // 1 - connecting components using connectors

 connect component1.interface1 with connector1.a;

 connect component2.interface1 with connector1.b;

 // 2 - connecting components without connectors

 bind component3.interface1 with component1.interface2;

 // 3 - connecting components using pre-defined patterns

 if (supported(Some_Feature_B)) {

 Client_Server(ServerComponent1.interface1,

 [ClientComponent1.interface1,

 ClientComponent2.interface1,

 ClientComponent3.interface2]);

 }

 else {

 PipesAndFilters([PipeComponent1.interface2,

 PipeComponent2.interface1,

 PipeComponent2.interface2,

 PipeComponent3.interface1]);

 }

 // connecting system component interfaces to

 // external interfaces

 bind component1.interface2 with external.windowHandleAPI;

 }

 }

In the above example we also see that connector and component instantiation and

connectivity among them can be related to system features to allow for system

customisation based on the feature set selected.

98

5.4 Limitations in original version

ADLs that exists in current research literature were critically analysed in Chapter 3.

Accordingly, several limitations were identified in them (explained in Chapter 3) that

confines practitioners to adopt those ADLs into their system.

After thoroughly analysing the current ADLs and their limitations with the original

version of ALI (discussed earlier in this chapter), the comparative study reveals the

following limitations in ALI that might be restricting its adoption into industrial

applications:

5.4.1 Architectural artefact reusability

Traditionally, research on software reusability has been primarily focused on the reuse

of code-level entities, such as classes, subroutines, and data structures. While there have

been tremendous improvements in code reuse technology and methods but code-level

artefacts are not the only ones that can be profitably reused. Over the past decade there

has been a vast amount of work done in other areas of software engineering such as at

architectural level, the concept of reusability along with the support to capture variability

were not taken into consideration among them.

At present, the discipline of software architecture has been more focused on original

designing but it is now recognised that to achieve better architecture, more quickly and at

lower cost, we need to adopt a design process that is based on architecture artefact reuse

with its ability to capture variability in its description. For this, architectural languages

should be capable enough to design architectural elements in such a way that it can be

reused across different projects including in different domains (if needed). Also, it needs

to be done by simply plugging the architectural elements into the system designed by

99

other vendors with relatively little efforts due to their ability to capture variable artefact

features.

By focusing on the reuse of architectural elements with the support of capturing

variability in an ADL makes practitioners easy to adopt the language. Currently, ALI

lacks in designing architectural elements (components, connectors and interfaces) in such

a way that it can be reused outside the particular system description. Component type,

connector type and interface type notations as defined earlier in Section 5.3 depends on

the features that have been described in features section (Section 5.3.6) in the form of

catalogue. These features belong to a particular system which have been populated from

the pre-defined feature model that prevents these architectural elements to be reusable

elsewhere.

5.4.2 Limited support for behavioural description

At the architectural level, it is important to provide a notation that supports both the

structural and the behavioural aspects of design while maintaining a separation of

concerns between them. More ahead, these two aspects need to be described in a single

formalism, while keeping their syntactical notations separate. By doing this, it would

facilitate the understanding of each aspect in isolation while still supporting analysis of

the combined interaction between the two.

In that case, an architectural language must have the capability to describe both the

structural and the behavioural aspects of a system with a clear separation of concerns in

order to have a complete architectural description of it. Particularly, behavioural

description need to be designed carefully as it demonstrates the different functionalities

of a system within a same structural design. This is very important for ADLs that have

100

been designed with the intention for its industrial usage because their system behaviour

varies more frequently as compared to its static structure.

Unfortunately, the current version of ALI focused more on the structural aspect of the

architectural design. It does not consider the behavioural aspect of the system as a first

class element in its architectural description. How components will interact with each

other under a particular condition, how a component will behave in different scenarios,

what are those components and their interactions that performs a particular function of a

system and so on, these are some of the basic behavioural perspectives that were not taken

into account in this version of ALI.

5.4.3 Lack of support for graphical representation

From the industrial experience, it has been observed that carefully designing the detail

of the graphical notation for ADL pays off (Woods and Bashroush, 2015). For this, along

with the textual notation, a rich graphical notation for the designing of architecture is

required that communicates as much as possible using the shape, line, fill and other visual

aspects of the notation.

In addition to this, by using simple graphical notations with different dimensions helps

software architect and other system users to remember them, even if they do not guess

the link between the shape and the concept themselves. This would be helpful in particular

for the new user/architect that takes over the industrial systems, where he/she can easily

understand the complexity of the system in lesser period of time in comparison to

understanding the textual notation first. Also, it will become much easier for people

(especially, non-technical/business personnel’s) to understand the system architecture

and its functionality without going into any technical training. More specifically from

101

business perspectives, graphical representation of the architectural language can be useful

for knowledge sharing and discussion on about the system.

Considering the importance of graphical representation in an ADL, it has been realised

that graphical notation is an essential part for the designing of industrial system

architecture which ALI lacks in providing the formal support for graphical representation

in its architectural description. Although, an informal graphical notation (boxes and lines

only) have been presented in Section 5.2 just to demonstrate the concept of flexible

interface and architectural pattern descriptions in ALI. It is not complete and well-defined

graphical representation about the ALI architectural concepts as defined textually in

Section 5.3. For instance, a clear discrimination about the connections made between the

components that either it is via connector or via component interfaces (direct connection)

and so on.

5.4.4 Lack of support for architectural views

The complexity of large-scale industrial software systems is increasing rapidly over

time. Subsequently, it led to an increase in its architectural information which have to be

adequately captured. The need to integrate all the information within and across business

boundaries adds a very high level of intricacy. Additionally, balancing between different

stakeholders’ needs can be an unapproachable business goal without the concept of

multiple architectural views in a system description.

Therefore, there is an emerging need for multi-view architectural modelling, where

each view delivers a different perspective or point towards a different concern or

stakeholder. In this context, multiple views used to describe an architecture must be

managed properly, as well as the consistency and completeness across them.

102

As ALI architectural description focused more on structural aspect of the system

(explained in Section 5.4.2) and this aspect is described only through textual notation

which limits ALI to a particular architectural view of the system. Although, ALI provides

flexibility while maintaining the formality in its textual notation to describe the

architectural elements (components, connectors, etc.) individually but it describes overall

system description in a single system notation as defined in Section 5.3.7. This strategy

would become chaotic in case of large-scale and complex systems for different

stakeholders (such as management and technical stakeholders), where they want to view

the architectural information for a particular set of related concerns not the whole system

description.

5.5 Summary

ALI is a flexible architecture description language for industrial applications that was

designed within our research group. This chapter introduced the original version of ALI

that existed when this research work started.

ALI provides a blend between flexibility and formalism. While flexibility gives

freedom for the architect during the design process, formalism allows for architecture

analysis and potential automation using proper CASE tool support (e.g. on-the-fly

architecture documentation, code generation, etc.). The language notation serves as a

central database of the architecture description. In this way, the architectural model will

help alleviate the problem of mismatches among multiple views of the system when

maintained separately.

The rationale behind the ALI notation were: flexible interface description,

architectural pattern description, formal syntax for capturing meta information, and

linking the feature and architecture spaces.

103

ALI notation provided no pre-defined interface types. Instead, it has introduced a sub-

language that gives users the flexibility to define their own interface types. Also, the

notation focuses on capturing architectural meta-information and introduced formal

syntax (meta types and meta objects) for this purpose. Continuing the theme of flexibility,

ALI permits the user significant scope for defining architectural patterns. In other words,

patterns may be defined and instantiated in similar fashion to function calls in

programming languages. It also supports the relationship between components,

connectors, patterns etc. in an architecture description and features in the feature model

using first order logic.

After taking into account the current industrial needs for architectural language,

several limitations were identified in this version of ALI which might be restricting its

uptake in industry. Among those are: lacks in providing architectural artefact reusability,

limited support for behavioural description, formal graphical representation and multiple

architectural views of the system in the language.

To overcome aforementioned limitations, the next chapter presents an enhanced

version of ALI (referred to as ALI V2 in this thesis), which is designed with the intention

to meet current industrial requirements in terms of architectural description.

104

6
Chapter Six

ALI V2

 “A woman's mind is cleaner than a man's: She changes it more often.”

 -- Oliver Herford

6.1 Introduction

Recently, ADLs constructed with complex or obscure syntactical notations have been

rarely used correctly (Woods and Bashroush, 2015). Generally, practitioners avoid

adopting complex languages into their development process, especially in large scale

systems, where it becomes tedious to handle and understand.

Therefore, after analysing the existing literature and considering the latest

recommended practitioner’s guidelines (Garlan, 2014; Malavolta et al., 2013) and

characteristics (Bashroush et al., 2006) to design an architectural language, a new version

of ALI (referred to as ALI V2, in this context) is presented in this chapter. The ALI V2

notation is designed in such a way that it can be easily usable in an industrial setting by

overcoming the limitations that exist in its initial version (reported in Chapter 5).

The remainder of this chapter is organised as follows: Section 6.2 presents the design

principles behind ALI V2 and the high-level (abstract) description of ALI V2 in the form

of a conceptual model in Section 6.3; Section 6.4 covers the details of the language by

visiting the different textual constructs in the ALI V2 notation with its graphical

representation in Section 6.5. Section 6.6 describes the structural and behavioural

semantics of ALI V2. Finally, a summary along with the changes to the ALI initial version

(described in the previous chapter) is presented in Section 6.7.

http://www.brainyquote.com/quotes/quotes/o/oliverherf158327.html?src=t_funny

105

6.2 Design Principles

This section presents the set of design principles, which were used to drive the

development of the ALI V2 notation in order to address the limitations pointed out in

Chapter 3.

Six general principles guided the creation of the ALI V2 ADL:

P1: Variability management

Software architects need adequate support for dealing with variability in designing

their system architecture. As stated in (Galster and Avgeriou, 2011), it is essential for

the architect to have suitable methods for handling (i.e., representing, managing and

reasoning about) variability. From an architectural description perspective, variability

is a concern of multiple stakeholders, and in turn affects other concerns. So, variability

needs to be treated in a similar way to other essential functionalities of the architectural

language.

Our proposed ALI V2 ADL treats variability as a first class citizen and manages it

as an integral part of the language. It provides the ability to manage variability not only

in the overall system architecture description but also in the design of individual

architectural elements – interfaces, connectors and components. This is done with the

help of a simple if/else structure concept along with the keywords “supported” and

“unsupported”. Additionally, ALI V2 supports variability management in its

behavioural description using the same if/else structure (details in Section 6.4.12).

106

P2: Requirement traceability

Tracing requirements from the problem space (specification) into the solution space

(implementation) provides a valuable tool for architects to help validate the produced

system against its set objectives. However, for such an end-to-end traceability to work,

there needs to be continuity in capturing relevant information at all development

stages, including architecture.

ALI V2 supports requirements traceability by supporting the linkage of end-user

features (see Section 6.4.2) directly to architectural elements (components, connectors,

patterns etc.) using first order logic (to allow for complex dependency).

Additionally, ALI V2 supports ‘conditioning’ the behavioural aspects of the system

to external parameters (see Section 6.4.10). Such conditions can also be used to change

the behaviour of the system given various external requirements.

P3: Cross application domain modelling

With the emergence of new paradigms such as the Internet of Things (IoT) and

Cyber-Physical Systems (CPS), architecture descriptions are now faced with the

challenge of encompassing multiple application domains. For example, if we consider

the Smart Cities scenario, systems in this application domain will entail the

applications running sensor platforms (IoT devices), communication gateways,

databases (Big Data infrastructure), and Information Systems that deliver end-user

services. While the architecture of the sensor systems can be modelled using

embedded-system oriented ADLs, these ADLs don’t necessarily lend themselves to

representing the architecture of Information Systems. Thus, there is a need for new

generation ADLs that are capable of modelling system across traditional design

boundaries.

107

ALI V2 supports cross-application domain modelling by introducing flexibility in

the notation design at different levels. For example, ALI V2 allows for the creation of

custom interface types using a dedicated notation. The case studies discussed show

‘port’ like interfaces, as well as ‘WSDL’ interfaces.

P4: Balance formality and flexibility to better support the design process

During the early stages of the design process, architects tend to sketch things at a

very high level, using mere lines and boxes. At that stage, for example, it is difficult

to start talking about the details of interfaces between components or what meta

information to capture about each architectural element.

As the system development process progresses, and as more details are captured

about the system, specific details in relation to architectural elements can then be

discussed and modelled. Thus, an ADL needs to allow some flexibility at the initial

stages of the design process, and at the same time, provide the required formality when

details are available.

For example, ALI V2 achieves this balance between formality and flexibility by

allowing architects to work with undefined interface types. When such informal

interfaces are used, no automated analysis would be possible. Once the design is

mature, and interface types are created, ALI V2 could then provide an array of

verification checks (as specified in the interface template description).

P5: Increase architectural artefact reusability

Architectural artefacts tend to be tailored to particular system requirements.

Accordingly, very few ADLs discuss the concept of artefact reusability across multiple

systems. Yet, in real-life, it is more often than not we are faced with similar

108

architectural challenges that could be solved using architectural artefacts we have in

existing projects.

ALI V2 supports the concept of large-grain reusability by allowing architectural

artefacts to be made configurable based on selected sets of features.

For example, components in ALI V2 can be customised based on which features

are selected for a particular component, and the values of these features. Similarly,

connectors and interfaces can also be parameterised using feature sets. By mapping

the feature set of the source domain (where the component is taken from) and the

feature set of the destination domain (where the component is going to be deployed),

the component can adapt to the new environment (further details in Section 6.4.6).

P6: Multiple architectural views

As systems increase in size and complexity, and as more and more stakeholders

take interest in system development (product managers, architects, end-users ‘in the

loop’, etc.), the information captured within an architecture description is expanding.

Accordingly, in order to minimise information overload, and sacrifice abstraction for

completeness, the need for multiple architectural views catering for different

stakeholders is becoming an important feature of an ADL.

ALI V2 is designed with the concept of multiple architectural views, where each

view corresponds to a stakeholder (or stakeholder group) and addresses a different set

of concerns (see Section 6.4 for textual and Section 6.5 for graphical descriptions).

109

6.3 Conceptual Model

A conceptual model is a high-level description of how a system is organized and

operates (Johnson and Henderson, 2002). The aim of a conceptual model is to express the

meaning of terms and concepts used by domain experts and to find the correct

relationships between different concepts. Several notations (Booch, Rumbaugh and

Jacobson, 2005; Halpin, 2010; Halpin and Morgan, 2008; Rumbaugh et al., 1991) exist

that are used to describe the conceptual model. Among those, UML (Unified Modelling

Language) (Booch, Rumbaugh and Jacobson, 2005) is the most commonly used and

comprehensive notation (ISO/IEC 19501).

Figure 16 shows the conceptual model of ALI V2. The reference architecture

describes the overall system description. The reference architecture is made up of

arrangements and viewpoints. Arrangements represent the structural (static) description

of the system and are composed of components and connectors, which communicate

through interfaces.

Viewpoints are sets of transaction domains that pertain to a common concern (e.g. car

ignition system). Transaction domains represent the behavioural (dynamic) aspects of the

system, and are composed of sets of transactions that together serve a particular system

feature (e.g. user/key validation). Transactions are expressed in terms of sets of events

that achieve a system functionality (e.g. key authorisation). And events are the basic

communication mechanism between components (e.g. key code update event).

Conditions are parameters that represent external (to the system) environmental

aspects that could impact the system behaviour. The architecture description is

parameterised using these conditions, which can be either true or false. Different

combinations of conditions and their values, called scenarios, can be used to test and

adapt the behaviour of the system to various contexts.

110

Interface

Connector

Event

Component

Product
Configuration

Transaction

Transaction Domain

Product Architecture

Reference
Architecture

Scenario

Feature Condition

1..*

1

1..*

0..*

1..*

1..*

1..*

1

1

1

applied

appliedparameterise

expressed by

1

0..*

sent/received by

has

1..*

1..*

used by

0..*

1..*

consist of

Arrangement

1

has

1

1..*

1

0..*

represents

11

composed of

composed of

Viewpoint
1

1..*

1

1..*

contains

1

1..*

1

2..*

consist of

consist of

Figure 16: ALI V2 conceptual model

111

Finally, a product architecture can be derived from a reference architecture using a

product configuration. Product configurations represent desired features, and their

values, for a specific product in a product line.

In the following section, the details of these constructs, along with the notation used

to describe them, are discussed.

6.4 Textual Constructs and Notations

The ALI V2 textual notation is designed based on the principles defined in Section

6.2. The textual notation is made up of 14 main constructs:

1. meta types: which provide an extensible mechanism for capturing architectural

meta-information

2. features: where the system features are catalogued

3. interface templates: which specifies a dedicated notation for creating categories

of interface types

4. interface types: where architectural interfaces are defined

5. connector types: where architectural connectors are defined

6. component types: where architectural components are defined

7. pattern templates: where reusable architectural design patterns are defined

8. product configurations: which provides the feature combinations that

characterise individual products

9. events: where the events that flows within a system are defined

10. conditions: where the system behavioural conditions (architecture

parameterisation) are catalogued

112

11. scenarios: where behavioural scenarios are defined (sets of conditions to

represent a runtime scenario)

12. transaction domain: which provides the behavioural interactions within a

particular system domain

13. viewpoints: where different behavioural viewpoints are defined

14. system: where the overall system architecture is described

These are discussed in the following sections.

6.4.1 Meta Types

The meta types section provides a formal syntax for capturing meta-information of the

architectural element (e.g. components, connectors, etc.). A meta type is defined by the

information it encompasses. The information is stored in fields, where each field has a

name (tag) and a data type (text, number, etc.). The following example defines a meta

type called MetaType1:

 meta type MetaType1 {

 tag creatorID, description: text;

 tag cost, version: number;

 tag edited*: date;

 }

In this example, “meta type” is a keyword which is used to start a meta type definition.

MetaType1 is the name of the meta type being specified. Each meta type contains a set of

tags each of which can be either textual, numeric, date, enumeration or character. Five

tags are defined in the above example: two textual, two numeric and one date. Asterisk

“*” on one of the date tag edited indicates that it is an optional tag.

Once meta types are specified, meta objects conforming to these types can then be

created and attached to architectural elements throughout the architectural description.

113

These meta objects provide an area for appending additional information related to these

elements. Below is an example of a meta object that conforms to the meta type defined

in the example above.

 meta: MetaType1 {

 creatorID: “Martin005”;

 cost: 5,000;

 version: 1.3;

 edited: 01-01-2016;

 description: “A GUI component ...”;

 }

A meta object could also be a combination of more than one meta type. To enhance

the language flexibility, it is also possible to create meta objects that do not conform to

any meta type. However, little automated analysis can be performed on such informally

described data. The reasoning behind this is to allow architects to sketch what they

initially think could be relevant meta-information, then, once confirmed, they create the

appropriate meta types to ensure conformance.

The formal specification of meta information allows for easier CASE tool

development to harness these meta objects and conduct automated analysis (e.g.

cost/benefit analysis, project timing/scheduling, etc. depending on what type of meta

information is available). Other meta information could include: design decisions,

component compatibility, etc. which when extracted and formatted using proper CASE

tools, allow automated architecture documentation to be achieved on-the-fly.

In general, it is expected that the meta types will be created once and used repeatedly

across the different systems developed by the same enterprise. In order to make sure that

critical information is always provided within an architecture description, a project

management team (or any other stakeholder) may first identify the standard set of

information required (tags), and then provide it to architects to conform to. The flexibility

114

in the syntax also allows the architects to augment this information with fields (tags) that

they may want to use internally within the architecture team.

6.4.2 Features

The feature description notation provides a catalogue of the system features

(mandatory, optional or alternative) used within the system. The feature definition

comprises of:

 alternative names: In many cases, different teams within the development process

address a feature with different names. This sub-section of the feature definition keeps

track of the different names (if any) that are used to address the same feature (within

the different design and development teams involved in the project). This property

will keep track of the system features and alleviate redundancy.

 parameters: A feature can carry different types of parameters -textual, numerical and

boolean. Though, not all features would be parameterised.

Below is an example of how features are defined in ALI V2:

features {

 FeatureA: {

 alternative names: {

 Designer.AName1, Developer.AName2, Evaluator.AName3;

 }

 parameters: {

 {Parameter1 = text,

 Parameter2 = number};

 }

 }

 FeatureB: {…}

 // etc.

}

115

In the example above, FeatureA was defined showing that it is referred to as AName1

by the design team, AName2 by the development team, and AName3 by the evaluation

team. The feature encompasses two parameters, one textual and one numeric.

In ALI V2, system features are defined in a stand-alone catalogue as shown above.

The catalogue serves as an adapter between any feature modelling technique used and the

architecture description, making ALI V2 independent of any particular feature modelling

technique.

6.4.3 Interface Templates

The interface template notation provides a framework that allows the description of

multiple interface type categories within a system description. The idea behind this is to

create a set of common interface templates (e.g. WSDL, RMI, etc.) needed within an

application domain once, and reuse them in different projects. These interface templates

can be used as a specification in defining the interface types of the system, either

explicitly (as explained in the next section) or in the component type definition (Section

6.4.6). This template specification can also be reused outside the defined system

depending upon the design requirement as per principle P5 in Section 6.2.

The interface template definition is divided into three main sections:

 provider syntax definition: where the syntax of the provider interface is specified using

a subset of the JavaCC (Java Compiler Compiler tm (JavaCC tm)) notation. JavaCC

(Java Compiler Compiler) is an open source notation that allows the definition of

grammars using EBNF style syntax (Scowen, 1993).

 consumer syntax definition: where the syntax of the consumer interface is specified

using a subset of the JavaCC notation.

116

 constraints: where the interface connectivity constraints are specified. These include:

- Should match: here the terms (identified in the below syntax definition sections

using the JavaCC notation) that should match between two interfaces to be

considered compatible (allowed to bind) are identified.

- Binding: comprises of three different fields: 1) multiple -a Boolean value that

states whether multiple binding is allowed on this interface; 2) data size -range of

the data that can pass through this interface by providing the maximum and

minimum values; and 3) max connections – maximum number of simultaneous

connections allowed on the interface.

- Factory: This is a Boolean value that states whether the interface is a factory or

not. A factory interface means that when a connection request is received on this

interface, a new instance is created to handle that particular request while the main

interface continues to listen to new incoming requests. Example: server socket

interfaces in java are factories. On the other hand, C++ sockets do not support

factory functionality by default.

- Persistent: This is a Boolean value that indicates a persistent interface (the internal

data of the interface component is kept unchanged after the current connection has

ended) when set to true and indicates a transient interface (internal data is reset to

initial values when the current connection is terminated) when set to false.

117

An interface template description begins with the keyword “interface template”

followed by the interface template name such as MethodInterfac in the example below:

interface template MethodInterface {

 provider syntax definition: {

 "Provider"":"

 "{"

 {"function" <FUNCTION_NAME>

 "{"

 "impLanguage" ":" <LANGUAGE_NAME> ";"

 "invocation" ":" <INVOCATION> ";"

 "parameterlist" ":" "("[<PARAMETER_TYPE> {","

 <PARAMETER_TYPE}] ")" ";"

 "return_type" ":" <RETURN_TYPE> ";"

 "}" }

 "}"

 }

 consumer syntax definition: {

 "Consumer"":"

 "{"

 “Call” “:” <INVOCATION> “(“[<PARAMETER_TYPE> {","

 <PARAMETER_TYPE}] ”)” “;”

 "}"

 }

 constraints: {

 should match: {INVOCATION_NAME = .INVOCATION_NAME,

 PARAMETER_TYPE}

 binding: {

 “multiple”: true;

 “data_size”: [min, max];

 “max_connections”: 5;

 }

 factory: false;

 persistent: false;

 }

 }

For further details about the notation used for specifying the interface template syntax,

please refer to JavaCC (Java Compiler Compiler tm (JavaCC tm)).

118

It is important to clarify here that the interface template definition is not meant to be

read by humans, but rather created once and then read by CASE tools that would verify

the interface descriptions and connections made throughout the architecture definition.

6.4.4 Interface Types

The interface type notation provides a set of pre-defined interface types that are created

in conformance to the definition of an interface template, described in the previous

section. Interface types can be (re)used in the design of architectural elements

(components and connectors) throughout the system description (design principle P5).

An interface type definition begins with the keyword “interface type” as in the

example below:

interface type {

 InterfaceType1: MethodInterface {

 Provider: {

 function Addition

 {

 impLanguage: Java;

 invocation: add;

 parameterlist: (int);

 return_type: void;

 }

 function Subtraction {…}

 function Multiplication {…}

 }

 Consumer: {

 Call: getValue (long_int);

 }

 }

 InterfaceType2: MethodInterface {

 Provider: {

 function Average

 {

119

 impLanguage: Java;

 invocation: average;

 parameterlist: (int);

 return_type: void;

 }

 }

 Consumer: {//nothing consumed}

 }

 // etc.

}

Each interface type is defined by a unique name followed by the interface template

name, which it conforms to. In the example above, InterfaceType1 performs basic

mathematical operations based on the value it consumed and InterfaceType2 provides

the average calculated value by using the average formula strategy. They all conform to

the interface template MethodInterface defined in the previous section. We can also

define other interface types that conforms to other interface templates such as WSDL,

RMI, etc.

6.4.5 Connector Types

Like many other ADLs, such as ACME (Garlan, Monroe and Wile, 1997), Aesop

(Garlan, Allen and Ockerbloom, 1994), CBabel (Rademaker, Braga and Sztajnberg,

2005), EAST-ADL (Cuenot et al., 2010), UniCon (Shaw et al., 1995), WRIGHT (Allen,

Douence and Garlan, 1998) and π-ADL (Oquendo, 2004), to name a few, connectors are

considered first class citizens in ALI V2.

A connector type definition begins with the keyword “connector type” followed by

the connector type name and is divided into three sections.

connector type ConnectorType1

 {

 features: {

120

 Feature1: “textual description”,

 Feature2: “textual description”,

 Feature3: “textual description”;

 }

 interfaces: {

 a1: InterfaceType4;

 a2: InterfaceType1;

 a3: InterfaceType2;

 a4: InterfaceType3;

 }

 layout: {

 connect a4 and a1;

 if (supported(Feature1 || Feature2)){

 {connect a1 to a2;

 connect a2 to a4;}

 else if (supported(Feature3)

 connect valueport3 to valueport4;}

 }

 }

 features: a set of optional/alternative features used to parameterise a connector type. By

changing feature values, a connector can be reconfigured to be deployed in different

products (based on feature availability and parameter values). The configuration is

achieved using if/else structure and the keywords “supported/unsupported” to link

features to the connector definition.

 interfaces: where the connector interfaces are defined along with their interface types.

These resemble the input/output ports of the connector. Basically, interfaces are instances

of interface types that are defined in accordance to interface templates.

 layout: The layout section describes the internal configuration (structure/arrangement)

of the connector. It demonstrates how the connector interfaces are connected internally,

that is, how the traffic (information) travels internally from one interface to another. This

syntax introduces a high level of configurability to the connector definition which

121

provides better support for defining configurable product and product line architectures.

Two types of configurations are allowed between connector interfaces, namely:

- uni-directional connections (to): which specify that the data from one interface goes

to another interface. This is done using the keywords: “connect” and “to”. Example:

connect a1 to a2 in ConnectorType1 outputs the data on the a1 interface to the

a2 interface.

- bi-directional connection (and): which specify that the data can travel in both

directions between two interfaces. This is done using the keywords: “connect” and

“and”. Example: connect a4 and a1 in ConnectorType1 outputs the data on the

a4 interface to the a1 interface and vice versa.

Additionally, the keyword “all” can be used to connect a connector interface to all

other interfaces of the connector using a bi-directional or unidirectional communication.

For example, “connect all to all” can be used to create bi-directional connections

among all ports. We can also have “connect a1 to all” which makes the input on

interface a1 available as output on all other interfaces of the connector.

Lastly, meta objects can be attached to connector types by simply defining the meta

object (as explained in Section 6.4.1) inside the connector type definition (anywhere

between the start and end brackets).

6.4.6 Component Types

The component type definition is divided into three main sections:

 features: a set of optional/alternative features that make up a component type. The

purpose and definition of this section is exactly similar to the concept of features

defined in the connector type (see Section 6.4.5). That is, it provides the capability to

122

reuse components in multiple products and systems by varying feature values (product

configurations).

 interfaces: which specify the different interfaces used by the component. The interfaces

section is divided into two sections, definition where new interfaces can be created

from scratch; and implements where already defined interfaces can be reused

(interfaces implemented here are instances of interface types).

 sub-system: where the internal structure (sub-system) of the component is described.

The sub-system section is divided into three sections:

- components: where the different sub-components included within the component

are defined.

- connectors: where the different connectors used in connecting sub-components are

defined.

- arrangement: where the way in which sub-components are connected is described.

To allow flexibility, ALI V2 provides three different methods that can be used to

connect components:

a. Using connectors: where a connector mediates the connection between two or

more components. This is done by using the keyword “connect” (e.g. connect

Component.Interface1 with Connector.Interface1).

b. Direct binding: where component interfaces are bound directly without the use

of a connector. This is done by using the keyword “bind” (e.g. bind

Component1.Interface1 with Component2.Interface1).

c. Using patterns: where predefined connection patterns can be used to connect a

set of components according to a selected architectural pattern (see Section

6.4.7).

123

Component type description begins with the keyword “component type” followed by

the component type name ComponentType1 as shown in the example below.

component type ComponentType1

 {

 meta: MetaType1 {…}

 features: {

 FeatureA: “textual description”,

 FeatureB: “textual description”,

 FeatureC: “textual description”;

 }

 interfaces: {

 definition: {

 interfaceA: InterfaceType1 {

 Provider: {

 function myAddFunction

 {

 impLanguage: JAVA;

 invocation: add;

 parameterlist: (int);

 return_type: void;

 } // etc.

 }

 Consumer: { }

 //no consumed functions specified

 }

 if(supported(FeatureC))

 {

 interface: InterfaceType2 {…}

 }

 }

 implements:{

 interfaceA1: InterfaceType1;

 interfaceB1: InterfaceType2;

 }

 } //end of interfaces

 sub-system: {

 components {

 comp1<FeatureA, false, true>: ComponentType1;

 if(supported(FeatureC))

 comp4<true, true>: ComponentType2;

124

 else

 comp4<false, true>: ComponentType2;

 //etc.

 }

 connectors {

 connA<FeatureA, false, false>: ConnectorType1;

 connB<FeatureB, true>, connC<false, true>: ConnectorType2;

 if(supported(FeatureB))

 connD<true, FeatureC>: ConnectorType2;

 // etc.

 }

 arrangement {

 // 1 - connecting components using connectors

 connect comp1.interfaceA with connA.a2;

 connect comp4.interfaceA1 with connA.a4;

 // 2 - connecting components without connectors

 bind comp4.interfaceB1 with comp1.interfaceA;

 // 3 - connecting components using defined patterns

 if(supported(Feature_C)) {

 Client_Server(ServerComp1.interfaceB1,

 [ClientComp1.interfaceB1,

 ClientComp2.interfaceB1,

 ClientComp3.interfaceB]);

 }

 else {

 PipesAndFilters(…);

 }

 /* connecting the component interface(s) with sub-

 components’ */

 bind comp1.interfaceA with my.InterfaceA1;

 }

 }

The example above shows how the component configuration can change depending

on what features are supported. The keyword “my” is used to reference the component’s

own interfaces as opposed to sub-component interfaces (similar to the use of “this” in

some programming languages).

125

6.4.7 Pattern Templates

The pattern template notation in ALI V2 allows the definition and use of architectural

patterns. They are first defined and then (re)used throughout the architecture by calling

the pattern template needed. The pattern template definition takes the interfaces to be

connected as an argument and is defined in a similar way to the definition of functions

(methods) in programming languages. A pattern template definition comprises of:

 pattern name: a unique pattern name.

 arguments: a set of interfaces to be connected. Single interface and/or arrays of

interfaces can be passed as arguments. The minimum and maximum number of

interfaces passed can be specified as arguments for arrays of interfaces.

 definition: the description of how the interfaces are to be connected (the pattern). The

syntactical notation used for defining patterns is very simple and provides support for:

- connecting interfaces: uses syntax similar to that used in the connections section

of the connector type definition (discussed in Section 6.4.5).

- defining loops: to allow for connecting arrays of interfaces. The syntax used here

is similar to the syntax used in most programming languages for creating for

loops. The point to be noted is that the arrays of interfaces start at index 1 and

not at 0 (like in most programming languages).

Below is an example that defines Client_Server pattern:

pattern templates:

{

 Client_Server (server : MethodInterface,

 clients [1…N] : MethodInterface)

 {

 for(i = 1 ; i <= N ; i++)

 connect clients[i] and server;}

 }

126

In this example, the Client_Server pattern takes as an argument one interface

server of template MethodInterface, and an array of interfaces called clients (with

[1..N] meaning at least one client interface) of template MethodInterface. The

pattern is defined as: for all N clients interfaces, create a bi-directional connection with

the server interface (see Section 6.1.5 on the use of the keywords: “connect”, “and”,

and “to” for connecting interfaces).

An example of how to invoke the Client_Server pattern template to connect a

number of component interfaces can be seen in the example in Section 6.4.6.

6.4.8 Product Configurations

A product configuration is a set of features, along with their values, representing a

particular product configuration (this is also called product feature set in Software

Product Line Engineering). Product configurations can be used to generate specific

products from the parameterised reference architecture. Below is an example how to

define each product:

 product configurations {

 Product1: {

 FeatureA = false;

 FeatureB = true;

 FeatureC {x = 3, y = t};

 }

 Product2: {…}

 // etc.

 }

127

6.4.9 Events

Events are abstractions of actions performed during the execution of the system, such

as a message transmission from one component to another. In ALI V2, events are defined

using a unique name, along with the interface templates they travel to and from. Below is

an example how to define events:

events {

 EventName1: <sourceInterfaceTemplate,

 destinationInterfaceTemplate>;

 EventName2: …

 }

It is also possible for events to travel from, and to, more than one interface template.

In this case, interface templates are listed within parentheses and separated by commas

as shown in the example below.

…

EventName3: <(sourceInterfaceTemplate1, sourceInterfaceTemplate2),

 (destinationInterfaceTemplate1, destinationationInterfaceTemplate2)>;

…

6.4.10 Conditions

Conditions are used to parameterise the system description to make it adapt to certain

environmental conditions. Every set of conditions (a scenario) can then be used to

simulate a certain environmental situation (e.g. failure, market changes, etc.). These can

be used to test the way the architecture definition can adapt to different operational

changes (design principle P2). Conditions are defined with unique name along with a

simple textual description. Below is an example definition of three different conditions.

conditions {

 Condition1: “definition”;

 Condition2: “definition”;

 Condition3: “definition”;}

128

6.4.11 Scenarios

Scenarios are basically collections of different conditions, along with their values,

which together can simulate a certain operational scenario. A scenario description

includes a textual description (what the scenario is) along with a list of conditions affected

and their values. Below is an example scenario description.

scenarios {

 Scenario1: {

 Description: “textual description”;

 Parameterisation: {

 Condition1 = false;

 Condition2 = false;

 Condition3 = true;

 }

 Scenario2: {…}

 // etc.

 }

In the above example, scenario Scenario1 encapsulates three conditions (defined in

the previous section) in which two are false and one is false. Scenarios can be very useful

when evaluating different architectural configurations.

6.4.12 Transaction Domains

Transaction domains represent the behavioural aspects of the system. Each transaction

domain comprises a set of components and connectors within a system that work together

to achieve some system functionalities (e.g. portfolio evaluation). Within a transaction

domain, various transactions are defined, each describing a particular system transaction

(e.g. valuation processing, MTM valuation, etc., as demonstrated in Chapter 7).

Transactions are defined in terms of event flows.

129

The transaction domain definition is divided into two main sections, contents which

lists the components and connectors included in a transaction domain; and transactions

which describes the transactions encompassed in the transaction domain. Each transaction

is defined in terms of the events that flow to achieve the transaction, and the description

of the event flow (interactions). Table 8 below summarises the textual notation used in

defining interactions within a transaction.

Notation Meaning

Component.Interface Component name with interface name

* Component External component (or system)

Event Event name

Event/Connector Event traveling on Connector

TRANSACTION Transaction name

sends

receives

from

to

Keywords describing the path of an event

if/else Alternation (OR Fork)

| Alternation (OR Join)

, Concurrency (AND)

[…] Multiple simultaneous interactions (concurrency)

(…) Grouping of events

; Interaction termination

Table 8: ALI V2 transaction domain textual notation

130

Below is an example of a transaction domain that represents the practical

implementation of all the notations listed in Table 8:

transaction domain TransactionDomain1

 {

 meta: MetaType2 {}

 contents:

 {

 /*components and connectors involved in this transaction

 domain*/

 components: {Comp1, Comp2, Comp3, Comp4, Comp5, Comp6,

 *Comp7, Comp8}

 connectors: {ConnA, ConnB, ConnC, ConnD, ConnE, ConnF}

 }

 transactions:

 {

 TRANSACTIONNAME1:

 {

 events: {E1, E2, E3, E8}

 interactions:

 {

 Comp1.A sends E1/ConnA to Comp2.C;

 Comp2.C sends E8/ConnA to Comp1.A;

 [Comp1.C sends E2, Comp1.D sends E3/ConnC];

 }

 }

 TRANSACTIONNAME2:

 {

 events: {E3, E5, E6, E9, E10, E11, E12}

 interactions:

 {

 Comp4.B receives E3/ConnC;

 if (supported(featureA)&& (Condition1))

 Comp4.C sends E6 to *Comp7;

 else

 {Comp4.A sends E5/ConnB to Comp5.C;

 Comp5.B sends E11 to Comp8.D;}

 [Comp6.C receives E9/ConnE from *Comp7 |

 Comp6.A receives E10 from Comp8.B];

 Comp6.D sends E12/ConnD;

 }

131

 }

 TRANSACTIONNAME3:

 {

 events: {E2, E4, E5, E7, E8, E10, E11}

 interactions:

 {

 Comp3.A receives E2;

 [Comp3.D sends E4/ConnD to Comp5.B,

 //via same interface of components

 Comp3.B sends [E5, E11] to Comp6.C,

 Comp3.D sends E3/ConnC to TRANSACTIONNAME2,

 Comp3.A sends E7 to Comp4.B];

 Comp4.A sends E10/ConnD to Comp2.D;

 [Comp8.C sends E7/ConnF,

 TRANSACTIONNAME2 sends E12/ConnD,

 Comp6.C sends E8];

 }

 }

 TRANSACTIONNAME:

 {

 events: {E2, E3, E7, E8, E12}

 interactions:

 {

 [TRANSACTIONNAME1 sends E2 to TRANSACTIONAME3,

 TRANSACTIONNAME1 sends E3/ConnC to

 TRANSACTIONAME2];

 [(Comp1.A receives E7/ConnF from TRANSACTIONNAME3,

 Comp1.C receives E8 from TRANSACTIONNAME3,

 Comp1.B receives E12/ConnD from

 TRANSACTIONNAME3),

 Comp1.B receives E12/ConnD from TRANSACTIONNAME2];

 }// end of interaction

 } // end of transaction

 } // end of transactions section

 } //end of transaction domain

Given the way interaction domains represent event flows, graphical representations

(discussed in Section 6.5) tend to work much better in expressing complex flows.

132

6.4.13 Viewpoints

Viewpoints in ALI V2 represent collections of interaction domains that relate to a

particular stakeholder. A viewpoint definition includes: a unique name, description and a

list of related transaction domains. Below is an example how viewpoint can be defined:

Viewpoints {

 Viewpoint1: {

 Description: “textual description”;

 Transaction Domain: {TransactionDomain1,

 TransactionDomain3;}

 }

 Viewpoint2: {…}

 // etc.

 }

6.4.14 System

Finally, the system notation describes the overall product (or product line) architecture.

It uses very similar notation to the component description section with some minor

changes, such as the usage of asterisk “*” to link to external (to the system) components

or systems. Additionally, a system description includes a listing of viewpoints. Below is

an example system description.

system {

 components {

 comp1<SomeFeature, true, false>,

 comp2<SomeFeature, true, true>: ComponentType1;

 comp3<SomeFeature, SomeFeature, true, true>: ComponentType2;

 if (supported(Feature_D))

 comp4<true, true>: ComponentType3;

 else

 comp4<false, true>: ComponentType3;

 //etc.

 }

 connectors {

 connA<false, SomeFeature, true>: ConnectorType1;

133

 // etc.

 }

 arrangement {

 … //similar to component type arrangement

 bind comp1.interface with *externalsystem;

 }

 viewpoints {

 Viewpoint1, Viewpoint2;

 }

} // end of system

6.5 Graphical Constructs and Notations

Many of the existing ADLs such as AADL (Feiler, Gluch and Hudak, 2006), ACME

(Garlan, Monroe and Wile, 1997), Aesop (Garlan, Allen and Ockerbloom, 1994),

MontiArcHV (Haber et al., 2011), Darwin (Magee and Kramer, 1996), Koala (Ommering

et al., 2000), UniCon (Shaw et al., 1995) and π-ADL (Oquendo, 2004), provide both

textual and graphical notations, though none provide a behavioural graphical notation.

Yet, in some cases, the need for such graphical behavioural representation was argued,

e.g. using Use Case Maps (UCMs) with ADLARS (Bashroush et al., 2005; Brown et al.,

2006). ALI V2 provides graphical notations for structural and behavioural aspects of the

systems. The following sections discuss ALI V2’s graphical notation.

6.5.1 Structural Notation

To maintain the theme of flexibility, ALI V2 provides a flexible visual notation for its

structural description. Table 9 illustrates the meaning of the symbols used to specify

architectural structures in ALI V2. There is also the flexibility to extend the notation used

to represent components and introduce other graphical objects (e.g. a cylinder to represent

134

a database component) that architects identify with, and already use, in certain application

domains.

Symbol Name (Meaning)

Component

External Component (or

System)

……

Interfaces (different

shapes represent different

interface templates)

Connectors representing

different interface

templates

Direct Binding (no

connector)

Transaction

Transaction Domain

Table 9: ALI V2 graphical structural notation

Figure 17 represents the structural description of the whole system that clearly

demonstrates the transaction domain TransactionDomain1 (defined earlier in Section

6.4.12 in textual format).

135

Comp6

Comp3

Comp2

Comp4
Comp1

Comp7

ConnD

ConnE

C

A

Comp5

C

a

A

b

ConnB

C

B c
 Dd

ConnC

C
d

A b

ConnA

Comp8

C

 D
B

B

C

 D

d

a

ConnD

a

c

ConnF

B

A

 D
b

d

ConnD

ConnC

d

a

B d

Db

d

B c

Comp9

Comp10

Comp11

A

d

ConnG

B d

 D

A

C
a

c

ConnH

 D

A

C

TransactionDomain1

Figure 17: Graphical structural representation for a system

136

6.5.2 Behavioural Notation

6.5.2.1 Event Traces

In ALI V2, event traces constitute the graphical representation of transactions,

described textually in Section 6.4.12. Table 10 below provides the detailed description of

the symbols used to design event traces. Some of the symbols used are adopted from the

UML Activity diagram (Booch, Rumbaugh and Jacobson, 2005), with added notation to

represent concurrency (based on some extended concepts from Petri Nets (Murata,

1989)).

Symbol Name Meaning

START

A node that starts the interaction in an

event trace by a component that invokes

an event.

END

A node that stops the interaction of all

the transactions in an event trace.

FINAL

A node that terminates the interaction of

the transaction.

 EventName/Cr*

Event Flow

The direction of an event flow from one

component to another component,

specifying the event name and the

connector* being traversed.

AND Fork

A source component sending two or

more concurrent events to destination

components.

AND Join

A destination component receives two

or more concurrent events from source

components. This blocks until all events

are received before progressing.

137

Symbol Name Meaning

OR Fork

A source component sends one or more

events to destination components.

Selection of the destination components

can be linked to system conditions and

features.

OR Join

A destination component receives any of

the events from any one of the source

components (non-blocking) as soon as it

arrives (without waiting for all expected

events).

Component

A component within the system that

sends/receives events.

External

Component/ System

A system (or component) outside the

system that communicates with our

system.

Transaction

Transaction is a package containing a

set of interactions. It can be nested

wherever required in another

transaction.

* means optional i.e. if connection is made using connectors (see Section 6.4.6)

Table 10: ALI V2 event traces notation

The notation comparison between ALI V2 event traces, UML Activity Diagram, UCM

and Petri Nets can be found in Appendix B.

Figure 18 shows an example of the graphical behavioural representation of the

transaction domain TransactionDomain1 (this maps to the textual representation

provided in Section 6.4.12). The example demonstrates the transactions that occur in

TransactionDomain1 along with the interactions that take place in the

TRANSACTIONNAME1, TRANSACTIONNAME2 and TRANSACTIONNAME3 transactions.

138

E2

E3/ConnC

E4/ConnD

E6

E5/ConnB

E5

E10

E7/ConnF

E8

E9/ConnE

E1/ConnA

[Condition1]

[Condition2]

Comp1

Comp5

Comp5

Comp7

Comp1
Comp2

Comp3

Comp4

Comp6

Comp8
E11

Comp8
E11

E11

Comp1
E8/ConnA

Comp6

E12/ConnD

E7

E10/ConnD
Comp2Comp4

E3/ConnC TRANSACTION
NAME 2

E12/ConnD

Figure 18: Graphical behavioural representation of transaction domain TransactionDomain1

139

6.5.2.2 Component Interaction

This section provides the graphical notation used to describe the interactions of an

individual component. While event traces model the complete event flow path,

component interactions focus on modelling the interactions of a particular component

(focus on components rather than events). For this, UML Sequence diagrams (Booch,

Rumbaugh and Jacobson, 2005) are used to model component interactions. Sequence

diagrams are known to many architects and are comprehensive to model handshakes,

timing, etc.

Figure 19 shows the component interaction diagram for the component Comp1 in the

transaction domain TransactionDomain1 (defined textually in Section 6.4.12, with

interactions described in Figure 18).

The squares at the top of the sequence diagram represent component interfaces. White

squares represent the interfaces of the component being model (in this case Comp1), and

greyed squares represent external interfaces (of other components Comp1 is

communicating with).

140

A B Comp3.ACComp2.C D Comp6.C

E1/ConnA

Comp4.B
TRANSACTION

NAME2Comp8.C

E8/ConnA

par

E3/ConnC

E2

par

E7/ConnF

E8

E12/ConnD

E12/ConnD

Comp6.D

par

 Figure 19: Component Comp1 interactions in transaction domain TransactionDomain1

6.6 Semantics

In this section, the ALI V2 notation semantics (Harel and Rumpe, 2004) are discussed.

It starts by discussing the semantics of the structural notation, then the behavioural

notation. It is worth noting that proofs of correctness and completeness of the semantics

are beyond the scope of this research work.

The following notation convention is used in the subsequent two sections: i for

interface, Ct for component, Cr for connector and e for event. The name of each element

(where applicable) is indicated in the subscript. For example, iA denotes interface A.

141

6.6.1 Structural Semantics

In this section, the semantics of the structural notation, namely covering: components,

connectors and interfaces are discussed.

For simplicity, a component is a finite set of n interfaces:

 i ∈ Ct = {1iA, 2iB, …, niZ} (6.1.1)

Different combinations of interfaces in a component can occur depending on the

feature(s) supported in its specification. All possible occurrences can be defined as:

 Ct = P(i) (6.1.2)

The notation P(i) refers to the power set of the set interfaces of a component. It also

includes the null/empty set (∅) which relates 0…* relationship between the interface and

the component as explained in the conceptual model section (see Section 6.3 and Figure

16).

Similarly, a connector is a finite set of n interfaces:

 i ∈ Ct = {2iB, …, niZ | i ≥ 2} (6.1.3)

The number of interfaces in a connector must be at least two to form a connection

between two components.

The following are the naming rules:

Rule 1: The names of all the components must be unique within a system

 CtA ∩ CtB = ∅, A ≠ B (6.1.4)

142

Rule 2: The names of all the connectors must be unique within a system

 CrA ∩ CrB = ∅, A ≠ B (6.1.5)

Rule 3: The names of all the interfaces of a component must be unique

 ∀i : Ct = {∀x ∈ Ct, ∀y ∈ Ct | x ≠ y} (6.1.6)

Rule 4: The names of all the interfaces of a connector must be unique

 ∀i ∈ Cr = {∀x ∈ Cr , ∀y ∈ Cr | x ≠ y, |x| ≥ 2} (6.1.7)

6.6.2 Behavioural Semantics

In this section, the semantics of the behavioural notation of ALI V2 by translating the

notation into formal specification theory, namely CSP (Hoare, 1985) are discussed. The

main construct of the behaviour notation in ALI V2 is the process that defines the

interactions of a transaction in a transaction domain.

Using the CSP process notation, where (x:A  P(x)) [pronounced “x from A then P of

x”], it transform interaction (Itn) into:

 Itn = (e1.CrA
†
 : Cts.iA  Ctr.i B) (6.2.1)

To recall, an interaction in ALI V2 is an event flowing via connector or via direct

binding from one component to another component (see Section 6.4.6 for in-depth

description). Equation 6.2.1 describes an interaction in terms of CSP as: event (e1) via

connector (CrA) from sender component (Cts) of its interface (iA) goes to the receiver

component (Ctr) on its interface (iB). Symbol ‘†’ represents the optionality of the

connector, that is, it will be defined if event flows via a connector. Similarly, an asterisk

143

‘*’ before the sender/receiver component (Cts/Ctr) can be inserted without specifying the

interface name if it is an external component (or system), as explained in Section 6.4.12

and Section 6.5.2.1.

Interactions can occur in different combinations with other interactions. Those

combinations are: AND fork, AND join, OR fork and OR join, each combination is

explained categorically in the transaction domain (see Section 6.5.2.1).

In the rest of this section, the formal semantics for each combination using CSP are

elucidated.

AND Fork: Two or more interactions that occur concurrently. Considering different Ctr

and different interface of Cts, it is defined as:

AND_Fork = (e1.CrA : Cts.iA  Ctr1.iC) || (e2 : Cts.iB  Ctr2.iD) || …

 (6.2.2a)

Where ‘||’ is the CSP parallel operator which represents concurrent activity. Hence, it

is not necessary that AND Fork always has different receiver components (like Ctr1 and

Ctr2 as above), we could have a situation where two or more events flow to one Ctr via

the same or different interfaces as discussed in Section 6.4.12.

Considering the same Ctr, using the same interface, an AND fork can be defined as:

 AND_Fork = ((e1.CrA : Cts.iA || e2 : Cts.iB || …)  Ctr.iD) (6.2.2b)

In addition to the above expression conditions, it can be define by considering Cts,

using the same interface, as:

144

 AND_Fork = ((e1.CrA || e2 || …) : Cts.iB  Ctr.iA) (6.2.2c)

AND Join: Two or more interactions that go to the Ctr concurrently. Considering

different Cts and different interfaces of Ctr, it is defined as:

 AND_Join = ((e1.CrA: Cts1.iA  Ctr.iB) ⋀ (e 2 : Cts2.iB  Ctr.iD) ⋀ …)

  (WAIT ∑ ; Ctr) (6.2.3a)

Where ‘⋀’ is the logical AND operator, WAIT is a time-based CSP operator

(Armstrong et al., 2012), ‘∑’ is submission (union) of all the events and ‘;’ means

successfully followed by. Thus, ‘WAIT ∑ ; Ctr’ designates: Ctr will not proceed with

other interaction(s) until it receives all the events.

Considering the same interface of Ctr, an AND join can be define as:

 AND_Join = ((e1 : Cts1.iB ⋀ e2. CrC : Cts2.iA ⋀ …)  Ctr.iC)

  (WAIT ∑ ; Ctr) (6.2.3b)

Moreover, the definition for the same Cts with its different interfaces can be defined

in a similar way as above. But if we have the same Cts with its same interface and the

same interface of Ctr then it can define as:

 AND_Join = ((e1.CrA ⋀ e2 ⋀ …) : Cts.iC  Ctr.iD)  (WAIT ∑ ; Ctr)

 (6.2.3c)

145

OR Fork: Two or more interactions that occur alternatively in accordance to the

condition(s) and feature(s) supported. Considering different Ctr and different interface of

Cts, it is defined as:

 OR_Fork = (e1.CrA : Cts.iA  Ctr1.iD) □ (e2 : Cts.iB  Ctr2.iC) □ …

 (6.2.4a)

Where ‘□’ is the CSP deterministic choice operator.

If the same event flows to different Ctr depending on the condition(s) and feature(s)

supported from the same interface of Cts then it can be define as:

 OR_Fork = (e1.CrA : Cts.iA  (Ctr1.iC □ Ctr2.iB □ …))

 (6.2.4b)

Another case, when different events flow to same Ctr to its same interface depending

on the condition(s) and feature(s) supported from the same interface of Cts then it can be

define as:

 OR_Fork = ((e1.CrA □ e2 □ …) : Cts.iA  Ctr.iD) (6.2.4c)

OR Join: Two or more interactions that go to the Ctr alternatively. Unlike AND join, Ctr

will proceed with other interaction(s) after receiving the first event from any Cts without

waiting for all the events to occur. Considering different Cts and different interface of Ctr,

it is defined as:

146

 OR_Join = (e1.CrA : Cts1.iA  Ctr.iA) □ (e2 : Cts2.iA  Ctr.iC) □ …

 (6.2.5a)

Considering the same interface of Ctr, we can define it as:

 OR_Join = ((e1 : Cts1.iA □ e2.CrC : Cts2.iA □ …)  Ctr.iB) (6.2.5b)

Also, we can define the same Cts with its same interface along with the same interface

of Ctr as:

 OR_Join = ((e1.CrA □ e2 □ …) : Cts.iA  Ctr.iD) (6.2.5c)

6.7 Summary and Changes to ALI Initial Version

In this chapter, the updated version of ALI, referred to as ALI V2 in this context, was

discussed. The changes made were the result of experience gained through the SLR

(conducted in Chapter 4), and from the detailed analysis of the existing ADLs (discussed

in Chapter 3), as well as the discussions and feedback from colleagues in both industry

and academia.

The design principles guiding the creation of ALI V2 architectural description were

defined to address the limitations that exist in ADLs (stated in Chapter 3). The design

principles demonstrate the capability to manage variability by providing flexibility while

maintaining the formality to reuse the architectural elements (components, connectors,

and interfaces) along with the multiple architectural views. A high-level (abstract)

description of ALI V2 is presented as a conceptual model that states structural and

behavioural relationships of the ALI V2 concepts.

147

ALI V2 supports formal specification (and corresponding verification) of structural

and behavioural aspects of software architectures. This is a key activity in the

architectural design phase. The constructs and notations (textual and graphical both) show

how the design principles are realized in the language. More specifically, as compared to

other ADLs, ALI V2 provides behavioural graphical notations with different views in

parallel with its structural notation in the form of event traces for transaction domain and

sequence diagrams for component interaction.

Finally, the ALI V2 notation semantics by defining the structural and behavioural

aspects explicitly were presented. In structural semantics, rules set for the structural

designing of ALI V2 using mathematical set theory were defined. For behavioural

semantics, CSP notation is used to describe the behavioural system of ALI V2.

Table 11 summarised ALI V2 in comparison with the ALI initial version (described in

the previous chapter) by considering the limitations that exist in the architectural

languages (stated in Chapter 3). It clearly demonstrates the changes made in ALI V2 and

how it overcomes the limitations that restrict ADL’s uptake into industrial applications.

148

Limitation

(Keyword)
ALI Initial Version ALI V2

L1 (Variability)

Manage variable features

using “if/else” statement and

keyword

“supported/unsupported”

Manage variable features

using “if/else” statement and

keyword

“supported/unsupported”

Manage variable behavioural

conditions using “if/else”

statement

L2

(Traceability)
Via features Via features and conditions

L3

(Dependency)

Support for flexible interface

type and component type

representation

Not architecture style specific

Same with minor refinement

L4

(Restrictive

Syntax)

Flexible syntax to design

structural architectural

elements

Flexible syntax to design

structural (with enhancement)

and behavioural architectural

elements both

L5

(Reusability)

Limited to interface type

definition (called as interface

template in ALI V2)

Extended to the connector type

and component type

definitions via features

description in them

L6

(Information

Overload)

Textual architectural view-

structural description only

Textual and graphical

architectural views that

supports different abstraction

level (depends on user

requirement and/or system

complexity)

149

Limitation

(Keyword)
ALI Initial Version ALI V2

L7

(Behavioural)

None

Explicit constructs (textual):

events, conditions, scenarios,

transaction domain, and

viewpoint

Explicit constructs (graphical):

event traces and component

interactions via sequence

diagram

Table 11: ALI initial version Vs ALI V2

A complete BNF for the textual architectural description of ALI V2 can be found in

Appendix C.

To gain experience with ALI V2 and fine tune the language, the different case studies

was needed to demonstrate the broader scope of the language and to identify the

limitations in it. The next part of this thesis presents the two case studies (belonging to

the different application domains) that use ALI V2 to design an Asset Management

System (AMS), and the Wheel Brake System (WBS).

150

Part IV

CASE STUDIES

151

7
Chapter Seven

Case Study: Asset Management System

 “Knowing is not enough; we must apply. Being willing is not enough; we must do.”

 -- Leonardo da Vinci

7.1 Introduction

In the previous chapter, the new version of ALI (referred to as ALI V2) was defined;

this version was designed by taking into account the current limitations which restrict the

uptake of ADLs (particularly those developed within academia) in practical industrial

systems. Although the framework of the language has been defined, no experience has

been gained regarding its application to real problems. In light of this, there is a need to

assess the scope of the language using case studies. This approach will further clarify any

misconceptions that may be created while learning the concepts of ALI V2 notation.

Therefore, in this chapter, a case study is presented where ALI V2 is applied to an

Asset Management System (AMS). The AMS is a generic information system that

manages financial assets in an investment bank. Essentially, the AMS is used by a fund

management team to support making, and executing, investment decisions for a large-

scale investment portfolio. This case study is chosen to demonstrate the suitability of ALI

V2 ADL to this problem, and to highlight its importance in the Information System (IS)

domain.

The next section details the AMS case study. Section 7.3 presents an architectural

description of the AMS using concepts from ALI V2. In Section 7.4 the AMS architecture

is evaluated in relation with how it overcomes the limitations in current ADLs (stated in

Chapter 2) and how the design principles of ALI V2 ADL have been applied (described

152

in Chapter 6). Finally, the results obtained from the AMS architecture and are discussed

and evaluated in Section 7.5.

7.2 Description of the AMS Case Study

An Asset Management System (AMS) is a financial asset management system used

by a fund manager, or fund management team, to support making, and executing,

investment decisions for a multi-scale investment portfolio. Essentially, portfolio

investments are designed for investors who are looking for the potential to earn returns

greater than cash deposits, either by taking a regular income or leaving their money to

accumulate over the medium-to-long term. Of course, the investments made by investors

can either rise or fall in value, over time.

From a financial perspective, a portfolio is defined as a collection of investments held

by an investment company, financial institution or individual. It can also be referred to as

mutual funding of financial assets. This case study demonstrates the portfolio managed

by an investment bank.

Investment decisions made, and executed, to manage portfolios vary between banks

and even on the basis of which country (or continent) a particular bank is situated in. In

this case study, essential portfolio operations are demonstrated that regularly take place

in all types of AMS and are also commonly performed by leading investment banks in

the world. Further, the AMS description provided in this section is concluded with a

detailed discussion with finance employees of investment banks: Barclays (UK), UBS

(UK) and HSBC (Middle East).

The primary aim of the system is to allow a fund manager (or fund management team)

to manage a portfolio of holdings in financial instruments (tradeable assets). There are

https://en.wikipedia.org/wiki/Investment#In_finance

153

four different types of financial instruments: 1) Equities that correspond to shares, 2)

Commodities that primarily correspond to metals (such as copper, gold, and so on),

agriculture, oil, gas and energy, 3) Interest Rate Products that correspond to saving bonds,

and 4) Currency that corresponds to Foreign Exchange (FX) rates. Along with these

instruments, a derivative (security) value is determined by analysing the fluctuations and

potential risks underlying in these financial instruments.

The AMS architectural description for equities is described in the following section,

where the discussion focussed primarily on shares. A similar approach can be adopted for

the design of other financial instruments.

The system allows the user (e.g. the fund manager or management team) to view the

content of their equity portfolios, trading and market data (in our case, share trades and

prices) in order to make investment decisions. It facilitates the automatic calculation of

suggested changes to portfolios on-demand or on a regular schedule. This functionality is

performed on a daily basis to calculate the portfolio value at the end of each working day,

after the closure of stock market. In an investment bank, portfolio valuation can be

performed using two methods, depending on the user’s request. The first method is mark

to market (MTM), where share prices are matched with the current stock market price

and individual company share price (companies which are not listed in the stock market).

The second method is applied on monthly/quarterly/bi-annual basis by checking the

company’s financial statement, depending on the company’s fiscal period.

Another key function of an AMS is to rebalance the portfolio. Equity portfolio

rebalancing can be performed in two ways: 1) Further investment in the form of cash. For

example: if a portfolio is assigned £100, 80% of which is allocated to shares, and the fund

manager decides, instead, to allocate around 50% for shares but does not want to sell

shares. To achieve this, a new investor can be involved, who brings £50 cash into the

154

portfolio, which now contains £150 of which around 50% (i.e. £80 out of £150) is

allocated to shares, 2) Making amendments to the existing financial equity instruments.

For example: if a portfolio is 50% BP and 50% EDF in its equity allocation, and BP and

EDF consists of 2 shares each, and the value for each is £50, the total value of the shares

will be £200. Now suppose the BP share price doubles and EDFs drops by half, now the

BP share value is £200 and EDF’s is £50, so the total share value becomes £250. As a

result, the distribution of shares is now 80% BP and 20% EDF. Now it depends on the

fund manager’s strategy to change the equity balance back to 50:50 by buying and/or

selling shares, or perhaps maintain the 80:20 split.

 The decision for rebalancing depends on the fund manager’s pre-defined strategy and

also by considering the current market conditions and any other environmental

conditions, such as political or geographical factors.

7.3 AMS Architecture Representation Using ALI V2

This section presents the architectural description of the AMS case study explained in

the previous section, using the ALI V2 notation that has been defined in Chapter 6.

The AMS architectural description is composed of the following architectural

elements:

7.3.1 AMS Meta Types

The AMS architectural description is comprised of nine different meta types, which

provide more information about its architectural elements. In particular, these elements

require meta information, which have a complex structural (such as AMS component

types, discussed in Section 7.3.6) and behavioural design (such as AMS transaction

domain discussed in Section 7.3.11).

155

 meta type Meta_AMSFeature {

 tag creation_date: date;

 tag standardized: boolean;

 }

 meta type Meta_EquityServer {

 tag creatorID, intention*: text;

 tag cost, version: number;

 tag last_updated: date;

 }

 Meta_AMSFeature described above can be attached to any AMS feature description,

if required. Meta_EquityServer can be attached to server component types, or to any

other architectural element which requires similar information to be described in its

definition. Similarly, seven other meta types are defined in Appendix D1.

7.3.2 AMS Features

In the AMS, the equity portfolio requirements are determined by nine features, of

which, some are parameterised and some are non-parameterised. Two of the features

defined below take part in valuing and rebalancing the equity portfolio.

features {

 Equity: {

 alternative names: {

 Designer.FI1, Developer.Ey, Evaluator.F11;

 }

 parameters: {

 {Equity_Type = text;}

 }

 }

 Equity_Share: {

 alternative names: {

 Designer.IE1, Developer.ES, Evaluator.F12;

 }

156

 parameters: {

 //no parameters

 }

 }

 …

} // end of features

 The remaining seven features are defined in Appendix D2 some of which are specific

to equity portfolio valuation (such as MarkToMarket_Method) and rebalancing (such as

Cash_Investment).

7.3.3 AMS Interface Templates

The following extract is the syntax definition of the AMS interface template

MethodInterface in accordance to which AMS interface types are created (as described

in the next section):

interface template MethodInterface {

 provider syntax definition: {

 "Provider"":"

 "{"

 {"function" <FUNCTION_NAME>

 "{"

 "impLanguage" ":" <LANGUAGE_NAME> ";"

 "invocation" ":" <INVOCATION> ";"

 "paramterlist" ":" "("[<PARAMETER_TYPE> {","

 <PARAMETER_TYPE}] ")" ";"

 "return_type" ":" <RETURN_TYPE> ";"

 "}" }

 "}"

 }

157

 consumer syntax definition: {

 "Consumer"":"

 "{"

 “Call” “:” <INVOCATION> “(“[<PARAMETER_TYPE> {","

 <PARAMETER_TYPE}]”)” “;”

 "}"

 }

 constraints: {

 should match: {INVOCATION_NAME = .INVOCATION_NAME,

 PARAMETER_TYPE}

 binding: {

 “multiple”: true;

 “data_size”: [50KB, 500MB];

 “max_connections”: 20;

 }

 factory: true;

 persistent: false;

 }

}

7.3.4 AMS Interface Types

In AMS architecture, several interface types are involved that perform different

functions required to value and rebalance the equity portfolio.

Two interface types (ArithmeticOperation and ValueOperation) are described

below that conform to the interface template MethodInterface (defined in the previous

section) and are used to calculate and rebalance the equity portfolio.

interface type {

 ArithmeticOperation: MethodInterface {

 Provider: {

 function Addition

 {

 impLanguage: Java;

 invocation: add;

 parameterlist: (int);

 return_type: void;

 }

158

 function Subtraction

 {

 impLanguage: Java;

 invocation: subtract;

 parameterlist: (int);

 return_type: void;

 }

 function Multiplication

 {

 impLanguage: Java;

 invocation: multiply;

 parameterlist: (int);

 return_type: void;

 }

 }

 Consumer: {

 Call: getValue (long_int);

 }

 }

 ValueOperation: MethodInterface {

 Provider: {

 function GetValue

 {

 impLanguage: Java;

 invocation: getValue;

 parameterlist: (void);

 return_type: long_int;

 }

 }

 Consumer: {//nothing consumed}

 }

 …

} // end of interface types

 The other seven interface types of the AMS architecture that conform to the interface

template MethodInterface are defined in Appendix D3.

159

7.3.5 AMS Connector Types

AMS architecture is composed of ten different connector types that are used to create

connections between components, in order to value and rebalance the equity portfolio.

The instances of these connector types were used for designing the AMS component types

(defined in the next section) internal configuration (sub-system section). They have also

been used to design the overall AMS architecture, as demonstrated in Section 7.3.13.

For example, the connector type Calculator_Equity, described below, is used as an

instance in the component type Portfolio_EquityValuator (see Appendix D5) and in

the AMS overall architectural description (see Appendix D10). It is used in the calculation

of the equity Portfolio.

connector type Calculator_Equity

 {

 features: {

 MTM_Price_Method: “Share prices matched with market price”,

 Company_Price_Method: “Unlisted share price of an individual

 company”,

 Weighted_Average_Method: “Portfolio Valuation is done on the

 basis of average share price”;

 }

 interfaces: {

 valueport1: ValueOperation;

 valueport2: ArithmeticOperation;

 valueport3: AverageOperation;

 valueport4: NumericOperation;

 }

 layout: {

 connect valueport4 and valueport1;

 if (supported(MTM_Price_Method || Company_Price_Method))

 {connect valueport1 to valueport2;

 connect valueport2 to valueport4;}

 else if (supported(Weighted_Average_Method)

 connect valueport3 to valueport4;

 }

 }

160

The other nine connector types that are used in the designing of the AMS architecture

are detailed in Appendix D4.

7.3.6 AMS Component Types

The AMS architecture is composed of the following eleven component types:

 PortfolioAMS_GUI provides the asset managers using the system with the ability

to view, analyse and value portfolios, to request (and monitor the progress of) long

running system operations (such as order generation) and to check, enter, dispatch

and monitor orders that go for execution in trading systems.

 Portfolio_EquityUIServer provides data access facilities that the UI requires

(accessing data from the internal database) and dispatches requests for orders or

for long running work (such as analysis processing) to be carried out by other

parts of the system.

 Portfolio_EquityValuator calculates a portfolio value based on the valuation

method requested by the asset manager. It supports three methods of valuation: 1)

By checking the current price of the shares from the stock exchange via internal

market data, 2) By checking the current price of the shares of those companies

which are not listed in stock exchange via their financial statements, 3) By

calculating the average value of the existing shares. Method 1 and Method 3 are

mutually exclusive while Method 2 occurs monthly/quarterly/ bi-annually,

depending on criteria set by the asset manager.

 EquityCalculator performs the mathematical operation based on the value and

the method or message it received and then outputs the calculated portfolio value.

It also calculates the derivative value of equities, if requested.

161

 Portfolio_Processor executes long running processing items (“jobs”) and

generates an order list. The processor can be configured to run particular jobs on

temporal schedules and can also be requested to execute particular jobs on

demand.

 AMS_EquityDb stores the portfolio, analytical, market and (system) operational

data that the system requires to operate.

 PortfolioDb stores the different sets of equity portfolio.

 Order_Generator accepts incoming orders to buy and sell shares, forwards these

requests to a trading system (both internal and external) for execution and then

receives the execution reports which indicate order execution and broadcasts these

to other relevant parts of the system.

 DerivativeValuator performs the derivative operations (if requested) on the

existing shares for its security, based on the derivation strategy (options, futures

or swaps), as requested.

 Internal_EquityData retrieves the various forms of market data from different

external stock market systems and provides updated data for the portfolio

valuation and, finally, loads the data into the database AMS_EquityDb.

 Internal_EquityTrade provides information about a request for buying and/or

selling of shares that has been made internally by fund management teams within

the organisation. Further, it allows internal trading as well.

In order to illustrate the design notations (both textual and graphical) of the AMS

component types, a component type Internal_EquityData is described in this section.

The other ten AMS component types are described in Appendix D5.

162

MTM

PS

Internal_EquityData

VR

SCompany WAV

MV UD

AV

Figure 20: AMS component type Internal_EquityData

Figure 20 demonstrates the graphical structural notation of the component type

Internal_EquityData. It consists of five interfaces that conform to two different

interface templates. The colour conventions represent the dependencies of the interfaces

with the features. For example, blue corresponds to the WAV feature and its dependent

interface is AverageValue (AV) that conforms to the interface template

MethodInterface. Black represents a mandatory interface.

The same colour conventions are used for the components and connectors that are

described in the component type definition. For example, the component type

AMS_EquityDb is defined in Appendix D5. It is important to clarify here that the colour

convention has not been applied to the interfaces of the components and connectors that

are used as an instance in the component type definition because their specification has

already been defined in their own type definition.

Table 12 provides the list of all the acronyms that have been used to define the

interfaces of the AMS component types graphically.

163

Acronym Term Acronym Term

AM AverageMessage OA OrderAccess

AR AverageRequest OD OrderData

AV AverageValue OM OrderMessage

CD CurrentData OV OperationalValue

CM CalculationMessage PS PriceStatus

CR CalculationRequest SR ServiceRequest

CV CalculationValue TD TradeData

DA DataAccess TM TradeMessage

DR DerivativeRequest UD UpdatedData

DV DerivativeValue UM UpdationMessage

IV InvestmentValue UR UserRequest

MV MarketValue US UpdationStatus

NM NotificationMessage VR ValuationRequest

NV NumericalValue

Table 12: List of acronyms for AMS component types interfaces

Table 13 provides the graphical notation of the AMS interface templates that the

interfaces conform to.

Symbol Name

MethodInterface

WSDL

Table 13: AMS interface templates notations

Below is the textual notation for the component type Internal_EquityData:

component type Internal_EquityData

 {

 meta: Meta_ShareValueData {

 stock_market: “LSE, NYSE”;

 intention: “To have updated share price in accordance to

 market rate”;

 price_synchronised: 29-02-2016;

 }

 features: {

 MTM: “Share prices matched with market price”,

 SCompany: “Unlisted share price of an individual company”,

 WAV: “Portfolio Valuation is done on the basis of average

164

 share price;

 }

 interfaces: {

 definition: {

 //no need to define any interface/s

 }

 implements:{

 // MethodInterface interface template

 UpdatedData: DatabaseUpdation;

 if (supported(MTM || SCompany || WAV)) {

 //WSDL interface template

 ValuationRequest: PortfolioMessenger;

 PriceStatus: ValueData;}

 if (supported(MTM))

 MarketValue: ValueOperation;

 if (supported(WAV))

 AverageValue: ValueOperation;

 }

 } //end of interfaces

 sub-system: {

 components {}

 connectors {}

 arrangement {}

 } // end of sub-system

 } // end of component type

Furthermore, in terms of the graphical representation, Table 14 provides the list of all

the acronyms that have been used to define the interfaces of the connectors. These

connectors are used to connect the components, if they exist, in the component type

definition.

165

Acronym Term

m1 messageport1

m2 messageport2

m3 messageport3

m4 messageport4

r1 requestport1

r2 requestport2

r3 requestport3

r4 requestport4

v1 valueport1

v2 valueport2

v3 valueport3

v4 valueport4

Table 14: List of acronyms for AMS connector interfaces

For other AMS component types with different architectural configurations, such as

those without variable features/interfaces (e.g. PortfolioAMS_GUI) and those with a

detailed sub-system description (e.g. Portfolio_EquityValuator), please refer to

Appendix D5.

7.3.7 AMS Product Configurations

As discussed in Section 7.2, AMS manages portfolios of different financial

instruments, where each instrument may have different specifications (depending on user

requirements) that together form a product. In other words, the AMS is a product-line

architecture.

In particular, a financial instrument (equity, in this case), is comprises of four products

where two correspond to portfolio valuation requirements (one described below), one

corresponds to a portfolio rebalancing requirement, and one for its derivative

requirement.

166

product configurations {

 Equity_Share_ExchangeTraded: {

 Equity {Equity_Type = (long, short)};

 Equity_Share = true;

 MarkToMarket_Method = true;

 Share_Company_Method = false;

 }

 …

 } // end of product configurations

For the other three products related to equities, please refer to Appendix D6.

7.3.8 AMS Events

From the behavioural architectural description perspectives, the AMS is comprised of

the twenty-six events that occur in order to value and rebalance the equity portfolio.

Below is a snippet of the events that occur while calculating the equity portfolio value:

events {

 ValuationRequest: <WSDL, WSDL>;

 RequestValuationDetails: <MethodInterface, MethodInterface>;

 SendValuationDetails: <MethodInterface, MethodInterface>;

 RequestPrice: <WSDL, WSDL>;

 CurrentStatus: <WSDL, WSDL>;

 RequestPriceList: <WSDL, WSDL>;

 …

 } // end of events

 An event in the AMS architecture also conforms to more than one interface template

(as discussed in Chapter 6) such as Inform and PlaceOrder (see Appendix D7). All the

events that occur during the valuation and the rebalancing of the equity portfolio can be

found in Appendix D7.

167

7.3.9 AMS Conditions

Conditions demonstrate the various behavioural descriptions of an AMS under which

an equity portfolio value is calculated and its rebalancing is done, as follows:

conditions {

 PriceUnchanged: “No change in share price”;

 PriceChanged: “Change in share price”;

 ShareTrade: “Buying/Selling of shares”;

 Exchange_Traded: “Shares listed in stock exchange”;

 Illiquid: “Shares not listed in stock exchange”;

 Further_Investment: “Investing more amount in Portfolio”;

 Financial_Instr_Equity: “Dealing with equity financial

 instrument”;

 OrderForwarded: “Order request has forwarded to external trading

 system”;

 OrderFilled: “Order request has been filled by internal trading

 system”;

 } // end of conditions

In the above definition, the first five are the possible conditions on which the equity

portfolio is valuated daily. While the remaining four are the possible conditions relevant

to rebalance the equity portfolio as demonstrated in Appendix D9.2.

168

7.3.10 AMS Scenarios

The AMS architecture behavioural description encapsulates eight different scenarios

to revalue and rebalance the equity portfolio.

Two scenarios related to the equity portfolio revaluation are described below:

scenarios {

 P.RevaluatingPC: {

Description: “Revaluating portfolio due to change in share

 price with no trading”;

Parameterisation: {

 PriceChanged = true;

 PriceUnchanged = false;

 ShareTrade = false;

 }

 }

 P.RevaluatingPC.ST_ET: {

Description: “Revaluating portfolio due to change in share

 price and exchange trading both”;

Parameterisation: {

 PriceChanged = true;

 PriceUnchanged = false;

 ShareTrade = true;

 Exchange_Traded = true;

 Illiquid = false;

 }

 }

…

 } // end of scenarios

The remaining three scenarios related to the equity portfolio revaluation and the other

three related to equity portfolio rebalancing are described in Appendix D8.

169

7.3.11 AMS Transaction Domains

The AMS architecture is comprised of two transaction domains that reflect the

functionalities of the AMS case study explained in Section 7.2. The transaction domains

are:

 PortfolioValuation values an equity portfolio on daily basis, which is done by

MTM and/or retrieving an individual company’s share price when it is not stock

exchange listed.

 PortfolioRebalance rebalances the equity portfolio (if needed) via further

investment or trading of shares.

The textual architectural description of the transaction domain PortfolioValuation

is:

transaction domain PortfolioValuation

 {

 meta: Meta_PortfolioDomain

 {

 purpose: “To calculate portfolio value”;

 compatibility: “financial instrument –equity”;

 occurrence: “Once at the end of every working day”;

 }

 contents:

 {

 /*provides the list of components and connectors involved in

 this transaction domain*/

 components: {Portfolio_GUI, UI_Server, EquityDb,

 Job_Processor, Value_Processor,

 Market_Share_Data, Equity_Market_Data,

 *Stock_Market,*Company_Financial_Account,

 UI_Price_Server, Portfolio_Value_Calculator,

 *P/L_System}

 connectors: {HTTP_GUI, HTTP_Status, HTTP_Processor,

 HTTP_ExMRate, HTTP_ExCRate, HTTP_CRate,

 HTTP_Price, HTTP_External, Cal_Processor,

 DB_VProcessor}

170

 }

 transactions:

 {

 VALUATIONREQUEST: {

 events: {ValuationRequest, RequestValuationDetails,

 SendValuationDetails, Inform, RequestPriceList,

 RequestPrice}

 interactions: {

 Portfolio_GUI.ServiceRequest sends ValuationRequest/HTTP_GUI

 to UI_Server.ServiceRequest;

 UI_Server.NotificationMessage sends

 ValuationRequest/HTTP_Processor to

 Job_Processor.NotificationMessage;

 Job_Processor.DataAccess sends

 RequestValuationDetails/DB_VProcessor to

 EquityDb.DataAccess;

 EquityDb.DataAccess sends SendValuationDetails/DB_VProcessor

 to Value_Processor.DataAccess;

 if (supported(Equity_Share)){

 if (PriceUnchanged){

 Value_Processor.NotificationMessage sends

 Inform/HTTP_Processor;

 else {

 [Value_Processor.CalculationMessage sends

 RequestPriceList/HTTP_Processor |

 Value_Processor.PriceStatus sends

 RequestPrice/HTTP_ExCRate];}

 }

 }

 }

 VALUATIONUPDATE: {

 events: {CurrentStatus, Inform}

 interactions: {

 UI_Server.NotificationMessage receives Inform/HTTP_Processor;

 UI_Server.UpdationStatus sends CurrentStatus/HTTP_Status to

 Portfolio_GUI.UpdationStatus;

}

 }

171

 MTMVALUATION: {

 events: {RequestPriceList, RequestPrice, CurrentPrice}

 interactions: {

 Market_Share_Data.CalculationRequest receives

 RequestPriceList/HTTP_Processor;

 Market_Share_Data.MarketValue sends RequestPrice/HTTP_ExMRate

 to *Stock_Market;

 *Stock_Market sends CurrentPrice/HTTP_ExMRate;

}

 }

 UNLISTEDVALUATION: {

 events: {RequestPrice, CurrentPrice}

 interactions: {

 *Company_Financial_Account receives

 RequestPrice/HTTP_ExCRate;

 *Company_Financial_Account sends CurrentPrice/HTTP_ExCRate to

 UI_Price_Server.PriceStatus;

 UI_Price_Server.PriceStatus sends CurrentPrice/HTTP_CRate;

}

 }

 REVALUATION: {

 events: {CurrentPrice, UpdatedPriceList, SendValuation,

 UpdateValue, Notify, Inform, CurrentStatus}

 interactions: {

 [Equity_Market_Data.PriceStatus receives

 CurrentPrice/HTTP_ExMRate |

 Equity_Market_Data.PriceStatus receives

 CurrentPrice/HTTP_CRate];

 Equity_Market_Data.PriceStatus sends

 UpdatedPriceList/HTTP_Price to

 Portfolio_Value_Calculator.PriceStatus;

 Portfolio_Value_Calculator.NumericalValue sends

 SendValuation/Cal_Processor to Value_Processor.OperatedValue;

 [Value_Processor.DataAccess sends UpdateValue/DB_VProcessor

 to EquityDb.DataAccess,

 Value_Processor.NotificationMessage sends

 Notify/HTTP_External to *P/L_System,

 Value_Processor.NotificationMessage sends

 Inform/HTTP_Processor to UI_Server.NotificationMessage];

 EquityDb.DataAccess sends Notify/DB_VProcessor to

 Job_Processor.DataAccess;

 UI_Server.UpdationStatus sends CurrentStatus/HTTP_Status to

172

 Portfolio_GUI.UpdationStatus;

}

 }

 VALUATIONPROCESS: {

 events: {Inform, RequestPriceList, RequestPrice, CurrentPrice}

 interactions: {

 if (supported(Equity_Share)) {

 if (PriceUnchanged) {

 VALUATIONUPDATE receives Inform/ODBC_Processor from

 VALUATIONREQUEST;

 else {

 if (supported(MarkToMarket_Method)&& (Exchange_Traded))

 MTMVALUATION receives RequestPriceList /HTTP_Processor

 from VALUATIONREQUEST;

 else

 UNLISTEDVALUATION receives RequestPrice/HTTP_ExCRate

 From VALUATIONREQUEST;}

 }

 }

 [REVALUATION receives CurrentPrice/HTTP_ExMRate from

 MTMVALUATION | REVALUATION receives CurrentPrice/HTTP_CRate

 from UNLISTEDVALUATION];

 } //end of interaction

 } //end of transaction

 } //end of transactions section

 } //end of transaction domain

Figure 21 and Figure 22 demonstrate the graphical behavioural (in the form of event

traces) and structural notations of the transaction domain PortfolioValuation,

respectively, which is described textually above.

The acronyms that have been used to demonstrate the component and connector

interfaces in Figure 22 are defined in Table 12 and Table 14. Structural notation for the

interfaces to which interface template conforms to are defined in Table 13.

173

SendValuation/
HTTP_Processor

Job
Processor

Equity Market
Data

UpdatedPriceList/
HTTP_Price

Portfolio Value
Calculator

UI Server

CurrentStatus/
HTTP_Status Portfolio

GUI

Inform/
HTTP_Processor

Notify/
DB_VProcessor Job

Processor

UpdateValue/
DB_VProcessor EquityDb

Notify/
HTTP_External

P/L System

ValuationRequest/
HTTP_Processor

ValuationRequest/
HTTP_GUI

Portfolio
GUI

UI Server
Job

Processor
EquityDb

Inform/
HTTP_Processor

RequestValuationDetails/
DB_VProcessor

SendValuationDetails/
DB_VProcessor Job

Processor

UI Server

CurrentStatus/
HTTP_Status Portfolio

GUI

CurrentPrice/
HTTP_ExMRate

CurrentPrice/
HTTP_ExCRate

RequestPrice/
HTTP_ExMRate

Stock
Market

 Market Share
Data

RequestPriceList/
HTTP_Processor

RequestPrice/
HTTP_ExCRate

Company Financial
Account

UI Price
Server

CurrentPrice/
HTTP_CRate

Figure 21: Graphical behavioural representation of transaction domain PortfolioValuation

174

EquityDb

Portfolio GUI UI Server

Job Processor

P/L System

Company Financial

Account

Value Processor

Stock Market

Market Share Data
Portfolio Value

Calculator

Equity Market Data

UI Price Server

SR SR

PS

NM

US US

HTTP_GUI
r2r1

m1HTTP_Processor

NM
m2

DB_VProcessorDA DAd1 d2

DAd2
DB_VProcessor

d1

NM

HTTP_Processor

m1

HTTP_Status

r3r4

PS

CM
HTTP_Processor

m1 CRm2

HTTP_ExMRate

v2

v1

HTTP_ExMRate

PS

v2

v1

HTTP_ExCRate

v2

v1

v2

v1

HTTP_CRate

HTTP_ExCRate

NV

PS
v1

HTTP_Price

OV
Cal_Processor

v4 v1

m2

m2

HTTP_External

MV
v1

Figure 22: Graphical structural representation of transaction domain PortfolioValuation

175

The interactions of component Portfolio_GUI within the transaction domain

PortfolioValuation is demonstrated in the Figure 23.

UI Server. SRSR

ValuationRequest/
HTTP_GUI

USUI Server. US

CurrentStatus/
HTTP_Status

CurrentStatus/
HTTP_Status

alt

 [ShareTrade || PriceChanged]

 [PriceUnchanged]

Figure 23: AMS component Portfolio_GUI interactions in transaction domain PortfolioValuation

The remaining component interactions that are involved in the transaction domain

PortfolioValuation can be found in Appendix D9.1. Also, please refer to Appendix

D9.2 for the transaction domain PortfolioRebalance architectural description.

The interface acronyms that have been used in Figure 23 and in the rest of the

component interactions (see Appendix D9) are defined in Table 12.

176

7.3.12 AMS Viewpoint

In accordance with the AMS description discussed in Section 7.2, its architecture

consist of the following viewpoint:

Viewpoints {

 PortfolioInvestment: {

 Description: “Investment made into the Portfolio”;

 Transaction Domain: {PortfolioValuation,

 PortfolioRebalance,

 PortfolioStrategy};

 }

 }

The viewpoint PortfolioInvestment demonstrates that three transaction domains

need to be viewed or accessed when there is an investment in the equity portfolio.

Transaction domains PortfolioValuation and PortfolioRebalance are described in

the previous section while PortfolioStrategy is beyond the scope of this chapter.

7.3.13 Asset Management System (AMS)

This section presents the overall system architecture of the AMS case study explained

in Section 7.2. Below is an extract of the AMS architecture:

system {

components {

 Portfolio_GUI<>: PortfolioAMS_GUI;

 UI_Server<false, false, false>: Portfolio_EquityUIServer;

 …

 if(supported(Equity_Share)){

 // portfolio valuation

 Value_Processor<false, false, false, true, true, false>:

 Portfolio_Processor;

 …

} // end of components

177

connectors {

 HTTP_GUI<true, false, false, false>: HTTP_AMSUserInterface;

 HTTP_Processor<true, false>: HTTP_Equity;

 …

 if(supported(Cash_Investment))

 DB_CRebalance<true, false>: ODBC_EquityPortfolio;

 …

} // end of connectors

 arrangement {

 //similar to component type arrangement

 connect Portfolio_GUI.ServiceRequest with HTTP_GUI.requestport1;

 connect UI_Server.ServiceRequest with HTTP_GUI.requestport2;

 …

 if (supported(Equity_Share)){

 // portfolio valuation

 connect EquityDb.DataAccess with DB_VProcessor.dataport1;

 connect Value_Processor.DataAccess with

 DB_VProcessor.dataport2;

 …

 } // end of arrangement

 viewpoints {

 PortfolioInvestment;

 } // end of viewpoints

 } // end of system

For a complete textual description of the AMS architecture, please refer to Appendix

D10.

It is important to state that the graphical structural notation of the whole system is not

provided in this section due to the size and complexity of the AMS architecture. An

alternative to this, as discussed in Chapter 6, is to divide it into segments by demonstrating

it as AMS transaction domains in Section 7.3.12.

178

7.4 AMS Evaluation

In this section, the AMS architecture model designed in the previous section is

evaluated on how it overcomes the limitations that exist in architectural languages and

how it addresses the principles, on which ALI V2 is based. Table 15 presents the

evaluation of the AMS case study.

179

Limitations

Addressed

(Keywords)

CASE STUDY: Asset Management System (AMS)

ALI V2

Principles

Used

(Keywords)

L1

(Variability)

According to the AMS case study described in Section 7.2, variability occurs when portfolio valuation is

calculated due to change in the share price and/or share trading. Similarly, it occurs when portfolio rebalancing

is performed via investing cash or buying/selling shares. From this perspective, the following variabilities were

identified:

 -Variable features: Equity_Share, MarkToMarket_Method, Share_Company_Method, Cash_Investment

and Share_Investment.

 -Variable conditions: All the conditions defined in Section 7.3.9.

P1

(Variability)

L2

 (Traceability)

From the structural aspect of the AMS, the features Equity_Share, MarkToMarket_Method and

Share_Company_Method represent the requirement and its traceability to calculate the equity portfolio value in

the system description (Section 7.3.13). When rebalancing the equity portfolio, the features Cash_Investment

and Share_Investment represent the requirement and its traceability.

From the behavioural aspect of the AMS, the conditions PriceUnchanged, PriceChanged, ShareTrade,

ExchangeTraded and Illiquid can occur during the equity portfolio valuation depending on the external

requirement. Further_Investment, Financial_Instr_Equity, OrderForwarded and OrderFilled can

P2

(Traceability)

180

Limitations

Addressed

(Keywords)

CASE STUDY: Asset Management System (AMS)

ALI V2

Principles

Used

(Keywords)

occur during the equity portfolio rebalancing, depending upon the external requirement. These conditions are

represented in the transaction domains PortfolioValuation and PortfolioRebalance (Section 7.3.11).

L3

(Dependency)
Not applicable.

P3

(Cross Domain)

L4

(Restrictive

Syntax)

All the architectural elements defined in the AMS architecture are formal and flexible enough to design, and

better support, the system description. For example, component type Internal_EquityData (defined in Section

7.3.6) used pre-defined interfaces (UpdatedData of type DatabaseUpdation, MarketValue and

AverageValue of type ValueOperation , ValuationRequest of type PortfolioMessenger and

PriceStatus of type ValueData) instead of defining them within its definition section using the interface

templates MethodInterface and WSDL. The component type Internal_EquityData has the flexibility to

define an interface similarly to the method used in the interface types section in its definition section (as

explained in Chapter 6). Similarly, the event Inform supports the interface templates MethodInterface and

WSDL in the transaction domain PortfolioValuation, but it has the flexibility to support only the interface

template MethodInterface as in the transaction domain PortfolioRebalance.

P4

(Flexibility &

Formality)

181

Limitations

Addressed

(Keywords)

CASE STUDY: Asset Management System (AMS)

ALI V2

Principles

Used

(Keywords)

L5

(Reusability)

Interface template MethodInterface and the interfaces of type MethodInterface (defined in Section 7.3.3 and

7.3.4, respectively) can be used in any type of system architecture wherever an interface of this type is required.

Connector types and component types (defined in Section 7.3.5 and 7.3.6, respectively) can be easily reused in

any investment bank (or by any fund management company) as part of their asset management system to

calculate and rebalance their equity portfolio. As explained in Chapter 6, the system can be adopted by simply

mapping their feature set to the required system where it will be deployed.

For example, connector type Calculator_Equity and component type Portfolio_EquityValuator (see

Appendix D6) have features Weight_Average_Method and Weighted_Average_Value_Method, respectively.

This feature is one of the methods used to calculate the equity portfolio and is not adopted by an investment

bank nowadays where they must manage large-scale equity portfolios. Therefore, it is not considered in the

system description (Section 7.3.13). But the artefact description of the connector type Calculator_Equity and

component type Portfolio_EquityValuator are defined in such a way that it may be used in another system

where they support the weighted average value method to calculate their equity portfolio value due to the

support of its relevant features.

P5

(Reusability)

182

Limitations

Addressed

(Keywords)

CASE STUDY: Asset Management System (AMS)

ALI V2

Principles

Used

(Keywords)

As components and connectors are dependent on interfaces, the connector type Calculator_Equity and

component type Portfolio_EquityValuator should reuse the interfaces from their definition, using pre-

defined interface templates MethodInterface and WSDL; and their corresponding interface types. Similarly,

instances of other component types (such as Portfolio_EquityCalculator, Appendix D6) and connector

types (such as HTTP_EquityValulator, Appendix D5) that have been defined internally to design the

component type Portfolio_EquityValuator will also be reused.

L6

(Information

Overload)

In the AMS architecture, in order to calculate the equity portfolio value, the transaction domain

PortfolioValuation is defined textually in Section 7.3.11 and presented graphically using event traces in

Figure 21 to illustrate its behavioural description. It is defined textually in the system description (Section

7.3.13) and presented graphically in Figure 22 as its structural description. In addition, the sequential interaction

of all the components involved in the transaction domain PortfolioValuation (such as component

Portfolio_GUI in Figure 23) are presented. In a similar way, to rebalance the equity portfolio, the transaction

domain PortfolioRebalance is designed and presented in Appendix D9.2.

Thus, the AMS architecture provides multiple architectural views of a particular function of the AMS (as a

transaction domain) with a clear separation between structural and behavioural descriptions while maintaining

P6

(Multiview)

183

Limitations

Addressed

(Keywords)

CASE STUDY: Asset Management System (AMS)

ALI V2

Principles

Used

(Keywords)

consistency between them. These different views capture the massive complexity of the AMS that can cater to

different stakeholders, depending upon their concern.

L7

(Behavioural)

Considering the behavioural aspect of the AMS architecture, events such as ValuationRequest,

RequestPrice, etc., have been defined clearly, with their source and destination interface templates specified

in Section 7.3.8.

From the behavioural visualisation perspective, the transaction domains PortfolioValuation and

PortfolioRebalance are presented in the form of event traces that demonstrate the ways an event can occur to

calculate and rebalance the equity portfolio, as demonstrated in Figure 21 and Appendix D9.2, respectively. For

example, in transaction domain PortfolioValuation, RequestPriceList/HTTP_Processor and

RequestPrice/HTTP_ExCRate are the events that depends on the conditions Exchange_Traded and Illiquid,

respectively. This is represented using OR Fork notation (as defined in Chapter 6) which means that it can occur

one at a time to do equity portfolio valuation. Similarly, other event trace notations described in Chapter 6 are

used while designing these transaction domains. Moreover, the interactions of all the components that are

involved in both transaction domains are explicitly presented using a UML sequence diagram.

These aspects demonstrate the detailed behavioural description of the AMS architecture.

P6

(Multiview)

Table 15: AMS evaluation

184

7.5 Discussion

This section will further discuss how ALI V2 attempts to reconcile the competing

principles (as discussed on Chapter 6) for the language, in the context of the AMS case

study.

AMS is a product line comprising various back-office portfolio management

applications for financial instruments such as equity, commodity and currency, and

corresponds to the Information System (IS) application domain.

AMS architecture is highly customisable, having a number of variable features and

conditions, as identified in Table 15. This signifies the presence of significant inherent

variability and the ability of ALI V2 to manage its variability (design principle P1).

The structural design of the AMS architecture uses connectors to join components.

This is visualised using the AMS graphical structural notation in Figure 22. In that design,

all system information is captured through a single transaction domain view (as shown in

Figure 22 and Appendix D9.2), which shows all the transactions. However, it is not

possible to present the overall AMS system architecture through graphical structural

design due to the complexity of the system and the amount of information that needs to

be captured. Accordingly, two structural views are produced, each capturing the

information pertaining to one transaction domain. One view calculates the equity

portfolio value (PortfolioValuation) and the other view rebalances the equity portfolio

(PortfolioRebalance). Thus, this demonstrates that the notation can scale seamlessly

(design principle P6), while still capturing all required information at an appropriate level

of abstraction (L6).

Additionally, the AMS architecture contains several components and connectors

leading to a relatively more complex structural description, compared to the behavioural

description which has simpler interactions. Subsequently, architectural elements (such as

185

components, connectors and interfaces) defined in the AMS architecture can be reused

with minimal, or no, changes to their internal description in other systems, as mentioned

in Table 15. This is due to the granularity and reusability with the support of variability

in ALI V2 as per design principle P5. Finally, AMS architecture is also linked with the

external system (such a trading system) and sub-system (such as P/L system).

In the next chapter, another case study is presented that demonstrates the further

applicability of ALI V2 constructs and notations.

186

8
Chapter Eight

Case Study: Wheel Brake System

“The more that you read, the more things you will know. The more that you learn, the

more places you’ll go.”

 -- Dr. Seuss

8.1 Introduction

In order to gain more experience on the applicability of ALI V2, another case study –

the Wheel Brake System (WBS) – is presented in this chapter to demonstrate its

application. This case study will also touch upon the other concepts of ALI V2 notations

that were not practically applied while designing the Asset Management System (AMS)

architecture in the previous chapter.

WBS is a standardised case study taken from the SAE ARP4761 standard (ARP4761,

1996), and it is being introduced to demonstrate the safety of the airborne system. The

main aim of the WBS is to provide the necessary support for stopping/decelerating the

commercial (civil) aircraft during landing or parking.

Furthermore, WBS corresponds to the Embedded System domain as compared with

the AMS case study (described in the previous chapter) that corresponds to the

Information System (IS) domain. From this aspect, the demonstration of the ALI V2 on

the WBS case study supports its cross-application domain modelling capabilities (i.e.

design principle P3, defined in Chapter 6).

The next section elucidates the WBS case study. Section 8.3 presents an architectural

description of WBS using the concepts of ALI V2. In Section 8.4, the WBS architecture

is evaluated in relation to how it overcomes the limitations that exist in current ADLs

187

(stated in Chapter 2) and how the design principles established for ALI V2 ADL have

been applied (described in Chapter 6). Finally, results obtained from the WBS

architecture and its evaluation are discussed in Section 8.5.

8.2 Description of the WBS Case Study

The Wheel Brake System (WBS) described in this section has been adopted from the

SAE Standard Aerospace Recommended Practice (ARP) 4761, Guidelines and Methods

for Conducting the Safety Assessment Process on Civil Airborne Systems and Equipment

(ARP4761, 1996).

According to ARP4761, the primary purpose of the WBS is to decelerate the

commercial aircraft wheel on the ground during landing or parking. The WBS consists of

a digital controller - Brake System Control Unit (BSCU) and the hydraulic pipe assembly

that carries the braking pressure to the wheels. Different valves are embedded that receive

commands and control the flow of brake pressure. While the brake system annunciation

correspond to a non-functional requirement. Figure 24 presents the visual representation

of the WBS.

 ARP4761 states that the loss of all wheel braking is less probable than 5x10-7 per

flight. Considering this, BSCU contains two independent systems (System1 and System2)

to meet the availability and integrity requirements. Each system has the following

subcomponents:

1. A monitor function that indicates if the values are valid or not.

2. A command function that produces data from the pedal values.

In contrast, the main BSCU (as shown in Figure 24) receives data (considered as

electrical pedal positions) and power and forwards it to each subsystem. The reason for

188

having two systems is that if System1 generates an invalid value/command then System2

will operate. But if both fail to generate a valid value/command or did not receive any of

the inputs (data or power), then that leads to BSCU failure. The BSCU sends the generated

value/command to the other required parts of the system.

Figure 24: Wheel Brake System (ARP4761, 1996)

Moreover, a design decision was also made that each wheel has a brake assembly

operated by two independent sets of hydraulic pistons. One set of pistons is operated from

the Green Pump and is used in the NORMAL braking mode. In NORMAL mode, the Green

Pump will receive an electrical brake command (CMD) and an Anti Skid command from

the BSCU and then supplies the required pressure to the wheel.

The ALTERNATE braking system is on standby and is selected automatically in case

of NORMAL system failure (due to BSCU and/or Green Pump failure). In ALTERNATE

mode, the Blue Pump provides the hydraulic pressure to the system, and if the failure is

due to the Green Pump, then it will also receive the Anti Skid command; otherwise, this

189

will not occur in case of BSCU failure. The failure of both of the pumps can be due to the

absence of the hydraulic pressure supply or pressure being below the threshold value.

Subsequently, if the ALTERNATE system fails, then the system will be in

EMERGENCY braking mode where the wheel will receive the reserve pressure from the

Accumulator. It acts as a parking brake, as well. A mechanical pedal is used to apply the

brake in both ALTERNATE and EMERGENCY modes. Switch-over between the

hydraulic pistons and the different pumps is automatic under various failure conditions,

or can be manually selected.

8.3 WBS Architecture Representation Using ALI V2

This section presents the architectural description of the WBS case study explained in

the previous section using the ALI V2 notation that has been defined in Chapter 6.

The WBS architectural description is composed of the following architectural

elements:

8.3.1 WBS Meta Types

The WBS architectural description is comprised of six different meta types that provide

more information about its architectural elements. In particular, these elements require

meta information, which has a complex structural (such as WBS component types,

discussed in Section 8.3.5) and behavioural design (such as WBS transaction domain

discussed in Section 8.3.10).

meta type Meta_WheelPedal {

 tag intention, consequences: text;

 tag cost*: number;

 tag last_checked: date;

 }

190

Meta_WheelPedal described above can be attached to the WBS brake pedal

description. Similarly, five other meta types are defined in Appendix E1.

8.3.2 WBS Features

In the WBS, aircraft wheel braking requirements are determined by six features, of

which, some are parameterised and some are non-parameterised. One of the features

defined below is a mandatory feature to stop/decelerate the commercial aircraft wheels.

features {

 Wheel_Brake: {

 alternative names: {

 Designer.F1, Developer.WB, Evaluator.F11;

 }

 parameters: {

 // no parameters

 }

 }

 …

 } // end of features

The remaining five features are defined in Appendix E2, which some are related to the

brake pedal (such as Electrical_Brake) and to the hydraulic pressure (such as

Piston_Pressure) in the WBS.

191

8.3.3 WBS Interface Template

The following extract is the syntax definition of the WBS interface template

MethodInterface, which all the WBS interface types are created with the same

template (as described in the next section):

interface template MethodInterface {

 provider syntax definition: {

 "Provider"":"

 "{"

 {"function" <FUNCTION_NAME>

 "{"

 "impLanguage" ":" <LANGUAGE_NAME> ";"

 "invocation" ":" <INVOCATION> ";"

 "paramterlist" ":" "("[<PARAMETER_TYPE> {","

 <PARAMETER_TYPE}] ")" ";"

 "return_type" ":" <RETURN_TYPE> ";"

 "}" }

 "}"

 }

 consumer syntax definition: {

 "Consumer"":"

 "{"

 “Call” “:” <INVOCATION> “(“[<PARAMETER_TYPE> {","

 <PARAMETER_TYPE}]”)” “;”

 "}"

 }

 constraints: {

 should match: { INVOCATION_NAME = .INVOCATION_NAME,

 PARAMETER_TYPE}

 binding: {

 “multiple”: true;

 “data_size”: [5KB, 500KB];

 “max_connections”: 5;

 }

 factory: false;

 persistent: false;

 }

}

192

8.3.4 WBS Interface Types

In WBS architecture, six interface types are involved that perform different functions

that are required to stop/decelerate the commercial aircraft wheels.

One interface type DataOperation that conforms to the interface template

MethodInterface (defined in the previous section) is the following:

interface type {

 DataOperation: MethodInterface {

 Provider: {

 function InsertBrakeData

 {

 impLanguage: Java;

 invocation: insert;

 parameterlist: (string);

 return_type: void;

 }

 }

 }

 Consumer: {

 Call: insert (string);

 }

 }

 …

 } // end of interface types

The other five interface types of the WBS architecture that conform to the interface

template MethodInterface are defined in Appendix E3.

193

8.3.5 WBS Component Types

The WBS architecture is composed of the following ten component types:

 Aircraft_BrakePedal - provides electrical braking data to the braking system as

an input to the control unit. In the case of mechanical braking, it provides the pedal

force and its position values to the metering valve.

 Aircraft_ElectricPower - provides an electrical voltage to the control unit to

activate the electrical braking system, and generate commands and messages.

 Brake_ControlUnit – a processing unit that receives data from the electrical

pedal and power and forwards the notification message, validated brake, and

antiskid command values to the other required parts of the system.

 Aircraft_WheelControlUnit – demonstrates the main BSCU which consists of

the two component type Brake_ControlUnit instances. This reduces the brake

failure rate as discussed in Section 8.2, along with the ability to provide the valid

command.

 Aircraft_PressurePump – provides hydraulic pressure from the piston to the

metering valves in order to apply brakes to the commercial aircraft wheel.

 Aircraft_BrakeValve – valves that communicate with the hydraulic pistons to

supply pressure to the system.

 Aircraft_PressureValve – valves that process the received commands and

pressure and then forwards the demanded pressure to the corresponding element

of the system in order to stop/decelerate the commercial aircraft wheel.

194

 Command_Generator – generates brake and/or antiskid commands on the basis of

the electrical pedal value/s and the mechanical pedal position/s, including the

pressure supplied by the pumps.

 Value_Monitor – validates the generated brake command from the electrical

braking system.

 Aircraft_Wheel – provides the friction force to the aircraft wheel to

stop/decelerate it.

In order to illustrate the design notations (both textual and graphical) of the WBS

component types, a component type Aircraft_BrakePedal is described in this section.

The other nine WBS component types are described in Appendix E4.

Aircraft_BrakePedal

Electronic_Brake

MC

Mechanic_Brake

BD

MP

Figure 25: WBS component type Aircraft_BrakePedal

Figure 25 demonstrates the graphical structural notation of the component type

Aircraft_BrakePedal. It consists of three interfaces that conform to interface template

MethodInterface. Similar to the AMS case study (defined in Chapter 7) visualisation

strategy, the colour conventions represent the dependencies of the interfaces with the

features. For example, red corresponds to the Electronic_Brake feature and its dependent

195

interface is BrakeData (BD) that conforms to the interface template MethodInterface

(represented as a triangle). Black represents a mandatory interface such as defined in the

component type Aircraft_ElecticPower (see Appendix E4) which does not depend on

any variable feature.

The same colour conventions are used for the components and connectors that are

described in the component type definition. For example, the component type

Aircraft_PressureValve is defined in Appendix E4. To recall, just like in the AMS

case study, the colour convention has not been applied to the interfaces of the components

and connectors that are used as an instance in the component type definition because their

specification has already been defined in their own type definition.

Table 16 provides the list of all the acronyms that have been used to define the

interfaces of the WBS component types graphically.

Acronym Term Acronym Term

AC AntiskidCommand IP InputPressure

AP AlternatePressure MC MechanicalCommand

AV AntiskidValue MP MechanicalPosition

BC BrakeCommand NP NormalPressure

BD BrakeData PM PressureMessage

BP BrakePressure RP ReservePressure

CN CommandNotification VP ValidatedPressure

CV CommandValue VV ValidatedValue

EV ElectricVoltage

Table 16: List of acronyms for WBS component types interfaces

Below is the textual notation for the component type Aircraft_BrakePedal:

component type Aircraft_BrakePedal

 {

 meta: Meta_WheelPedal {

 intention: “To apply the brake”;

 consequences: “Aircraft will not stop”;

 cost: 5000;

196

 last_checked: 14-03-2016;

 }

 features: {

 Electronic_Brake: “Electrical pedal used to stop the

 aircraft wheel”,

 Mechanic_Brake: “Mechanical pedal applied to stop the

 aircraft wheel”;

 }

 interfaces: {

 definition: {

 // no need to define any interface/s

 }

 implements:{

 if (supported(Electronic_Brake))

 BrakeData: DataOperation;

 if (supported(Mechanic_Brake)){

 MechanicalPosition: ValueOperation;

 MechanicalCommand: CommandOperation;}

 }

 } //end of interfaces

 sub-system: {

 components { }

 connectors { }

 arrangement { }

 } // end of sub-system

 } // end of component type

WBS component types with different architectural configurations, such as those

without variable features/interfaces (e.g. Aircraft_ElectricPower) and those with a

detailed sub-system description (e.g. Aircraft_WheelControlUnit) are explained in

Appendix E4.

197

8.3.6 WBS Product Configuration

As described in Section 8.2, WBS provides different braking modes (such as

NORMAL) under which the commercial aircraft wheels can be stopped/decelerated. Thus,

from the structural architectural configuration aspect, the WBS is a single product system

with multiple variable features which is described as follows:

 product configurations {

 CommercialAircraftBrake: {

 Electrical_Brake {Pedal_Value = 850KN};

 Electrical_Power {Voltage = 240V AC};

 Mechanical_Brake {Max_Pedal_Force = 980KN};

 Piston_Pressure {Maximum = 10.75 Pa,

 Minimum = 5.25 Pa};

 Accumulator_Pressure {Pressure_Supplied = 9.5 Pa};

 }

 } // end of product configurations

8.3.7 WBS Events

From the behavioural architectural description perspective, the WBS is comprised of

the fifteen events that occur in order to stop/decelerate the commercial aircraft under

different braking modes.

Below is the textual notation of all the events that occur while applying brake to the

commercial aircraft wheels:

 events {

Send_EPedal_Position1: <MethodInterface, MethodInterface>;

Send_EPedal_Position1: <MethodInterface, MethodInterface>;

Send_Power_Signal1: <MethodInterface, MethodInterface>;

Send_Power_Signal2: <MethodInterface, MethodInterface>;

Inform: <MethodInterface, MethodInterface>;

Notify: <MethodInterface, MethodInterface>;

CMD: <MethodInterface, MethodInterface>;

AntiSkid: <MethodInterface, MethodInterface>;

198

Hydraulic_Pressure_Request: <MethodInterface, MethodInterface>;

Send_Hydraulic_Pressure: <MethodInterface, MethodInterface>;

 No_Hydraulic_Pressure_Supply: <MethodInterface, MethodInterface>;

MPedal_Position_Request: <MethodInterface, MethodInterface>;

Send_MPedal_Position: <MethodInterface, MethodInterface>;

Reserve_Pressure_Request: <MethodInterface, MethodInterface>;

Decelerate: <MethodInterface, MethodInterface>;

 } // end of events

8.3.8 WBS Conditions

Conditions described below demonstrate the various behavioural descriptions of the

WBS under which brake can be applied to the commercial aircraft wheels.

conditions {

 BSCU_Active: “BSCU working properly”;

 BSCU_Failed: “Unable to provide brake command”;

 GreenPressure: “Provide hydraulic pressure in a normal mode”;

 GreenPressure_Failed: “No hydraulic pressure supply or below

 threshold value in a normal mode”;

 BluePressure: “Provide hydraulic pressure in an alternate mode”;

 BluePressure_Failed: “No hydraulic pressure supply or below

 threshold value in an alternate mode”;

 AccumulatorPump: “Provide hydraulic pressure in an emergency

 mode”;

} // end of conditions

In the above definition, seven of the possible conditions to apply the brake in different

braking modes as demonstrated in Section 8.3.10.

199

8.3.9 WBS Scenarios

The WBS architecture behavioural description encapsulates four different scenarios

that correspond to different braking modes of the commercial aircraft.

One scenario related to the NORMAL system braking mode is described below:

scenarios {

 NormalOperation {

 Description: “WBS in a normal mode”;

 Parameterisation {

 BSCU_Active = true;

 GreenPressure = true;

 BluePressure = false;

 AccumulatorPump = false;

 }

 …

} // end of scenarios

The remaining three scenarios related to the wheel braking are described in Appendix

E5.

8.3.10 WBS Transaction Domain

The WBS architecture is comprised of the transaction domain

WheelDecelerationOnGround that reflect the functionalities of the WBS case study

explained in Section 8.2. It demonstrates how the wheels of the commercial aircraft can

be stopped/decelerated on the ground during landing or take off.

The textual architectural description of the transaction domain

WheelDecelerationOnGround is as follows:

transaction domain WheelDecelerationOnGround

 {

 meta: Meta_DecelerationDomain

 {

200

 purpose: “To stop the commercial aircraft on ground”;

 minimum_wheels_active: 4;

 }

 contents:

 {

 /*provides the list of components involved in this

 transaction domain*/

 Components: {Electrical_Pedal, Mechanical_Pedal, Power,

 BSCU, ShutOff_Valve, Selector_Valve,

 Green_Pump, Blue_Pump, Accumulator,

 Meter_Valve, Wheel}

 //No connectors –direct binding

 }

 transactions:

 {

 NORMALMODE: {

 events: {SendEPedalPosition1, SendEPedalPosition2,

 SendPowerSignal1, SendPowerSigna2, Inform, Notify,

 CMD, AntiSkid, HydraulicPressureRequest,

 SendHydraulicPressure, Decelerate}

 interactions: {

 [(BSCU.BrakeData receives SendEPedalPosition1 from

 Electrical_Pedal.Brakedata,

 BSCU.BrakeData receives SendEPedalPosition2 from

 Electrical_Pedal.Brakedata),

 (BSCU.ElectricVoltage receives SendPowerSignal1 from

 Power.ElectricVoltage,

 BSCU.ElectricVoltage receives SendPowerSignal2 from

 Power.ElectricVoltage)];

 [BSCU.CommandNotification sends Inform to

 ShutOff_Valve.CommandNotification,

 BSCU.BrakeCommand sends CMD to Meter_Valve.BrakeCommand,

 BSCU.AntiskidCommand sends AntiSkid to

 Meter_Valve.AntiskidCommand];

 ShutOff_Valve.PressureMessage sends Notify to

 Selector_Valve.PressureMessage;

 Selector_Valve.PressureMessage sends

 HydraulicPressureRequest to Green_Pump.PressureMessage;

 [Meter_Valve.NormalPressure receives SendHydraulicPressure

 from Green_Pump.NormalPressure,

 Meter_Valve.BrakeCommand receives CMD from

 BSCU.BrakeCommand,

201

 Meter_Valve.AntiskidCommand receives AntiSkid from

 BSCU.AntiskidCommand];

 Meter_Valve.BrakePressure sends Decelerate to

 Wheel.InputPressure;

}

 }

 EMERGENCYMODE: {

 events: {MPedalPositionRequest, ReservePressureRequest,

 SendHydraulicPressure, SendMPedalPosition,

 Decelerate}

 interactions: {

 [Selector_Valve.MechanicalPosition sends

 MPedalPositionRequest to

 Mechanical_Pedal.MechanicalPosition,

 Selector_Valve.PressureMessage sends ReservePressureRequest

 to Accumulator.PressureMessage];

 [Meter_Valve.MechanicalCommand receives SendMPedalPosition

 from Mechanical_Pedal.MechanicalCommand,

 Meter_Valve.ReservePressure receives SendHydraulicPressure

 from Accumulator.ReservePressure];

 Meter_Valve.BrakePressure sends Decelerate to

 Wheel.InputPressure;

 }

 }

 ALTERNATEMODE1: {

 events: {SendEPedalPosition1, SendEPedalPosition2,

 SendPowerSignal1, SendPowerSignal2, Inform, Notify,

 AntiSkid, HydraulicPressureRequest,

 NoHydraulicPressure, MPedalPositionRequest,

 SendHydraulicPressure, SendMPedalPosition,

 Decelerate}

 interactions: {

 [(BSCU.BrakeData receives SendEPedalPosition1 from

 Electrical_Pedal.Brakedata,

 BSCU.BrakeData receives SendEPedalPosition2 from

 Electrical_Pedal.Brakedata),

 (BSCU.ElectricVoltage receives SendPowerSignal1 from

 Power.ElectricVoltage,

 BSCU.ElectricVoltage receives SendPowerSignal2 from

 Power.ElectricVoltage)];

 [BSCU.CommandNotification sends Inform to

 ShutOff_Valve.CommandNotification,

202

 BSCU.AntiskidCommand sends AntiSkid to

 Meter_Valve.AntiskidCommand];

 ShutOff_Valve.PressureMessage sends Notify to

 Selector_Valve.PressureMessage;

 Selector_Valve.PressureMessage sends HydraulicPressureRequest

 to Green_Pump.PressureMessage;

 Green_Pump.PressureMessage sends NoHydraulicPressureSupply to

 Selector_Valve.PressureMessage;

 [Selector_Valve.MechanicalPosition sends MPedalPositionRequest

 to Mechanical_Pedal.MechanicalPosition,

 Selector_Valve.PressureMessage sends HydraulicPressureRequest

 to Blue_Pump.PressureMessage];

 [Meter_Valve.MechanicalCommand receives SendMPedalPosition from

 Mechanical_Pedal.MechanicalCommand,

 Meter_Valve.AlternatePressure receives SendHydraulicPressure

 from Blue_Pump.AlternatePressure,

 Meter_Valve.AntiskidCommand receives AntiSkid from

 BSCU.AntiskidCommand];

 Meter_Valve.BrakePressure sends Decelerate to

 Wheel.InputPressure;

 }

 }

 ALTERNATEMODE2: {

 events: {MPedalPositionRequest, HydraulicPressureRequest,

 SendHydraulicPressure, SendMPedalPosition, Decelerate}

 interactions: {

 [Selector_Valve.MechanicalPosition sends MPedalPositionRequest

 to Mechanical_Pedal.MechanicalPosition,

 Selector_Valve.PressureMessage sends HydraulicPressureRequest

 to Blue_Pump.PressureMessage];

 [Meter_Valve.MechanicalCommand receives SendMPedalPosition from

 Mechanical_Pedal.MechanicalCommand,

 Meter_Valve.AlternatePressure receives SendHydraulicPressure

 from Blue_Pump.AlternatePressure];

 Meter_Valve.BrakePressure sends Decelerate to

 Wheel.InputPressure;

 }

}

203

 DECELERATINGWHEEL: {

/* No events in this transaction therefore, there is no event

 section */

interactions: {

 if (supported(Electircal_Brake && Electrical_Power) &&

 (BSCU_Active && GreenPressure))

 {NORMALMODE;}

 else if (unsupported(Electrical_Power && Piston_Pressure) &&

 (BluePressure_Failed))

 {EMERGENCYMODE;}

 else if (supported(Electircal_Power) &&

 unsupported (Accumulator_Pressue) &&

 (BSCU_Active && GreenPressure_Failed))

 {ALTERNATEMODE1;}

 else

 {ALTERNATEMODE2;}

 } // end of interaction

 } // end of transaction

 } // end of transactions section

} // end of transaction domain

Figure 26 demonstrates the graphical behavioural (in the form of event traces) of the

transaction domain WheelDecelerationOnGround, which is described textually above,

while the structural notation is presented in Section 8.3.12 (Figure 28).

204

[BluePressure_Failed]

Send Power Signal2

Send EPedal Position1

Electrical
Pedal

Power

BSCU

Inform

CMD

Hydraulic
Pressure
RequestShutOff

Valve

Wheel

Green
Pump

Send
Hydraulic
Pressure

Meter
Valve

Decelerate

Notify
Selector

Valve

Wheel
Decelerate

Blue Pump

Send Hydraulic
Pressure

Hydraulic Pressure
Request

MPedal Position
Request Mechanical

Pedal

Send MPedal
Position

Meter
Valve

Selector
Valve

Inform
ShutOff

Valve

Notify

AntiSkid

Electrical
Pedal

Power

BSCU

Hydraulic
Pressure
Request Green

Pump

No Hydraulic
Pressure
Supply Selector

Valve

AntiSkid

Blue Pump

Send Hydraulic
Pressure

MPedal Position
Request Mechanical

Pedal

Send MPedal
Position

Selector
Valve

Meter
Valve

Hydraulic Pressure
Request

Wheel
Decelerate

Mechanical
Pedal

Send MPedal
Position

Accumulator

Send Hydraulic
Pressure

Meter
Valve

Wheel
Decelerate

Reserve Pressure
Request

MPedal Position
Request

Selector
Valve

Send EPedal Position2

Send Power Signal1

Send Power Signal2

Send EPedal Position1

Send EPedal Position2

Send Power Signal1

Figure 26: Graphical behavioural representation of transaction domain WheelDecelerationOnGround

205

The interactions of component Electrical_Pedal within the transaction domain

WheelDecelerationOnGround is demonstrated in Figure 27.

BD BSCU. BD

Send EPedal Position1

Send EPedal Position2

par

alt

[BSCU_Active && GreenPressure]

[BSCU_Active && GreenPressure_Failed]

Send EPedal Position1

Send EPedal Position2

par

Figure 27: WBS component Electrical_Pedal interactions in transaction domain

WheelDecelerationOnGround

The remaining component interactions that are involved in the transaction domain

WheelDecelerationOnGround can be found in Appendix E6.

206

The interface acronyms that have been used in Figure 27 and in the rest of the

component interactions (see Appendix E6) are defined in Table 16.

8.3.11 WBS Viewpoint

In accordance with the WBS description discussed in Section 8.2, its architecture

consists of the following viewpoint:

viewpoints {

 WheelDeceleration: {

 Description: “Decelerating the aircraft wheel”;

 Transaction Domain: {WheelDecelerationOnGround,

 WheelDecelerationOnGear};

 }

} // end of viewpoints

The viewpoint WheelDeceleration demonstrates that two transaction domains need

to be viewed or accessed when there is a need to stop/decelerate the commercial aircraft.

Transaction domains WheelDecelerationOnGround is described in the previous section

while WheelDecelerationOnGear is beyond the scope of this chapter.

8.3.12 Wheel Brake System (WBS)

This section presents the overall system architecture of the WBS case study explained

in Section 8.2. Below is an extract of the WBS architecture:

system

 {

components {

 Selector_Valve<Electrical_Power>: Aircraft_BrakeValve;

 Wheel<>: Aircraft_Wheel;

 Meter_Valve<Electrical_Brake, Mechanical_Brake, Piston_Pressure,

 Accumulator_Pressure, Electrical_Power>:

 Aircraft_PressureValve;

207

 …

} // end of components

connectors { }

arrangement {

 bind Meter_Valve.BrakePressure with Wheel.InputPressure;

 if (supported(Electrical_Power)) {

 {bind Power.ElectircVoltage with BSCU.ElectircVoltage;

 bind BSCU.CommandNotification with

 hutoff_Valve.CommandNotification;

 bind BSCU.AntiskidCommand with

 Meter_Valve.AntiskidCommand;

 }

 …

 } // end of arrangement

 viewpoints {

 WheelDeceleration;

 } // end of viewpoints

} // end of WBS

For a complete textual description of the WBS architecture, please refer to Appendix

E7. Figure 28 demonstrates the graphical structural notation of the whole system.

The acronyms that have been used to demonstrate the component interfaces in Figure

28 are defined in Table 16.

208

Electrical Pedal
Power

Blue Pump

Selector Valve

Wheel

BSCU ShutOff Valve

Meter Valve

Green Pump
Accumulator

Mechanical Pedal

BD

MC

EV

EV

BD

BCAC

CN

PM

AP

NP

RP

PM

PM

PM

CN

PM

IP

MC

BC

NP AP

AC
RP

BP

MP

MP

Figure 28: WBS graphical structural notation

209

8.4 WBS Evaluation

In this section, the WBS architecture model designed in the previous section is

evaluated on how it overcomes the limitations that exist in architectural languages and

how it addresses the principles, on which ALI V2 is based. Table 17 presents the

evaluation of the WBS case study.

210

Limitations

Addressed

(Keywords)

CASE STUDY: Wheel Brake System (WBS)

ALI V2

Principles

Used

(Keywords)

L1

(Variability)

According to the WBS case study described in Section 8.2, variability occurs when the wheels of the

commercial aircraft are stopped/decelerated in different braking modes. From this perspective, the following

variabilities were identified:

 -Variable features: Electrical_Brake, Mechanical_Brake, Electrical_Power, Piston_Pressure and

Accumulator_Pressure.

 -Variable conditions: All the conditions defined in Section 8.3.8.

P1

(Variability)

L2

(Traceability)

From the structural aspect of the WBS, the features Electrical_Brake, Electrical_Power and

Piston_Pressure represent the requirement and its traceability when the brake is applied in the NORMAL

mode in the system description (Section 8.3.12). When brake is applied in the ALTERNATE modes, the features

Mechanical_Brake Piston_Pressure and/or Electrical_Power represent the requirement and its

traceability. And, when it is applied in an EMERGENCY mode, the features Mechanical_Brake and

Accumulator_Pressure represent the requirement and its traceability.

From the behavioural aspect of the WBS, the conditions BSCU_Active and GreenPressure demonstrates the

NORMAL braking mode while BSCU_Failed and/or GreenPressure_Failed demonstrates the ALETRNATE

P2

(Traceability)

211

Limitations

Addressed

(Keywords)

CASE STUDY: Wheel Brake System (WBS)

ALI V2

Principles

Used

(Keywords)

braking modes. An EMERGENCY braking mode is demonstrated by the condition BluePressure_Failed.

These conditions are represented in the transaction domain WheelDecelerationOnGround (Section 8.3.10).

L3

(Dependency)
Not applicable.

P3

(Cross Domain)

L4

(Restrictive

Syntax)

All the architectural elements defined in the WBS architecture are formal and flexible enough to design, and

better support, the system description. For example, component type Aircraft_BrakePedal (defined in Section

8.3.5) used pre-defined interfaces (BrakeData, MechanicalPosition and MechanicalCommand of type

DataOperation, ValueOperation and CommandOperation, respectively) instead of defining them within its

definition section using the interface template MethodInterface. The component type Aircraft_BrakePedal

has the flexibility to define an interface similarly to the method used in the interface types section in its

definition section (as explained in Chapter 6). Similarly, the events described in Section 8.3.7 supports the

interface template MethodInterface in the transaction domain WheelDecelerationOnGround, but it has the

flexibility to support other the interface template/s in its notation (as explained in Chapter 6).

P4

(Flexibility &

Formality)

212

Limitations

Addressed

(Keywords)

CASE STUDY: Wheel Brake System (WBS)

ALI V2

Principles

Used

(Keywords)

L5

(Reusability)

Interface template MethodInterface and the interfaces of type MethodInterface (defined in Section 8.3.3 and

8.3.4, respectively) can be used in any type of system architecture wherever an interface of this type is required.

Component types (defined in Section 8.3.5) can be easily reused in any type of civil airborne system as part of

their wheel brake system to apply the brake on the wheel. As explained in Chapter 6, the system can be adopted

by simply mapping their feature set to the required system where it will be deployed.

For example, component type Aircraft_BrakePedal have features Electronic_Brake and Mechanic_Brake.

These features are one of the methods used to apply the brake on the wheels of the commercial aircraft. The

artefact description of the component type Aircraft_BrakePedal are defined in such a way that it allows to use

it in another system where electrical braking is not supported by simply adopting the feature Mechanic_Brake

of it.

As components are dependent on interfaces, the component type Aircraft_BrakePedal should reuse the

interfaces from their definition, using pre-defined interface template MethodInterface and their corresponding

interface types. Similarly, instances of other component types that have been defined internally to design the

component type will also be reused. For example, component type Aircraft_PressureValve (defined in

P5

(Reusability)

213

Limitations

Addressed

(Keywords)

CASE STUDY: Wheel Brake System (WBS)

ALI V2

Principles

Used

(Keywords)

Appendix E4) used instances of component types Command_Generator and Value_Monitor in its internal

configuration.

L6

(Information

Overload)

In the WBS architecture, in order to stop/decelerate the commercial aircraft wheels, the transaction domain

WheelDecelerationOnGround is defined textually in Section 8.3.10 and presented graphically using event

traces in Figure 26 to illustrate its behavioural description. It is defined textually in the system description

(Section 8.3.12) and presented graphically in Figure 28 as its structural description. In addition, the sequential

interaction of all the components involved in the transaction domain WheelDecelerationOnGround (such as

component Electrical_Pedal in Figure 27) are presented.

Thus, the WBS architecture provides multiple architectural views of a particular function of the WBS (as a

transaction domain) with a clear separation between structural and behavioural descriptions while maintaining

consistency between them. These different views capture the complexity of the WBS that can cater to different

stakeholders, depending upon their concern.

P6

(Multiview)

214

Limitations

Addressed

(Keywords)

CASE STUDY: Wheel Brake System (WBS)

ALI V2

Principles

Used

(Keywords)

L7

(Behavioural)

Considering the behavioural aspect of the WBS architecture, events such as HydraulicPressureRequest,

AntiSkid, etc., have been defined clearly, with their source and destination interface templates specified in

Section 8.3.7.

From the behavioural visualisation perspective, the transaction domains WheelDecelerationOnGround is

presented in the form of event traces that demonstrate the ways an event can occur to stop/decelerate the

commercial aircraft wheels, as demonstrated in Figure 26. For example, in transaction domain

WheelDecelerationOnGround, Reserve_Pressure_Request and MPedal_Position_Request are the events

that depends on the conditions BluePressure_Failed. This is represented using AND Fork notation (as defined

in Chapter 6) which means that it can occur concurrently in the EMERGENCY braking mode. Similarly, other

event trace notations described in Chapter 6 are used while designing this transaction domain. Moreover, the

interactions of all the components that are involved in the transaction domain WheelDecelerationOnGround are

explicitly presented using a UML sequence diagram.

These aspects demonstrate the detailed behavioural description of the WBS architecture.

P6

(Multiview)

Table 17: WBS evaluation

215

8.5 Discussion

This section further discusses how ALI V2 attempts to reconcile the competing

principles (as discussed on Chapter 6) for the language in the context of the WBS case

study.

WBS is a single product system with multiple variants as defined in Section 8.3.6 that

specifies different modes of how brakes can be applied to wheels of commercial aircrafts

in order to stop/decelerate them on the ground. It corresponds to the Embedded Systems

application domain.

From the structural design perspective of the WBS, the connections made between

components are done via direct binding without the use of connectors because of its

embedded nature. This is visualised using the WBS graphical structural notation in Figure

28. In that design, it captures the complete structural information of the WBS architecture

in a single view (i.e. an overall system architecture). This is due to the simpler structural

architecture having fewer components with the simpler internal configuration.

Moreover, majority of the component interfaces are variable depending upon the mode

in which brake is applied to the wheels of the commercial aircraft. Variability to manage

these interfaces has been easily achieved using the ALI V2 architectural description

(design principle P1).

In spite of the simpler structural elements, WBS architecture has a sophisticated

behavioural architecture leading to complex interactions within the transactions. This is

visualised using the WBS graphical behavioural notation in the form of event traces in

Figure 26. Such interactions between components take place often with multiple events

flowing concurrently within them. Thus, it demonstrates that ALI V2 has the ability to

216

provide the right mechanisms to capture the behavioural complexity as needed by

overcoming the limitation (L7) with the principle (design principle P6).

Additionally, architectural elements (such as components and interfaces) defined in

the WBS architecture can be reused with minimal, or no, changes to their internal

description in other civil airborne systems, as mentioned in Table 17. This is due to the

granularity and reusability with the support of capturing variability in ALI V2 as per

design principle P5.

217

Part V

CONCLUSION

218

9
Chapter Nine

Conclusion and Future Perspectives

 “A conclusion is the place where you got tired thinking.”

 --Martin H. Fischer

 “The empires of the future are the empires of the mind.”

 --Winston Churchill

9.1 Summary and Conclusion

The contribution of the research work described in this thesis is threefold: First, it

identified the available approaches that represent variability in software architecture by

analysing the current state-of-the-art through a well-defined and methodical way known

as a Systematic Literature Review (SLR). Second, an existing ALI ADL was redesigned

to capture the variability in a comprehensive way (covering both structural and

behavioural aspects of the system) along with other essential functionalities (such as

reusability and multiple architectural views). Furthermore, it addressed the challenges

that were confining industrial practitioners from adopting the existing ADLs into their

practice. Finally, the evaluation of the new version of ALI (referred to as ALI V2) was

done using the two case studies: Asset Management System (AMS) and Wheel Brake

System (WBS).

The findings of the SLR were presented in a form that makes it accessible to

practitioners working in the area who are looking to choose the best variability approach

that fits their design needs. In addition, it will benefit researchers trying to identify areas

that require further exploration.

219

As a formalised notation, ALI ADL was chosen because it had already been developed

in an initial form within our research group. Moreover, an effort to develop ALI emerged

from the belief that a formal notation that can provide high level of flexibility in the

architectural designing can make an important contribution to a streamlined. Thus, by

tapping on its strength, an appropriate restructuring and refinement of the language was

made and a new version of the notation (referred to as ALI V2) was developed. Then, the

two real-life case studies were carried out using ALI V2 concepts to demonstrate the

better understanding of its constructs and notations.

To summarise this thesis, Part I presented the motivating factors and research

questions that led to this research along with the original contributions made in this work.

Subsequently, the adopted research methodology was described to carry out this research.

In Part II, ADLs that exists in the research literature were analysed in detail. The main

limitations were identified from those ADLs that have emerged from academic research,

but have failed to achieve any notable industrial adoption. This was followed by the

approaches that represent variability in software architecture being identified through the

SLR.

Part III described the original version of ALI before this research started along with

the rationale behind it. This part also introduced a new enhanced version of ALI (i.e. ALI

V2), which addressed the limitations identified in its initial version and also considered

the current industrial requirements. Like behavioural description notations, architectural

artefact reusability concepts and multiple architectural views (both textually and

graphically) were introduced. Finally, in order to gain hands-on experience with the ALI

V2 notations, the two case studies were presented in Part IV.

220

The results achieved in this research work in the context of the corresponding research

questions (described in Chapter 1) are defined as the following:

RQ1: What approaches have been proposed to represent the variability in software

architecture and what are the limitations of these approaches?

A number of different approaches that represent variability in software architecture

were identified through the SLR. Among those, UML (a semi-formal notation) and ADLs

(a formal notation) seemed to be the most commonly used approaches for capturing

variability at an architectural level. UML was used in almost half of the selected primary

studies (via SLR review protocol), and it was extended through various mechanisms to

support variability. In addition, ADLs were mostly used in the product line domain.

Furthermore, the work on variability representation at the software architecture level

has been largely mapped into three main research areas: Software Product Lines (SPL);

Reference Architecture; and Service Oriented Architecture (SOA). The majority of the

work conducted in representing variability in software architecture was academically led,

and much of it had a fairly theoretical focus.

The limitations that exist in these approaches were technical limitations with the

research methodology adopted (for example, some papers only used one case study),

technical limitations with the approach presented (for example, only addressing

variability at either design time or runtime), and the combination of both limitations.

RQ2: How can variability be represented formally throughout the architectural

description? Furthermore, how will this representation assist in addressing the system’s

stakeholder concerns, particularly in large-scale industrial systems?

 To manage the size and complexity of the system, ALI V2 considered variability in

its architectural description as a first class citizen and as an integral part of the language.

The architectural design notations of ALI V2 (defined in Chapter 6) have the capability

221

to manage variability in the designing of the overall system architecture while designing

the individual architectural elements.

ALI V2 captures variability in its structural architectural elements (interfaces,

connectors and components) and in the overall system designing through the if/else

structure concept with the keywords “supported” and “unsupported”. The if/else

structure (similar to the concept of programming language) is used in its behavioural

description (transaction domain).

Within the if/else structure, ALI V2 supports the linkage of end-user features and

environmental conditions from the structural and behavioural aspect of the system,

respectively. This approach addresses the system’s stakeholder concerns by tracing the

requirements and increasing the architectural artefact reusability with the support of

managing variability.

RQ3: Which architectural description constructs (textual and graphical) are required to

best capture system behaviour, while maintaining support for variability?

ALI V2 architectural description provides explicit constructs to describe the

behavioural aspect of the system. The ALI V2 notation for the constructs -transaction

domain (textually) and event traces (graphically) describes an architectural behavioural

description of a particular system function. Variability is captured while using the

conditions construct within the if/else structure as explained in RQ2.

Also, individual component interactions within a transaction domain are presented

through the UML sequence diagram. The events construct is also explicitly defined which

creates the interaction between the components and scenarios that describes system

behaviour in various contexts.

222

RQ4: How can ADLs be extended to support system modelling that spans multiple

application domains?

In order to illustrate how the proposed ADL (ALI V2) can be applied, two case studies

were used to demonstrate the concepts of ALI V2 (described in Chapter 7 and Chapter 8,

respectively). The two case studies were selected from two distinct application domains,

namely Information Systems (Asset Management System -AMS) and embedded systems

(Wheel Brake System -WBS) to illustrate ALI V2’s cross application domain modelling

capabilities. Moreover, a number of other criteria were considered to select the case

studies, including existence of inherent variability in the application domain, different

types of connectivity between the components, complexity (information overload), varied

emphasis on behavioural versus structural descriptions, potential for artefact reusability

within the case study, and access to full technical details.

Criteria
Case Studies

 AMS WBS

Existence of inherent variability High Low

Types of connectivity With connectors Direct binding

Level of complexity (overall) High Low

Level of complexity (structural) High Low

Level of complexity (behavioural) Low High

Artefact reusability Medium Medium

Table 18: Case studies criteria

Table 18 demonstrates the comparison between the two case studies against the

selection criteria for the case studies.

223

9.2 Future Perspectives

ALI V2 represents a significant benefit for software architects, but while addressing

the research questions for this work, a number of new tasks and challenges were

identified. These are summarized in this section and can be explored further as future

perspectives for research.

The future perspectives are categorised into two parts, short term and long term, which

are as follows:

9.2.1 Short Term

The short-term future perspective aims to address issues directly related to the work

conducted throughout this research. They are:

 Architecture evaluation in a broader scope: Architecture evaluation is one

of the important fields in which we plan to place top priority for further research.

The evaluation of ALI V2 will be done in a broader scope by applying it to several

additional types of case studies. The aim will be to demonstrate the clear

applicability of all the ALI V2 constructs and notations that were not covered in

Part IV of this thesis, such as application of pattern templates notation and

simultaneous use of all types of architectural structuring (i.e., using connectors,

patterns and direct connection via component interfaces) in one system.

To accomplish this, along with its application into other real-life case studies,

ALI V2 will be particularly evaluated within Cyber Physical System (CPS) and

the Internet of Things (IoT), where the system crosscuts different domains.

Information systems (IS) and embedded systems are the domains involved in IoT

that exchange data between smart devices, and seeking access to such systems

224

from potential industrial partners in order to evaluate ALI V2 on real-life

industrial applications is under way.

 Increased level of reusability architectural artefacts: To rapidly use

already designed components and connectors (along with their interface

descriptions) in system designing, our aim is to provide a formal syntactical

definition of features, defined in component type and connector type notations in

Chapter 6, by replacing the feature descriptions with simple textual descriptions.

This could be done in the form of defining some attributes/parameters related to

features along with some matching constraints so that software architects can

easily recognise component/connector functionality they want to use and their

level of compatibility into a system. This design strategy can be accomplished by

taking some concepts from interface template notation (defined in Chapter 6).

 Tool support: Tool support is an important factor for successful industrial

adoption of a language or process, so it needs to be developed to support the

creation of ALI V2 descriptions and their transformations to design-level

descriptions. The aim is to develop the ALI V2 tool in collaboration with

industrial partners by considering their requirements from tool support

perspectives. Particularly, those industrial partners will be approached where ALI

V2 architectural descriptions have already been evaluated, as demonstrated in Part

IV of this thesis.

To achieve this, first a parser will be developed to provide a complete textual

editor for ALI V2. Then, an open source tool platform will provide full support

for the ALI V2 conceptual model. The tool will be intended for both end users

and tool developers (somewhat similar to the concept of the AADL tool, OSATE).

225

9.2.2 Long Term

The longer-term future perspective goals focus on the broader aims, future research

policies and vision are as follows:

 Architecture abstraction levels: To enhance the capability of multiple

architectural views in ALI V2 and to handle the complexity of the system

(particularly, large-scale software system), the concept of setting different levels

in order to abstract the system architecture will be introduced. These levels will

be set in the ALI V2 architectural description (from both structural and

behavioural aspects) and in its tool as well.

For example, when a component A interacts with component B (let’s say a

database component). At the first level, the event access_database to be visible

and flow from A to B will be set. Then, in the second level, the events

search_database, update_database, etc., to be visible and their flow between

those components will be set. In parallel, the levels of components and the

connectors associated with them to be displayed from the structural aspect will

also be set. All the corresponding elements visible in a particular level will be

hidden in other levels (both before and after abstraction levels) if they are not

playing any role in that level description.

This approach will be similar to the concept of using Google Maps. Let’s say

to locate a particular city in the world, we can find it by moving from continent

(level one) to country (level two) and then to city (level three) by simply tapping

it. This will be the visual representation in terms of application in the ALI V2 tool,

but our intention is one step ahead of this: to present the textual notation in ALI

V2 ADL.

226

 Energy-aware ADL: Another potential route with this research, once the textual

and graphical notations of ALI V2 reach a stable version (after the successful

application of the prior future perspectives), is to make ALI V2 an energy-aware

ADL.

As architectural design decisions decisively impact the energy aware software

systems, an energy awareness–related constraints will be designed in the form of

ALI V2 constructs and notations. This will be done by adopting concepts from

existing energy consumption approaches or models that have been successfully

implemented in other phases of software development.

In addition to this, our plan is to investigate whether an energy aware design

approach at the architectural level (particularly, in an ADL) should be considered,

either implicitly or explicitly, by practitioners and experts. Moreover, to identify

their requirements in relation to this aspect will be considered. Currently, the

process to identify the potential industrial partners for that reason are under

consideration, because their feedback will be an important factor in making such

decisions.

 Architecture-focused testing: In order to gain confidence in the quality of

the software system, including its architecture, the best approach is to perform a

thorough analysis, such as via software testing. A well-designed ADLs represent

significant opportunities for testing because they formally describe how a

software system is expected to behave in a high-level view that allows test

engineers to focus on system structure.

Currently, we are working on a technique to develop test cases at the

architectural level based on existing state-based testing algorithms using a well-

227

known ADL, Architecture Analysis and Design Language (AADL) (Feiler, Gluch

and Hudak, 2006). Along with this, defining testability profiles (developed by the

Software Engineering Institute [SEI]) on existing AADL designs is in progress.

This work is on-going in collaboration with the Strategic Software Engineering

Research Group at Clemson University, USA.

Once experience is gained with AADL, a similar approach will be applied by

providing a testing mechanism specifically design for ALI V2 architectural

descriptions. This perspective would make ALI V2 the first complete and

powerful language that practitioners can apply into their systems without any

doubt of their system failure.

It is also important to clarify here that the order in which perspectives were defined

will be worked out in the future accordingly to that order, excluding architecture

evaluation, which is a recurring prospective throughout the research.

228

References

Abu-Matar, M. and Gomaa, H. (2011) 'Variability Modeling for Service Oriented Product Line

Architectures', Proceedings of the 15th International Software Product Line Conference (SPLC),

pp. 110-119.

Adjoyan, S. and Seriai, A. (2015) 'An Architecture Description Language for Dynamic Service-

Oriented Product Lines', Proceedings of the 27th International Conference on Software

Engineering and Knowledge Engineering (SEKE). Pittsburgh, USA.

Ahn, H. and Kang, S. (2011) 'Analysis of Software Product Line Architecture Representation

Mechanisms', Proceedings of the Ninth International Conference on Software Engineering

Research, Management and Applications. Baltimore, MD. pp. 219-226.

Albassam, E. and Gomaa, H. (2013) 'Applying software product lines to multiplatform video

games', Proceedings of the 3rd International Workshop on Games and Software Engineering

(GAS), pp. 1-7.

Allen, R., Douence, R. and Garlan, D. (1998) 'Specifying and Analyzing Dynamic Software

Architectures', Astesiano, E. (ed.) Proceedings of the First International Conference on

Fundamental Approaches to Software Engineering, FASE. Springer Berlin Heidelberg, pp. 21-

37.

Allen, R. and Garlan, D. (1997) 'A formal basis for architectural connection', ACM Transactions

on Software Engineering and Methodology (TOSEM), 6(3), pp. 213-249. doi:

10.1145/258077.258078.

Alloui, I. and Oquendo, F. (2002) 'Supporting Decentralised Software-Intensive Processes Using

ZETA Component-Based Architecture Description Language.'. in J. Filipe, B. Sharp and

Miranda, P. (eds.) Enterprise Information Systems III. pp 97-106.

Andersson, J. and Bosch, J. (2005) 'Development and use of dynamic product-line architectures',

IEE Proceedings -Software, 152(1), pp. 15-28. doi: 10.1049/ip-sen:20041007.

Asikainen, T., Männistö, T. and Soininen, T. (2007) 'Kumbang: A domain ontology for modelling

variability in software product families', Adv. Eng. Inform., 21(1), pp. 23-40. doi:

10.1016/j.aei.2006.11.007.

Angelopoulos, K., Souza, V. E. S. and Mylopoulos, J. (2015) 'Capturing Variability in Adaptation

Spaces: A Three-Peaks Approach', Johannesson, P., Lee, L.M., Liddle, W.S., Opdahl, L.A. and

Pastor López, Ó. (eds.). Proceedings of the 34th International Conference on Conceptual

Modeling (ER 2015). Stockholm, Sweden. Springer International Publishing, pp. 384-398.

229

Auguston, M. (2009) 'Monterey Phoenix, or how to make software architecture executable',

Proceedings of the 24th ACM SIGPLAN conference companion on Object oriented programming

systems languages and applications. Orlando, Florida, USA. ACM, pp. 1031-1040.

Bachmann, F. and Bass, L. (2001) 'Managing variability in software architectures', SIGSOFT

Softw. Eng. Notes, 26(3), pp. 126-132. doi: 10.1145/379377.375274.

Barbosa, E. A., Batista, T., Garcia, A. and Silva, E. (2011a) 'PL-AspectualACME: an aspect-

oriented architectural description language for software product lines'. Proceedings of the 5th

European conference on Software architecture. Essen, Germany. 2041808: Springer-Verlag, pp.

139-146.

Barbosa, E. A., Batista, T., Garcia, A. and Silva, E. (2011b) 'PL-AspectualACME: an aspect-

oriented architectural description language for software product lines'. Proceedings of the 5th

European conference on Software architecture (ECSA). Essen, Germany. 2041808: Springer-

Verlag, pp. 139-146.

Bashroush, R. (2010) 'A NUI Based Multiple Perspective Variability Modeling CASE Tool'. in

Babar, M.A. and Gorton, I. (eds.) Software Architecture. Springer Berlin Heidelberg, 55 55 pp

523-526.

Bashroush, R., Brown, T. J., Spence, I. and Kilpatrick, P. (2005) 'ADLARS: An Architecture

Description Language for Software Product Lines', Proceedings of the 29th Annual IEEE/NASA

Software Engineering Workshop, pp. 163-173.

Bashroush, R., Spence, I., Kilpatrick, P. and Brown, J. (2006) 'Towards more flexible architecture

description languages for industrial applications', Proceedings of the Third European conference

on Software Architecture. Nantes, France. 2081985: Springer-Verlag, pp. 212-219.

Bashroush, R., Spence, I., Kilpatrick, P., Brown, T. J., Gilani, W. and Fritzsche, M. (2008) 'ALI:

An Extensible Architecture Description Language for Industrial Applications', Proceedings of the

15th Annual IEEE International Conference and Workshop on the Engineering of Computer

Based Systems, ECBS. 1396050: IEEE Computer Society, pp. 297-304.

Bass, L., Clements, P. and Kazman, R. (2012) Software Architecture in Practice. 3rd edn.

Addison-Wesley Professional.

Bastarrica, M. C., Rivas, S. and Rossel, P. O. (2007) 'From a Single Product Architecture to a

Product Line Architecture', Proceedings of the XXVI International Conference of the Chilean

Society of Computer Science, SCCC. pp. 115-122.

Booch, G., Rumbaugh, J. and Jacobson, I. (2005) The Unified Modeling Language User Guide,

2nd Edition (Addison-Wesley Object Technology Series). Addison-Wesley Professional.

230

Brito, P. H. S., Rubira, C. M. F. and de Lemos, R. (2009) 'Verifying architectural variabilities in

software fault tolerance techniques', Proceedings of the Joint Working IEEE/IFIP Conference on

Software Architecture, 2009 & European Conference on Software Architecture. pp. 231-240.

Brown, T. J., Gawley, R., Bashroush, R., Spence, I., Kilpatrick, P. and Gillan, C. (2006) 'Weaving

behavior into feature models for embedded system families', Proceedings of the 10th

International Software Product Line Conference (SPLC). pp. 52-61.

Canal, C., Pimentel, E. and Troya, J. M. (1999) 'Specification and Refinement of Dynamic

Software Architectures', Proceedings of the TC2 First Working IFIP Conference on Software

Architecture (WICSA). San Antonio, Texas USA. pp. 107-126.

Carvalho, S. T., Murta, L. and Loques, O. (2012) 'Variabilities as first-class elements in product

line architectures of homecare systems', Proceedings of the 4th International Workshop on

Software Engineering in Health Care (SEHC). pp. 33-39.

Cassou, D., Bertran, B., Loriant, N. and Consel, C. (2009) 'A generative programming approach

to developing pervasive computing systems', ACM SIGPLAN Notices, 45(2), pp. 137-146. doi:

10.1145/1837852.1621629.

Cavalcante, E., Medeiros, A. L. and Batista, T. (2013) 'Describing Cloud Applications

Architectures', Proceedings of the 7th European conference on Software Architecture, ECSA.

Montpellier, France. Springer-Verlag, pp. 320-323.

Chang, C. K. and Seongwoon, K. (1999) 'I³: a Petri-net based specification method

for architectural components', Proceedings of the Twenty-Third Annual International Computer

Software and Applications Conference, COMPSAC. pp. 396-402.

Chaudet, C. and Oquendo, F. (2000) 'pi-SPACE: a formal architecture description language based

on process algebra for evolving software systems', Proceedings of the Fifteenth IEEE

International Conference on Automated Software Engineering, ASE. pp. 245-248.

Chen, L., Babar, M. A. and Ali, N. (2009) 'Variability management in software product lines: a

systematic review', Proceedings of the 13th International Software Product Line Conference. San

Francisco, California. 1753247: Carnegie Mellon University, pp. 81-90.

Clements, P. C. (1996) 'A Survey of Architecture Description Languages', Proceedings of the 8th

International Workshop on Software Specification and Design. IEEE Computer Society, pp. 16-

25.

Coelho, K. and Batista, T. (2011) 'From Requirements to Architecture for Software Product

Lines', Proceedings of the 9th Working IEEE/IFIP Conference on Software Architecture

(WICSA). pp. 282-289.

231

Cuenot, P., Frey, P., Johansson, R., Lönn, H., Papadopoulos, Y., Reiser, M.-O., . . . Weber, M.

(2010) 'The EAST-ADL Architecture Description Language for Automotive Embedded

Software', Giese, H., Karsai, G., Lee, E., Rumpe, B. and Schätz, B. (eds.). Proceedings of the

International Dagstuhl Workshop on Model-Based Engineering of Embedded Real-Time Systems.

Springer Berlin Heidelberg, pp. 297-307.

Dai, L. (2009) 'Security Variability Design and Analysis in an Aspect Oriented Software

Architecture', Proceedings of the Third IEEE International Conference on Secure Software

Integration and Reliability Improvement. 1685781: IEEE Computer Society, pp. 275-280.

Dashofy, E. M., van der Hoek, A. and Taylor, R. N. (2005) 'A comprehensive approach for the

development of modular software architecture description languages', ACM Transactions

on Software Engineering Methodology, 14, pp. 199-245.

Davy Su, Bruno De Fraine and Vanderperren, W. (2005) 'FuseJ: An architectural description

language for unifying aspects and components', Proceedings of the AOSD 2005 Workshop on

Software Engineering Properties of Languages for Aspect Technologies (SPLAT). pp. 1-8.

de Moraes, A. L. S., de C Brito, R., Contieri, A. C., Ramos, M. C., Colanzi, T. E., de S Gimenes,

I. M. and Masiero, P. C. (2010) 'Using Aspects and the Spring Framework to Implement

Variabilities in a Software Product Line', Proceedings of the XXIX International Conference of

the Chilean Computer Science Society (SCCC). pp. 71-80.

Dhungana, D., Neumayer, T., Grünbacher, P. and Rabiser, R. (2008) 'Supporting the Evolution

of Product Line Architectures with Variability Model Fragments', Proceedings of the Seventh

Working IEEE/IFIP Conference on Software Architecture, WICSA. pp. 327-330.

Diaz, J., Perez, J., Fernandez-Sanchez, C. and Garbajosa, J. (2013) 'Model-to-Code

Transformation from Product-Line Architecture Models to AspectJ', Proceedings of the 39th

EUROMICRO Conference on Software Engineering and Advanced Applications (SEAA). pp. 98-

105.

Dobrica, L. and Niemelä, E. (2008) 'An Approach to Reference Architecture Design for Different

Domains of Embedded Systems', Proceedings of the Software Engineering Research and

Practice. pp. 287-293.

Duran-Limon, H. A., Garcia-Rios, C. A., Castillo-Barrera, F. E. and Capilla, R. (2015) 'An

Ontology-Based Product Architecture Derivation Approach', IEEE Transactions on Software

Engineering, 41(12), pp. 1153-1168. doi: 10.1109/TSE.2015.2449854.

232

Eklund, U., Askerdal, Ö., Granholm, J., Alminger, A. and Axelsson, J. (2005) 'Experience of

introducing reference architectures in the development of automotive electronic systems',

Proceedings of the second international workshop on Software engineering for automotive

systems. St. Louis, Missouri. 1083195: ACM, pp. 1-6.

Feiler, P. H., Gluch, D. P. and Hudak, J. J. (2006) The Architecture Analysis & Design Language

AADL: An Introduction. Pittsburgh, USA.: Software Engineering Institute, Carnegie Mellon

University.

Galster, M. and Avgeriou, P. (2011) 'Handling Variability in Software Architecture: Problems

and Implications', Proceedings of the Ninth Working IEEE/IFIP Conference on Software

Architecture. 2015583: IEEE Computer Society, pp. 171-180.

Galster, M. and Avgeriou, P. (2011) 'The notion of variability in software architecture: results

from a preliminary exploratory study', Proceedings of the 5th Workshop on Variability Modeling

of Software-Intensive Systems. Namur, Belgium. 1944899: ACM, pp. 59-67.

Galster, M., Avgeriou, P. and Tofan, D. (2013) 'Constraints for the design of variability-intensive

service-oriented reference architectures – An industrial case study', Information and Software

Technology, 55(2), pp. 428-441.

Galster, M., Männistö, T., Weyns, D. and Avgeriou, P. (2014a) 'Variability in software

architecture: the road ahead', ACM SIGSOFT Software Engineering Notes, 39(4), pp. 33-34.

Galster, M., Weyns, D., Tofan, D., Michalik, B. and Avgeriou, P. (2014b) 'Variability in Software

Systems - A Systematic Literature Review.', IEEE Transaction Software Engineering, 40(3), pp.

282-306.

Garcia, A., Chavez, C., Batista, T., Sant’anna, C., Kulesza, U., Rashid, A. and Lucena, C. (2006)

'On the Modular Representation of Architectural Aspects', Gruhn, V. and Oquendo, F. (eds.).

Proceedings of the Third European Workshop on Software Architecture, EWSA. Springer Berlin

Heidelberg, pp. 82-97.

Garlan, D. (2014) 'Software architecture: a travelogue', Proceedings of the on Future of Software

Engineering. Hyderabad, India. ACM, pp. 29-39.

Garlan, D., Allen, R. and Ockerbloom, J. (1994) 'Exploiting style in architectural design

environments', SIGSOFT Softw. Eng. Notes, 19(5), pp. 175-188. doi: 10.1145/195274.195404.

Garlan, D., Monroe, R. and Wile, D. (1997) 'Acme: an architecture description interchange

language', Proceedings of the Centre for Advanced Studies on Collaborative research, CASCON'.

pp. 169-183.

233

Gomaa, H. (2013) 'Evolving software requirements and architectures using software product line

concepts', Proceedings of the 2nd International Workshop on the Twin Peaks of Requirements

and Architecture (TwinPeaks). pp. 24-28.

Gorlick, M. M. and Razouk, R. R. (1991) 'Using weaves for software construction and analysis',

Proceedings of the 13th International Conference on Software Engineering, ICSE. pp. 23-34.

Groher, I. and Weinreich, R. (2013) 'Strategies for Aligning Variability Model and Architecture',

Proceedings of the 20th Asia-Pacific Software Engineering Conference (APSEC). pp. 511-516.

Groher, I. and Weinreich, R. (2013) 'Supporting Variability Management in Architecture Design

and Implementation', Proceedings of the 46th Hawaii International Conference on System

Sciences (HICSS). pp. 4995-5004.

Haber, A., Hölldobler, K., Kolassa, C., Look, M., Müller, K., Rumpe, B. and Schaefer, I. (2013)

'Engineering Delta Modelling Languages'. Proceedings of the 17th International Software

Product Line Conference (SPLC). Tokyo, Japan. pp. 22-31.DOI: 10.1145/2491627.2491632.

Haber, A., Kutz, T., Rendel, H., Rumpe, B. and Schaefer, I. (2011a) 'Delta-oriented architectural

variability using MontiCore', Proceedings of the 5th European Conference on Software

Architecture ECSA. Essen, Germany. ACM New York, NY, USA, pp. 1-10.

Haber, A., Rendel, H., Rumpe, B. and Schaefer, I. (2011b) 'Delta Modeling for Software

Architectures', Proceedings of the Dagstuhl Workshop on Model-Based Development of

Embedded Systems MBEES. Germany.

Haber, A., Rendel, H., Rumpe, B., Schaefer, I. and van der Linden, F. (2011c) 'Hierarchical

Variability Modeling for Software Architectures', Proceedings of the 15th International Software

Product Line Conference (SPLC). pp. 150-159.

Haber, A., Ringert, J. O. and Rumpe, B. (2012) MoniArc - Architectural Modeling of Interactive

Distributed ad Cyber-Physical Systems. Germany: RWTH Aachen University.

Halpin, T. (2010) 'Object-Role Modeling: Principles and Benefits', International Journal of

Information System Modeling and Design, 1(1), pp. 33-57. doi: 10.4018/jismd.2010092302.

Halpin, T. and Morgan, T. (2008) Information Modeling and Relational Databases. Morgan

Kaufmann Publishers Inc.

Harel, D. and Rumpe, B. (2004) 'Meaningful modeling: what's the semantics of "semantics"?',

Computer, 37(10), pp. 64-72. doi: 10.1109/MC.2004.172.

Helleboogh, A., Weyns, D., Schmid, K., Holvoet, T., Schelfthout, K. and Van Betsbrugge, W.

(2009) 'Adding variants on-the-fly: Modeling meta-variability in dynamic software product lines',

234

Proceedings of the Third International Workshop on Dynamic Software Product Lines (DSPL

{@} SPLC 2009). Pittsburgh, PA, USA. Carnegie Mellon University, pp. 18-27.

Hoare, C. A. R. (1985) Communicating sequential processes. Upper Saddle River, NJ, USA:

Prentice-Hall, Inc.

Hoek, A. v. d. (2004) 'Design-time product line architectures for any-time variability', Sci.

Comput. Program, 53(3), pp. 285-304. doi: 10.1016/j.scico.2003.04.003.

Hwi, A., Sungwon, K. and Jihyun, L. (2013) 'A Case Study Comparison of Variability

Representation Mechanisms with the HeRA Product Line', Proceedings of the IEEE 16th

International Conference on Computational Science and Engineering (CSE). pp. 416-423.

ARP 4761 (1996) 'ARP 4761: Guidelines and Methods for Conducting the Safety Assessment

Process on Civil Airborne Systems and Equipment'.

ISO/IEC/IEEE (2011), ISO/IEC/IEEE 42010:2011(E) (Revision of ISO/IEC 42010:2007 and

IEEE Std 1471-2000), pp. 1-46. doi: 10.1109/IEEESTD.2011.6129467.

Java Compiler Compiler tm (JavaCC tm). Available at: https://javacc.java.net/.

Johnson, J. and Henderson, A. (2002) 'Conceptual models: begin by designing what to design',

Interactions, 9(1), pp. 25-32. doi: 10.1145/503355.503366.

Kakarontzas, G., Stamelos, I. and Katsaros, P. (2008) 'Product Line Variability with Elastic

Components and Test-Driven Development', Proceedings of the International Conference on

Computational Intelligence for Modelling Control & Automation. pp. 146-151.

Kang, K. C., Cohen, S. G., Hess, J. A., Novak, W. E. and Patterson, A. S. (1990) Feature Oriented

Domain Analysis (FODA) feasibility study. Software Engineering Institute, Carnegie Mellon

University CMU/SEI-90-TR-21.

Kim, Y.-G., Lee, S. K. and Jang, S.-B. (2011) 'Variability Management for Software Product-

line Architecture Development', International Journal of Software Engineering and Knowledge

Engineering, 21(07), pp. 931-956. doi:10.1142/S0218194011005542.

Kitchenham, B. and Charters, S. (2007) 'Guidelines for Performing Systematic Literature

Reviews in Software Engineering (version 2.3)'.in Technical report, Keele University and

University of Durham.

Klien, P. (2010) 'The Architecture Description Language MoDeL'. in Engels, G., Lewerentz, C.,

Schäfer, W., Schürr, A. and Westfechtel, B. (eds.) Graph Transformations and Model-Driven

Engineering. Springer Berlin Heidelberg, pp 249-273.

https://javacc.java.net/

235

Kruchten, P., Obbink, H. and Stafford, J. (2006) 'The Past, Present, and Future for Software

Architecture', IEEE Software, 23(2), pp. 22-30. doi: 10.1109/ms.2006.59.

Lago, P., Malavolta, I., Muccini, H., Pelliccione, P. and Tang, A. (2015) 'The Road Ahead for

Architectural Languages', IEEE Software, 32(1), pp. 98-105. doi: 10.1109/MS.2014.28.

Laser, M. S., Rodrigues, E. M., Domingues, A., Oliveira, F. and Zorzo, A. F. (2015)

'Architectural Evolution of a Software Product Line: an experience report', Proceedings of the

27th International Conference on Software Engineering and Knowledge Engineering (SEKE).

Pittsburgh, USA.

Losavio, F., Ordaz, O., Levy, N. and Baiotto, A. (2013) 'Graph modelling of a refactoring process

for Product Line Architecture design', Proceedings of the XXXIX Latin American Computing

Conference (CLEI). pp. 1-12.

Luckham, D. C., Kenney, J. J., Augustin, L. M., Vera, J., Bryan, D. and Mann, W. (1995)

'Specification and analysis of system architecture using Rapide', IEEE Transactions on Software

Engineering, 21, pp. 336-355.

Lytra, I., Eichelberger, H., Tran, H., Leyh, G., Schmid, K. and Zdun, U. (2014) 'On the

Interdependence and Integration of Variability and Architectural Decisions', Proceedings of the

Eighth International Workshop on Variability Modelling of Software-Intensive Systems (VaMoS).

Sophia Antipolis, France. pp. 1-8.

López, N., Casallas, R. and Hoek, A. v. d. (2009) 'Issues in mapping change-based product line

architectures to configuration management systems'. Proceedings of the 13th International

Software Product Line Conference. San Francisco, California. Carnegie Mellon University, pp.

21-30.

Magableh, B. and Barrett, S. (2010) 'Primitive component architecture description language',

Proceedings of the 7th International Conference on Informatics and Systems (INFOS). pp. 1-7.

Magee, J. and Kramer, J. (1996) 'Dynamic structure in software architectures', Proceedings of

the 4th ACM SIGSOFT symposium on Foundations of software engineering. San Francisco,

California, USA. ACM, pp. 3-14.

Malavolta, I., Lago, P., Muccini, H., Pelliccione, P. and Tang, A. (2013) 'What Industry Needs

from Architectural Languages: A Survey', IEEE Transactions on Software Engineering, 39(6),

pp. 869-891. doi: 10.1109/TSE.2012.74.

Mann, S. and Rock, G. (2009) 'Dealing with Variability in ArchitectureDescriptions to Support

Automotive Product Lines: Specification and Analysis Methods', Proceedings of the Embedded

World Conference. Nurnberg, Deutschland. WEKA Fachmedien.

236

Martin, P. Y. and Turner, B. A. (1986) 'Grounded Theory and Organizational Research', The

Journal of Applied Behavioral Science, 22(2), pp. 141-157. doi: 10.1177/002188638602200207.

Matt, G. E. and D.Cook, T. (1994) 'Threats to the validity of research synthesis'. in Cooper, H.

and Hedges, L.V. (eds.) In the Handbook of Research Synthesis. New York: Russell Sage

Foundation, pp 503-520.

Medvidovic, N. and Taylor, R. N. (2000a) 'A Classification and Comparison Framework for

Software Architecture Description Languages', IEEE Transactions on Software Engineering,

26(1), pp. 70-93.

Medvidovic, N. and Taylor, R. N. (2000b) 'A Classification and Comparison Framework for

Software Architecture Description Languages', IEEE Trans. Softw. Eng., 26(1), pp. 70-93.

Medvidovic, N., Taylor, R. N. and Whithead, E. J. J. (1996) 'Formal modeling of software

architectures at multiple levels of abstraction', Proceedings of the California Software

Symposium. California, USA. pp. 28-40.

Mei, H., Chen, F., Wang, A. Q. and Feng, A. Y.-D. (2002) 'ABC/ADL: An ADL Supporting

Component Composition'. Proceedings of the 4th International Conference on Formal

Engineering Methods: Formal Methods and Software Engineering. London, UK. Springer-

Verlag, pp. 38-47.

Mikyeong, M., Heung Seok, C., Taewoo, N. and Keunhyuk, Y. (2007) 'A Metamodeling

Approach to Tracing Variability between Requirements and Architecture in Software Product

Lines', Proceedings of the 7th IEEE International Conference on Computer and Information

Technology. pp. 927-933.

Moon, M., Chae, H. S. and Yeom, K. (2006) 'A metamodel approach to architecture variability

in a product line', Proceedings of the 9th international conference on Reuse of Off-the-Shelf

Components. Turin, Italy. 2172044: Springer-Verlag, pp. 115-126.

Murata, T. (1989) 'Petri nets: Properties, analysis and applications', Proceedings of the IEEE,

77(4), pp. 541-580. doi: 10.1109/5.24143.

Myllärniemi, V., Raatikainen, M. and Männistö, T. (2015) 'Representing and Configuring

Security Variability in Software Product Lines', Proceedings of the 11th International ACM

SIGSOFT Conference on Quality of Software Architectures (QoSA). Montréal, QC, Canada. pp.

1-10.

Myllärniemi, V., Ylikangas, M., Raatikainen, M., Pääkkö, J., Männistö, T. and Aaltonen, T.

(2012) 'Configurator-as-a-service: tool support for deriving software architectures at runtime',

Proceedings of the WICSA/ECSA, Helsinki, Finland. 2362031: ACM, pp. 151-158.

237

Navasa, A., Pérez-Toledano, M. A. and Murillo, J. M. (2009) 'An ADL dealing with aspects at

software architecture stage', Information and Software Technology, 51(2), pp. 306-324. doi:

http://dx.doi.org/10.1016/j.infsof.2008.03.009.

Ommering, R. V., van der Linden, F., Kramer, J. and Magee, J. (2000) 'The Koala Component

Model for Consumer Electronics Software', IEEE Computer, 33, pp. 78-85. doi:

10.1109/2.825699.

Oquendo, F. (2004) 'π-ADL: an Architecture Description Language based on the higher-order

typed π-calculus for specifying dynamic and mobile software architectures', ACM SIGSOFT

Softw. Eng. Notes, 29(3), pp. 1-14.

Ortiz, F. J., Pastor, J. A., Alonso, D., Losilla, F. and de Jódar, E. (2005) 'A reference architecture

for managing variability among teleoperated service robots', Proceedings of the 2nd International

Conference on Informatics in Control Automation and Robotics (ICINCO). pp. 322-328.

P. Armstrong, G. Lowe, J. Ouaknine and Roscoe, A. W. (2012) 'Model checking Timed CSP',

Korovina, A.V.a.M. (ed. Proceedings of the HOWARD-60. A Festschrift on the Occasion of

Howard Barringer's 60th Birthday. EasyChair, pp. 13-33.

Binns, P., Englehart, M., Jackson, M. and Vestal, S. (1996) 'Domain-Specific Software

Architectures for Guidance, Navigation and Control.', International Journal of Software

Engineering and Knowledge Engineering, 6(2), pp. 201-227.

Poizat, P., and Royer, J.-C. (2006) 'A Formal Architectural Description Language based on

Symbolic Transition Systems and Modal Logic', Journal of Universal Computer Science, 12(12),

pp. 1741-1782.

Pascual, G. G., Pinto, M. and Fuentes, L. (2013) 'Run-Time support to manage architectural

variability specified with CVL', Proceedings of the 7th European conference on Software

Architecture (ECSA). Montpellier, France. pp. 282-298.

Peng, X., Shen, L. and Zhao, W. (2009) 'An Architecture-based Evolution Management Method

for Software Product Line', Proceedings of the International Conference on Software

Engineering and Knowledge Engineering (SEKE). pp. 135-140.

Perez, J., Ramos, I., Jaen, J., Letelier, P. and Navarro, E. (2003) 'PRISMA: towards quality,

aspect oriented and dynamic software architectures', Proceedings of the Third International

Conference on Quality Software. pp. 59-66.

http://dx.doi.org/10.1016/j.infsof.2008.03.009

238

Pinto, M., Fuentes, L. and Troya, J. M. (2003) 'DAOP-ADL: An Architecture Description

Language for Dynamic Component and Aspect-Based Development', Pfenning, F. and

Smaragdakis, Y. (eds.). Proceedings of the 2nd International Conference on Generative

Programming and Component Engineering, GPCE. Springer Berlin Heidelberg, pp. 118-137.

Pérez, J., Díaz, J., Costa-Soria, C. and Garbajosa, J. (2009) 'Plastic Partial Components: A

solution to support variability in architectural components', Proceedings of the Joint Working

IEEE/IFIP Conference on Software Architecture, 2009 & European Conference on Software

Architecture. pp. 221-230.

Qureshi, T. N., Chen, D., Lönn, H. and Törngren, M. (2011) 'From EAST-ADL to AUTOSAR

software architecture: a mapping scheme'. Proceedings of the 5th European conference on

Software architecture. Essen, Germany. pp. 328-335.

Rademaker, A., Braga, C. and Sztajnberg, A. (2005) 'A Rewriting Semantics for a Software

Architecture Description Language', Electronic Notes in Theoretical Computer Science, 130(0),

pp. 345-377. doi: http://dx.doi.org/10.1016/j.entcs.2005.03.018.

Razavian, M. and Khosravi, R. (2008) 'Modeling variability in the component and connector

view of architecture using UML', Proceedings of the IEEE/ACS International Conference on

Computer Systems and Applications. 1544448: IEEE Computer Society, pp. 801-809.

Ringert, J. O., Rumpe, B. and Wortmann, A. (2013) 'MontiArcAutomaton: Modeling

Architecture and Behavior of Robotic Systems', Proceedings of the IEEE International

Conference on Robotics and Automation (ICRA). Karlsruhe, Germany.

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F. and William, L. (1991) Object-Oriented

Modeling and Design. Prentice-Hall, Inc.

Ruscio, D., Malavolta, I., Muccini, H., Pelliccione, P. and Pierantonio, A. (2010) 'ByADL: An

MDE Framework for Building Extensible Architecture Description Languages', Babar, M.A. and

Gorton, I. (eds.). Proceedings of the 4th European Conference on Software Architecture, ECSA.

Springer Berlin Heidelberg, pp. 527-531.

Satyananda, T. K., Danhyung, L. and Sungwon, K. (2007a) 'Formal Verification of Consistency

between Feature Model and Software Architecture in Software Product Line', Proceedings of the

International Conference on Software Engineering Advances, ICSEA.

Satyananda, T. K., Danhyung, L., Sungwon, K. and Hashmi, S. I. (2007b) 'Identifying

Traceability between Feature Model and Software Architecture in Software Product Line using

Formal Concept Analysis', Proceedings of the International Conference on Computational

Science and its Applications, ICCSA 2007., 26-29 Aug. 2007. pp. 380-388.

http://dx.doi.org/10.1016/j.entcs.2005.03.018

239

Savolainen, J., Oliver, I., Mannion, M. and Hailang, Z. (2005) 'Transitioning from product line

requirements to product line architecture', Proceedings of the 29th Annual International

Computer Software and Applications Conference, COMPSAC. pp. 186-195 Vol. 182.

Scowen, R. S. (1993) 'Extended BNF - A Generic Base Standard'. Proceedings of the Software

Engineering Standards Symposium (SESS). Brighton, United Kingdom.

Shaw, M. (2001) 'The coming-of-age of software architecture research', Proceedings of the 23rd

International Conference on Software Engineering, ICSE. pp. 657-664.

Shaw, M. and Clements, P. (2006) 'The golden age of software architecture', IEEE Software,

23(2), pp. 31-39. doi: 10.1109/MS.2006.58.

Shaw, M., DeLine, R., Klein, D. V., Ross, T. L., Young, D. M. and Zelesnik, G. (1995)

'Abstractions for software architecture and tools to support them', IEEE Transactions on Software

Engineering,, 21(4), pp. 314-335. doi: 10.1109/32.385970.

Silva, E., Medeiros, A. L., Cavalcante, E. and Batista, T. V. (2013) 'A Lightweight Language for

Software Product Lines Architecture Description', Proceedings of the 7th European Conference

on Software Architecture, ECSA. Montpellier, France. Springer, pp. 114-121.

Sinnema, M., Ven, J. S. v. d. and Deelstra, S. (2006) 'Using variability modeling principles to

capture architectural knowledge', SIGSOFT Softw. Eng. Notes, 31(5), p. 5. doi:

10.1145/1163514.1178645.

Smiley, K., Mahate, S. and Wood, P. (2014) 'A Dynamic Software Product Line Architecture for

Prepackaged Expert Analytics: Enabling Efficient Capture, Reuse and Adaptation of Operational

Knowledge', Proceedings of the Working IEEE/IFIP Conference on Software Architecture

(WICSA). pp. 205-214.

'Software Engineering Institute (SEI) / Carnegie Mellon University (CMU)'. Available at:

https://www.sei.cmu.edu/architecture/start/glossary/.

Stéphane Faulkner and Kolp, M. (2003) 'Towards An Agent Architectural Description Language

For Information Systems', Proceedings of the 5th International Conference on Enterprise

Information Systems ICEIS. France. Press, pp. 59-66.

Svahnberg, M. and Bosch, J. (2000) 'Issues Concerning Variability in Software Product Lines',

Proceedings of the International Workshop on Software Architectures for Product Families. pp.

146-157.

https://www.sei.cmu.edu/architecture/start/glossary/

240

Sánchez, P., Loughran, N., Fuentes, L. and Garcia, A. (2009) 'Engineering Languages for

Specifying Product-Derivation Processes in Software Product Lines', Dragan, G., evi, Ralf, L.,

mmel and Eric, W. (eds.). Proceedings of the International Conference on Software Language

Engineering. 1532466: Springer-Verlag, pp. 188-207.

Tekinerdogan, B. and Sözer, H. (2012) 'Variability viewpoint for introducing variability in

software architecture viewpoints', Proceedings of the WICSA/ECSA, Helsinki, Finland. pp. 163-

166.

Thiel, S. and Hein, A. (2002a) 'Modeling and Using Product Line Variability in Automotive

Systems', IEEE Softw., 19(4), pp. 66-72. doi: 10.1109/ms.2002.1020289.

Thiel, S. and Hein, A. (2002b) 'Systematic Integration of Variability into Product Line

Architecture Design', Proceedings of the Second International Conference on Software Product

Lines. 672257: Springer-Verlag, pp. 130-153.

Ubayashi, N., Nomura, J. and Tamai, T. (2010) 'Archface: a contract place where architectural

design and code meet together', Proceedings of the ACM/IEEE 32nd International Conference on

Software Engineering, ICSE. pp. 75-84.

Vestal, S. (1993) A Cursory Overview and Comparison of Four Architecture Description

Languages. Honeywell Technology Center.

Wang, Z., Peng, H., Guo, J., Zhang, Y., Wu, K., Xu, H. and Wang, X. (2012) 'An Architecture

Description Language Based on Dynamic Description Logics', Shi, Z., Leake, D. and Vadera, S.

(eds.). Proceedings of the 7th TC 12 International Conference on Intelligent Information

Processing VI. Springer Berlin Heidelberg, pp. 157-166.

Woods, E. and Bashroush, R. (2015) 'Modelling large-scale information systems using ADLs –

An industrial experience report', Journal of Systems and Software, 99, pp. 97-108. doi:

http://dx.doi.org/10.1016/j.jss.2014.09.018.

Woods, E. and Hilliard, R. (2005) 'Architecture Description Languages in Practice Session

Report', Proceedings of the 5th Working IEEE/IFIP Conference onSoftware Architecture,

WICSA. pp. 243-246.

Xiangyang, J., Shi, Y., Honghua, C. and Xie, D. (2007) 'A New Architecture Description

Language for Service-Oriented Architec', Proceedings of the Sixth International Conference on

Grid and Cooperative Computing, GCC. pp. 96-103.

Yao, C., Xiaoqing, L., Lingyun, Y., Dayong, L., Liu, T. and Hongli, Y. (2010) 'A ten-year survey

of software architecture', Proceedings of the IEEE International Conference on Software

Engineering and Service Sciences (ICSESS). pp. 729-733.

http://dx.doi.org/10.1016/j.jss.2014.09.018

241

Oh, Y., Lee, D. H., Kang, S., and Lee, J. H. (2007) 'Extended Architecture Analysis Description

Language for Software Product Line Approach in Embedded Systems', Proceedings of the 5th

IEEE/ACM International Conference on Formal Methods and Models for Codesign,

MEMOCODE. Nice, France. IEEE, pp. 87-88.

Yu, Y., Lapouchnian, A., Liaskos, S., Mylopoulos, J. and Leite, J. C. S. P. (2008) 'From goals to

high-variability software design', Proceedings of the 17th international conference on

Foundations of intelligent systems. Toronto, Canada. 1786476: Springer-Verlag, pp. 1-16.

Zhang, G.-q., Shi, H.-j. and Rong, M. (2011) 'Mismatch Detection of Asynchronous Web

Services with Timed Constraints', Proceedings of the IEEE Asia-Pacific Services Computing

Conference (APSCC). pp. 251-258.

Zhang, T., Xiang, D. and Wang, H. (2005) 'vADL: A Variability-Supported Architecture

Description Language for Specifying Product Line Architectures', Proceedings of the Second

International Software Product Lines Young Researchers Workshop (SPLYR) in conjunction with

the 9th International Software Product Line conference (SPLC). Rennes, France. pp. 31-37.

Zhu, J., Peng, X., Jarzabek, S., Xing, Z., Xue, Y. and Zhao, W. (2011) 'Improving product line

architecture design and customization by raising the level of variability modeling', Proceedings

of the 12th international conference on Top productivity through software reuse. Pohang, South

Korea. Springer-Verlag, pp. 151-166.

242

Appendices

A-1

Appendix A: Systematic Literature Review (SLR)

A1: List of Included Primary Studies in SLR

Study

Identifier
Paper Title

Publication

Year
Author(s) Source

S1

Systematic Integration of Variability into Product Line

Architecture Design

2002

Thiel, S., Hein, A.

(Thiel and Hein,

2002b)

S2 Modeling and Using Product Line Variability in Automotive

Systems

2002 Thiel, S., Hein, A (Thiel and Hein,

2002a)

S3 Design-time product line architectures for any-time variability 2004 Hoek, A. (Hoek, 2004)

S4 vADL: A Variability-Supported Architecture Description

Language for Specifying Product Line Architectures

2005 Zhang, T., Xiang, D., Wang,

H.

(Zhang, Xiang and

Wang, 2005)

S5 ADLARS: An Architecture Description Language for

Software Product Lines

2005 Bashroush, R., Brown, T. J.,

Spence, I., Kilpatrick, P.

(Bashroush et al.,

2005)

S6 Transitioning from Product Line Requirements to Product

Line Architecture.

2005 Savolainen, J., Oliver, I.,

Mannion, M., Hailang, Z.

(Savolainen et al.,

2005)

A-2

Study

Identifier
Paper Title

Publication

Year
Author(s) Source

S7 A Reference Architecture for Managing Variability among

Teleoperated Service Robots

2005 Ortiz, F. J., Pastor, J. A.,

Alonso, D., Losilla, F., de

Jódar, E.

(Ortiz et al., 2005)

S8 Experience of Introducing Reference Architectures in the

Development of Automotive Electronic Systems

2005 Eklund, U., Askerdal, O.,

Granholm, J., Alminger, A.,

Axelsson, J.

(Eklund et al., 2005)

S9 Development and use of dynamic product-line architectures 2005 Andersson, J., Bosch, J. (Andersson and

Bosch, 2005)

S10 A Metamodel Approach to Architecture Variability in a

Product Line

2006 Moon, M., Chae, H. S.,

Yeom, K.

(Moon, Chae and

Yeom, 2006)

S11 Using variability modeling principles to capture architectural

knowledge

2006 Sinnema, M.,

Salvador van der Ven, J.,

Deelstra, S.

(Sinnema, Ven and

Deelstra, 2006)

S12 From a Single Product Architecture to a Product Line

Architecture

2007 Bastarrica, M. C., Rivas, S.,

Rossel, P. O.

(Bastarrica, Rivas and

Rossel, 2007)

S13 Kumbang: A domain ontology for modelling variability in

software product families

2007 Asikainen, T., Männistö, T.,

Soininen, T.

(Asikainen, Männistö

and Soininen, 2007)

A-3

Study

Identifier
Paper Title

Publication

Year
Author(s) Source

S14 Identifying Traceability between Feature Model and Software

Architecture in Software Product Line using Formal Concept

Analysis

2007 Satyananda, T. K.,

Danhyung, L., Sungwon,

K., Hashmi, S. I.

(Satyananda et al.,

2007)

S15 A Metamodeling Approach to Tracing Variability between

Requirements and Architecture in Software Product Lines

2007 Moon, M., Chae, H. S.,

Nam, T., Yeom, K.

(Mikyeong et al.,

2007)

S16 Formal Verification of Consistency between Feature Model

and Software Architecture in Software Product Line

2007 Satyananda, T. K.,

Danhyung, L., Sungwon, K.

(Satyananda,

Danhyung and

Sungwon, 2007)

S17 Modeling Variability in the Component and Connector View

of Architecture Using UML

2008 Razavian, M., Khosravi, R. (Razavian and

Khosravi, 2008)

S18 ALI: An Extensible Architecture Description Language for

Industrial Applications

2008 Bashroush, R., Spence, I.,

Kilpatrick, P., Brown, T. J.,

Gilani, W., Fritzsche, M.

(Bashroush et al.,

2008)

S19 An Approach to Reference Architecture Design for Different

Domains of Embedded Systems

2008 Dobrica, L., Niemelä, E. (Dobrica and Niemelä,

2008)

A-4

Study

Identifier
Paper Title

Publication

Year
Author(s) Source

S20 From goals to high-variability software design 2008 Yu, Y., Lapouchnian, A.,

Liaskos, S., Mylopoulos, J.,

Leite, J. C. S. P.

(Yu et al., 2008)

S21 Supporting the Evolution of Product Line Architectures with

Variability Model Fragments

2008 Dhungana, D., Neumayer,

T., Grünbacher, P., Rabiser,

R.

(Dhungana et al.,

2008)

S22 Product Line Variability with Elastic Components and Test-

Driven Development

2008 Kakarontzas, G., Stamelos,

I., Katsaros, P.

(Kakarontzas,

Stamelos and

Katsaros, 2008)

S23 Engineering languages for specifying product-derivation

processes in Software Product Lines

2009 Sánchez, P., Loughran, N.,

Fuentes, L., Garcia, A.

(Sánchez et al., 2009)

S24 An Architecture-based Evolution Management Method for

Software Product Line

2009 Peng, X., Shen, L., Zhao,

W.

(Peng, Shen and Zhao,

2009)

S25 Issues in mapping change-based product line architectures to

configuration management systems

2009 López, N., Casallas, R.,

Hoek, A.

(López, Casallas and

Hoek, 2009)

A-5

Study

Identifier
Paper Title

Publication

Year
Author(s) Source

S26 Adding Variants on-the-fly: Modeling Meta-Variability in

Dynamic Software Product Lines

2009 Helleboogh, A., Weyns, D.,

Schmid, K., Holvoet, T.,

Schelfthout, K., Van

Betsbrugge, W.

(Helleboogh et al.,

2009)

S27 Plastic Partial Components: A solution to support variability

in architectural components

2009 Pérez, J., Díaz, J.,

Costa-Soria, C., Garbajosa,

J.

(Pérez et al., 2009)

S28 Dealing with variability in architecture descriptions to support

automotive product lines: Specification and analysis methods

2009 Mann, S., Rock, G. (Mann and Rock,

2009)

S29 Verifying Architectural Variabilities in Software Fault

Tolerance Techniques

2009 Brito, P. H. S., Rubira, C.

M. F., de Lemos, R.

(Brito, Rubira and de

Lemos, 2009)

S30 Security Variability Design and Analysis in an Aspect

Oriented Software Architecture

2009 Dai, L. (Dai, 2009)

S31 Using aspects and the Spring framework to implement

variabilities in a software product line

2010 de Moraes, A. L. S.,

de C Brito, R., Contieri, A.

C., Ramos, M. C., Colanzi,

T. E., de S Gimenes, I. M.,

Masiero, P. C.

(de Moraes et al.,

2010)

A-6

Study

Identifier
Paper Title

Publication

Year
Author(s) Source

S32 Variability Management for Software Product-line

Architecture Development

2011 Kim, Y., Lee, S., Jang, S. (Kim, Lee and Jang,

2011)

S33 Improving Product Line Architecture Design and

Customization by Raising the Level of Variability Modeling

2011 Zhu, J., Peng, X., Jarzabek,

S., Xing, Z., Xue, Y., Zhao,

W.

(Zhu et al., 2011)

S34 From Requirements to Architecture for Software Product

Lines

2011 Coelho, K., Batista, T. (Coelho and Batista,

2011)

S35 Analysis of Software Product Line Architecture

Representation Mechanisms

2011 Ahn, H., Kang, S. (Ahn and Kang, 2011)

S36 Delta Modeling for Software Architectures 2011 Haber, A., Rendel, H.,

Rumpe, B., Schaefer, I.

(Haber et al., 2011b)

S37 PL-AspectualACME: an aspect-oriented architectural

description language for software product lines

2011 Barbosa, E.A., Batista, T.,

Garcia, A., Silva, E.

(Barbosa et al., 2011)

S38 Variability Modeling for Service Oriented Product Line

Architectures

2011 Abu-Matar, M., Gomaa, H. (Abu-Matar and

Gomaa, 2011)

S39 Hierarchical Variability Modeling for Software Architectures 2011 Haber, A., Rendel, H.,

Rumpe, B., Schaefer, I.,

van der Linden, F.

(Haber et al., 2011c)

A-7

Study

Identifier
Paper Title

Publication

Year
Author(s) Source

S40 Delta-oriented Architectural Variability Using MontiCore 2011 Haber, A., Kutz, T., Rendel,

H., Rumpe, B., Schaefer, I.

(Haber et al., 2011a)

S41 Configurator-as-a-service: tool support for deriving software

architectures at runtime

2012 Myllärniemi, V., Ylikangas,

M., Raatikainen, M.,

Pääkkö, J., Männistö, T.,

Aaltonen, T.

(Myllärniemi et al.,

2012)

S42 Variabilities as First-Class Elements in Product Line

Architectures of Homecare Systems

2012 Carvalho, S. T., Murta, L.,

Loques, O.

(Carvalho, Murta and

Loques, 2012)

S43 Variability viewpoint for introducing variability in software

architecture viewpoints

2012 Tekinerdogan, B., Sözer, H. (Tekinerdogan and

Sözer, 2012)

S44 Constraints for the design of variability-intensive service-

oriented reference architectures – An industrial case study

2013 Galster, M., Avgeriou, P.,

Tofan, D.

(Galster, Avgeriou

and Tofan, 2013)

S45 Supporting Variability Management in Architecture Design

and Implementation

2013 Groher, I., Weinreich, R. (Groher and

Weinreich, 2013b)

S46 Engineering Delta Modeling Languages 2013 Haber, A., Hölldobler, K.,

Kolassa, C., Look, M.,

Müller, K., Rumpe, B.,

Schaefer, I.

(Haber et al., 2013)

A-8

Study

Identifier
Paper Title

Publication

Year
Author(s) Source

S47 Run-Time support to manage architectural variability

specified with CVL

2013 Pascual, G.G., Pinto, M.,

Fuentes, L.

(Pascual, Pinto and

Fuentes, 2013)

S48 Evolving Software Requirements and Architectures using

Software Product Line Concepts

2013 Gomaa, H. (Gomaa, 2013)

S49 Model-to-Code transformation from Product-Line

Architecture Models to AspectJ

2013 Díaz, J., Pérez, J.,

Fernández-Sánchez, C.,

Garbajosa, J.

(Diaz et al., 2013)

S50 Applying Software Product Lines to Multiplatform Video

Games

2013 Albassam, E., Gomaa, H. (Albassam and

Gomaa, 2013)

S51 Graph Modelling of a Refactoring Process for Product Line

Architecture Design

2013 Losavio, F., Ordaz, O.,

Levy, N., Baïotto, A.

(Losavio et al., 2013)

S52 Strategies for Aligning Variability Model and Architecture 2013 Groher, I., Weinreich, R. (Groher and

Weinreich, 2013a)

S53 A Case Study Comparison of Variability Representation

Mechanisms with the HeRA Product Line

2013 Ahn, H., Kang, S., Lee, J. (Hwi, Sungwon and

Jihyun, 2013)

S54 A Lightweight Language for Software Product Lines

Architecture Description

2013 Silva, E., Medeiros, A.L.,

Cavalcante, E., Batista, T.

(Silva et al., 2013)

A-9

Study

Identifier
Paper Title

Publication

Year
Author(s) Source

S55 On the Interdependence and Integration of Variability and

Architectural Decisions

2014 Lytra, I., Eichelberger, H.,

Tran, H., Leyh, G., Schmid,

K., Zdun, U.

(Lytra et al., 2014)

S56 A Dynamic Software Product Line Architecture for

Prepackaged Expert Analytics: Enabling Efficient Capture,

Reuse and Adaptation of Operational Knowledge

2014 Smiley, K., Mahate, S.,

Wood, P.

(Smiley, Mahate and

Wood, 2014)

S57 Representing and Configuring Security Variability in

Software Product Lines

2015 Myllärniemi, V.,

Raatikainen, M.,

Männistö, T.

(Myllärniemi,

Raatikainen and

Männistö, 2015)

S58 Architectural Evolution of a Software Product Line: an

experience report

2015 Laser, M.S., Rodrigues,

E.M., Domingues, A.,

Oliveira, F., Zorzo, A.F.

(Laser et al., 2015)

A-10

A2: List of publication outlet per primary study in the SLR

Study

Identifier
Publication Outlet Abbreviation

S1

9th International Software Product Line Conference

SPLC

S2 IEEE Software IEEE/Software

S3 Journal of Computer Programming - Special issue: Software variability management JCP

S4 2nd International Software Product Lines Young Researchers Workshop SPLYR

S5 29th Annual IEEE/NASA Software Engineering Workshop IEEE/NASA SEW

S6 29th Annual International Computer Software and Applications Conference COMPSAC

S7 2nd International Conference on Informatics in Control Automation and Robotics ICINCO

S8 2nd International Workshop on Software Engineering for Automotive Systems SEAS

S9 IEE Proceedings – Software IEEProceedings/Software

S10 9th International Conference on Reuse of Off-the-Shelf Components OTS

S11 ACM SIGSOFT Software Engineering Notes SEN

S12 XXVI International Conference of the Chilean Society of Computer Science SCCC

S13 Journal of Advanced Engineering Informatics JAEI

S14 15th International Conference Computational Science and its Applications ICCSA

S15 7th IEEE International Conference on Computer and Information Technology ICCIT

A-11

Study

Identifier
Publication Outlet Abbreviation

S16 2nd International Conference on Software Engineering Advances ICSEA

S17 6th ACS/IEEE International Conference on Computer Systems and Applications AICCSA

S18 15th Annual IEEE International Conference and Workshop on the Engineering of Computer Based

Systems

ECBS

S19 6th International Conference on Software Engineering Research and Practice SERP

S20 17th International Conference on Foundations of Intelligent Systems FOIS

S21 7th Working IEEE/IFIP Conference on Software Architecture WICSA

S22 1st International Conference on Computational Intelligence for Modelling Control & Automation CIMCA

S23 2nd International Conference on Software Language Engineering SLE

S24 21st International Conference on Software Engineering and Knowledge Engineering SEKE

S25 13th International Software Product Line Conference SPLC

S26 3rd International Workshop on Dynamic Software Product Lines DSPL

S27 Joint 8th Working IEEE/IFIP Conference on Software Architecture & 3rd European Conference on

Software Architecture

WICSA ECSA

S28 Embedded World 2009 Exhibition & Conference EWEC

S29 Joint 8th Working IEEE/IFIP Conference on Software Architecture & 3rd European Conference on

Software Architecture

WICSA ECSA

S30 3rd IEEE International Conference on Secure Software Integration and Reliability Improvement SSIRI

A-12

Study

Identifier
Publication Outlet Abbreviation

S31 XXIX International Conference of the Chilean Computer Science Society SCCC

S32 International Journal of Software Engineering and Knowledge Engineering JSEKE

S33 12th International Conference on Top Productivity through Software Reuse ICSR

S34 9th Working IEEE/IFIP Conference on Software Architecture WICSA

S35 9th International Conference on Software Engineering Research, Management and Applications SERA

S36 Dagstuhl Workshop on Model-Based Development of Embedded Systems. MBEES

S37 5th European conference on Software architecture ECSA

S38 15th International Software Product Line Conference SPLC

S39 15th International Software Product Line Conference SPLC

S40 1st International Workshop on Software Architecture Variability VARSA

S41 Joint 10th Working IEEE/IFIP Conference on Software Architecture & 6th European Conference on

Software Architecture

WICSA ECSA

S42 4th International Workshop on Software Engineering in Health Care SEHC

S43 Joint 10th Working IEEE/IFIP Conference on Software Architecture & 6th European Conference on

Software Architecture

WICSA ECSA

S44 Information and Software Technology IST

S45 46th Hawaii International Conference on System Sciences HICSS

S46 17th International Software Product Line Conference SPLC

A-13

Study

Identifier
Publication Outlet Abbreviation

S47 7th European conference on Software Architecture ECSA

S48 2nd International Workshop on the Twin Peaks of Requirements and Architecture TwinPeaks

S49 39th Euromicro Conference Series on Software Engineering and Advanced Applications SEAA

S50 3rd International Workshop on Games and Software Engineering GAS

S51 XXXIX Latin American Computing Conference CLEI

S52 20th Asia-Pacific Software Engineering Conference APSEC

S53 16th IEEE International Conference on Computational Science and Engineering CSE

S54 7th European conference on Software Architecture ECSA

S55 8th Workshop on Variability Modeling of Software-Intensive Systems VaMoS

S56 11th Working IEEE/IFIP Conference on Software Architecture WICSA

S57 11th International ACM SIGSOFT Conference on Quality of Software Architectures QoSA

S58 27th International Conference on Software Engineering and Knowledge Engineering SEKE

A-14

A3: List of quality assessment scores per primary study in the SLR

Study Identifier QA.Q1 QA.Q2 QA.Q3 QA.Q4 QA.Q5 QA.Q6 QA.Q7 QA.Q8 QA.Q9 TOTAL

S1 0.5 1 1 0.5 0 0 0.5 0.5 0 4

S2 1 1 1 1 0.5 1 1 1 0 7.5

S3 1 1 1 1 1 1 1 1 0.5 8.5

S4 0.5 1 1 0.5 0 0.5 0.5 0.5 0 4.5

S5 1 0.5 1 0 0 0.5 0 0.5 0 3.5

S6 1 1 1 1 0 0.5 0.5 1 0 6

S7 0.5 1 0.5 1 0 1 0.5 0 0.5 5

S8 1 1 0 1 1 1 0.5 0.5 0 6

S9 1 1 1 1 0.5 1 1 1 0.5 8

S10 1 1 1 1 0.5 1 1 1 0 7.5

S11 1 1 0.5 0 0 0.5 0.5 1 0 4.5

S12 1 1 0.5 0.5 1 1 0.5 0.5 0 6

S13 1 1 1 0.5 0.5 1 0.5 0.5 0 6

S14 1 1 1 1 1 1 1 1 0 8

S15 1 0.5 0.5 0 0 1 0.5 0.5 0 4

S16 1 1 1 1 0.5 1 1 1 1 8.5

S17 1 1 1 0.5 0 1 1 1 0 6.5

A-15

Study Identifier QA.Q1 QA.Q2 QA.Q3 QA.Q4 QA.Q5 QA.Q6 QA.Q7 QA.Q8 QA.Q9 TOTAL

S18 1 0.5 1 0 0 0.5 1 0.5 0 4.5

S19 0.5 0.5 0 0 0 0 0.5 0.5 0 2

S20 1 1 0.5 0.5 0.5 1 0.5 0.5 0 5.5

S21 1 1 1 1 1 1 1 1 0 8

S22 1 1 1 0.5 0 1 1 1 0 6.5

S23 1 1 0.5 1 0 1 1 0 0 5.5

S24 1 0.5 1 1 0.5 1 0.5 0.5 0 6

S25 1 0.5 1 1 0.5 1 0.5 0.5 1 7

S26 1 1 1 1 0.5 1 0.5 0.5 0 6.5

S27 1 0.5 1 1 0 1 0.5 1 0 6

S28 0.5 1 0.5 0.5 0 0.5 0.5 0 0 3.5

S29 1 0.5 0.5 0 0 0.5 0 0.5 0 3

S30 1 1 1 1 0.5 0 1 1 0 6.5

S31 1 1 1 1 0.5 1 1 1 0 7.5

S32 1 1 1 1 0.5 1 1 1 0 7.5

S33 1 1 1 1 0.5 0.5 1 1 1 8

S34 1 0.5 1 0.5 0.5 1 1 0.5 0 6

S35 1 0.5 1 0 0 1 1 0.5 0 5

S36 0.5 0 1 0 0 0.5 0.5 0 0 2.5

A-16

Study Identifier QA.Q1 QA.Q2 QA.Q3 QA.Q4 QA.Q5 QA.Q6 QA.Q7 QA.Q8 QA.Q9 TOTAL

S37 1 1 1 1 0 1 1 0.5 0 6.5

S38 1 1 1 1 0.5 1 1 1 0 7.5

S39 0.5 0.5 0.5 1 0 0 0 0 0 2.5

S40 0.5 0.5 0.5 1 0 0.5 1 0.5 0 4.5

S41 1 0.5 0.5 1 0.5 0.5 0.5 1 1 6.5

S42 1 1 1 0.5 0 0.5 0.5 0 0 4.5

S43 1 1 1 0 0 1 0.5 1 0 5.5

S44 1 1 1 1 1 1 0.5 1 0 7.5

S45 1 0.5 1 0.5 0.5 0.5 1 0.5 0 5.5

S46 1 1 1 0.5 0 0.5 1 0.5 0 5.5

S47 1 1 1 1 0 1 1 0.5 0 6.5

S48 1 0.5 1 0.5 0 1 0.5 0.5 0 5

S49 1 1 0.5 0.5 0 0.5 1 1 1 6.5

S50 1 1 1 1 1 1 1 0.5 0 7.5

S51 1 1 0.5 0.5 0 1 0.5 0.5 0 5

S52 1 1 1 0 0 0.5 0.5 0.5 0.5 5

S53 1 1 1 1 0 1 1 0.5 0 6.5

S54 1 1 1 1 0.5 1 1 0.5 0 7

S55 1 1 1 0.5 0 1 1 0.5 0 6

A-17

Study Identifier QA.Q1 QA.Q2 QA.Q3 QA.Q4 QA.Q5 QA.Q6 QA.Q7 QA.Q8 QA.Q9 TOTAL

S56 1 1 1 1 0.5 1 0.5 1 0 7

S57 1 1 0.5 0.5 0 1 1 0.5 0 5.5

S58 1 0.5 1 0.5 0 1 0.5 0.5 0 5

TOTAL 54 49 49 39 16.5 46 42 37 7

AVERAGE 0.9 0.8 0.8 0.7 0.3 0.8 0.7 0.6 0.1

B-1

Appendix B: ALI V2 Event Traces Notation Comparison

ALI V2

UML 2.5
(Activity Diagram)

UCM Petri Nets

Symbol Name Symbol Name Symbol Name Symbol Name

 S

ta
rt

START

 Initial Node

Start Point

E

n
d

END

Activity

Final Node

End Point

T
er

m
in

a
ti

o
n

FINAL

Flow Final

Node

C
o
n

cu
rr

en
cy

AND Fork

Fork Node

AND Fork

And-split

B-2

ALI V2

UML 2.5
(Activity Diagram)

UCM Petri Nets

Symbol Name Symbol Name Symbol Name Symbol Name

C
h

o
ic

e

OR Fork

Decision

Node

OR Fork

1)

2)

 P

Pcondition

Selection/

Choice/

Decision

S
y
n

ch
ro

n
is

a
ti

o
n

AND Join

Join Node

AND Join

And-join

B-3

ALI V2

UML 2.5
(Activity Diagram)

UCM Petri Nets

Symbol Name Symbol Name Symbol Name Symbol Name

M

u
tu

a
l

E
x
cl

u
si

o
n

OR Join

Merge

Node

OR Join

Meriana

 C

o
m

p
o
n

en
t

Name

Component

 Name

Component

 Name

Element*

 C

o
n

n
ec

ti
o
n

Connector

Object Flow

Edge

 >

Path

Arc

Inhibitor

Arc

Test Arc

B-4

ALI V2

UML 2.5
(Activity Diagram)

UCM Petri Nets

Symbol Name Symbol Name Symbol Name Symbol Name

E
v
en

t

Name/Cr**

Event Flow

Action

Node

Name

 X

{2}

 X

With repetition

count

Responsibility

Point

 (timed)

 Name

 Name

 Name

Discrete

Transition

Continuous

Transition

Immediate

Transition

C
o
n

d
it

io
n

[ConditionName]

Condition

[ConditionName]

Guard

[ConditionName]

Condition

PConditionName

Condition

 Not Supported

 Known as ‘Places’ in petri net which denotes States.

 * As used in I3 ADL (Chang and Seongwoon, 1999)

 ** Optional i.e. if connection is made using connectors (see Chapter 6)

Name

Name

C-1

Appendix C: ALI V2 BNF

BNF for Meta Type

<input> ::= <meta_type> <EOF>

<meta_type> ::= "meta" "type" <identifier> "{"

 {tag_definition} "}"

<tag_definition> ::= "tag" <tag_name_list> ":" <tag_type> ";"

<tag_name_list> ::= <identifier> ["*"]{"," <identifier> ["*"]}

<tag_type> ::= "text"

 | "number"

 |

 |

 "date"

 "boolean"

C-2

BNF for Features

Input ::= <features> <EOF>

<features> ::= "features" "{" {<feature_description>} "}"

<feature_description> ::= <feature_name> ":" "{"

{<meta_object>}

<alternative_names_section>

<parameters_section> "}"

<alternative_names_section>

::= "alternative" "names" ":" "{" [

<feature_alternative_name> {","

<feature_alternative_name> }] "}"

<parameters_section> ::= "parameters" ":" "{" [<feature_parameter> {","

<feature_parameter>}] "}"

<feature_parameter> ::= "{" <feature_instance_name> {","

<feature_instance_name>} "="

<feature_parameter_type> "}"

<feature_parameter_type> ::=

 |

"text"

"number"

<feature_alternative_name> ::= <string_literal>

C-3

BNF for Interface Template

<input> ::= <interface_template> <EOF>

<interface_template> ::= "interface" "template" <Identifier> "{"

<syntax_definition> <constraint_section> "}"

<syntax_definition> ::= ("provider" | "consumer")"syntax" "definition" ":"

"{" <provider_interface_section> |

<consumer_interface_section> "}"

<provider_interface_section> ::= "provider" ":" "{"

{<provider_function_defintion>} "}"

<function_definition> ::= "function" <identifier> "{"

"impLanguage" ":" <identifier> ";"

"invocation" ":" <identifier> ";"

"paramterlist" ":" "("[<identifier> {","

<identifier>}] ")" ";" "return_type" ":" <identifier>

";" "}"

<consumer_interface_section> ::= "consumer" ":" "{"

{<consumer_function_defintion>} "}"

<consumer_function_defintion> ::= "call" ":" <identifier> "("[<identifier> {","

<identifier>}] ")" ";"

<constraint_section> ::= "constraints" ":" "{" "should" "match" ":" "{"

<identifier> "=" "."<identifier> "," <identifier> "}"

"binding" ":" "{" <binding_section> "}" ";"

"factory" ":" ("true" | "false") ";" "persistent" ":" (

"true" | "false") ";" "}"

<binding_section> ::= "multiple" ":" ("true" | "false") ";" "data_size" ":"

"[" <natural_literal> "," <natural_literal> "]" ";"

"max_connections" ":" <natural_literal> ";"

C-4

BNF for Interface Type

<input> ::= <interface type> <EOF>

<interface_type> ::= "interface" "type" "{"

{<meta_object>}

{<interface_defintion>} "}"

<interface_definition> ::= <interface_instance_name> ":" <interface_template> "{"

<interface_instance_definition> "}"

C-5

BNF for Connector Type

<input> ::= <connector_type> <EOF>

<connector_type> ::= "connector" "type" <identifier> "{"

{<meta_object>}

{<features_section>}

 <interfaces_section>

 <layout_section> "}"

<features_section> ::= "features"":" "{" {

 <feature_section_body> } "}"

<feature_section_body> ::= <feature_name> ":" <string_literal> {","

<feature_name> ":" <string_literal>} ";"

<interfaces_section> ::= "interfaces"":" "{" {

 <interface_section_body> } "}"

<interface_section_body> ::= <connector_interface_definition>

 | <connector_conditional_interface>

<connector_interface_definition> ::= {<interface_instance_name> { ","

<interface_instance_name> } ":"

<interface_type> ";" }

<connector_conditional_interface> ::= "if" "(" <conditional_inclusion_expression> ")"

(<connector_interface_definition> | "{"

{<connector_interface_definition>} "}")

["else"

(<interface_section_body> | "{"

{<connector_interface_definition>} "}")]

<layout_section> ::= "layout"":" "{" {

 <layout_section_body>} "}"

<layout_section_body> ::= <layout_definition_statement>

 | <conditional_layout_definition>

<layout_definition_statement> ::= "connect" (<interface_instance_name> | "all")

("and" | "to") (<interface_instance_name> |

"all") ";"

<conditional_layout_definition> ::= "if" "(" <conditional_inclusion_expression> ")"

(<layout_definition_statement>

| "{" {<layout_definition_statement>} "}")

["else" (<layout_section_body> | "{" {

<layout_definition_statement> } "}")]

C-6

BNF for Component Type

<input> ::= <component_type> <EOF>

<component_type> ::= "component" "type" <identifier> "{"

{<meta_object>}

{<features_section>}

<interfaces_section> <sub_system_section>

"}"

<features_section> ::= "features" "{" {

 <feature_section_body> } "}"

<feature_section_body> ::= <feature_name> ":" <string_literal> {","

<feature_name> ":" <string_literal>} ";"

<interfaces_section> ::= "interfaces" ":" "{"

{<interface_section_body>} "}"

<interface_section_body> ::= <sub_interface_definition_section>

 | <sub_interface_implements_section>

<sub_interface_definition_section> ::= "definition" ":" "{"

{<sub_interface_definition_body>}

“}”

<sub_interface_definition_body> ::= <interface_definition>

 | <component_conditional_interface>

<component_conditional_interface> ::= "if" "(" <conditional_inclusion_expression>

")" ({<interface_definition>} |

"{" {<interface_definition>} "}")

["else" (<sub_interface_definition_body> |

"{" {<interface_definition>})

 "}")]

<sub_interface_implements_section> ::= "implements" ":" "{"

{<sub_interface_implements_body>}

“}”

<sub_interface_implements_body> ::=

 |

<interface_implement_defintion>

<conditional_implements_interface>

<interface_implements_definition> ::= {<interface_instance_name> {","

<interface_instance_name> ":"

<interface_type>}}"}"

C-7

<component_conditional_interface> ::= "if" "(" <conditional_inclusion_expression>

")" ({<interface_implements_definition>} |

"{" {<interface_implements_definition>}

"}")

["else"

(<sub_interface_implements_body> | "{"

{<interface_implements_definition>})

 "}")]

 <sub_system_section> ::= "sub-system" ":" "{" <components_section>

<connectors_section>

<arrangement_section> "}"

<components_section> ::= "components" "{"

{<components_section_body>} "}"

<components_section_body> ::= <components_definition_statement>

 | <conditional_components_definition>

<components_definition_statement> ::= <component_instance_name> ["<"

<feature_name> {"," <feature_name>} ">"]

{"," <component_instance_name> ["<"

<feature_name> {"," <feature_name>} ">"]

} ":" <component_type_name> ";"

<conditional_components_definition> ::= "if" "(" <conditional_inclusion_expression>

")" (<components_definition_statement> |

"{" {<components_definition_statement>}

"}")

["else" (<components_section_body> | "{"

{<components_definition_statement>} "}")

]

<connectors_section> ::= "connectors" "{"

{<connectors_section_body>} "}"

<connectors_section_body> ::= <connectors_definition_statement>

 | <conditional_connectors_definition>

<connectors_definition_statement> ::= <connector_instance_name> ["<"

<feature_name> {"," <feature_name>} ">"]

{"," <connector_instance_name> ["<"

<feature_name> {"," <feature_name>} ">"]

} ":" <connector_type_name> ";"

<conditional_connectors_definition> ::= "if" "(" <conditional_inclusion_expression>

")" (<connectors_definition_statement> |

"{" {<connectors_definition_statement>}

"}")

C-8

["else" (<connectors_section_body> | "{"

{<connectors_definition_statement>} "}")]

<arrangement_section> ::= " arrangement " "{" {< arrangement

_section_body>} "}"

< arrangement _section_body> ::= < arrangement _definition_

 statement>

 | <conditional_ arrangement _definition>

< arrangement _definition_statement> ::= < arrangement _defintion_manually>

 | < arrangement _defintion_using_

 patterns>

< arrangement_defintion_manually> ::= ("connect" | "bind")

<connection_argument> ["."

<interface_instance_name>] "with"

<connection_argument> ["."

<interface_instance_name>] ";"

<connection_argument> ::= <component_instance_name>

 |

 |

 |

<connector_instance_name>

"my"

"*"

< arrangement_defintion_

 using_patterns>

::= <pattern_name> "(" [<interface_argument>

{"," <interface_argument>}] ")" ";"

<interface_argument> ::= <interface_instance_name>

 | <interface_name_array>

<conditional_arrangement_definition> ::= "if" "(" <conditional_inclusion_expression>

")" (< arrangement_definition_statement> |

"{" {< arrangement_definition_statement>}

"}")

["else"

(<arrangement_section_body> | "{"

{<arrangement_definition_statement>} "}"

)]

<interface_name_array> ::= "[" <interface_instance_name> {","

<interface_instance_name>} "]"

C-9

BNF for Pattern Template

<input> ::= <pattern_template> <EOF>

<pattern_template> ::= "pattern" "templates" ":" "{"

{<pattern_defintion>} "}"

<pattern_defintion> ::= <pattern_name> "("

<pattern_parameter_list> {","

<pattern_parameter_list>} ")" "{"

{<meta_object>}

{<simple_connection_statement> |

<compound_connection_statement>} "}"

<pattern_parameter_list> ::= <interface_instance_name> [

<array_specification>] ":"

<interface_template>

<array_specification> ::= "[" <minimum_array_count> ".."

 <maximum_array_count> "]"

<simple_connection_statement> ::= <connection_definition_manually>

 | <connection_definition_using_patterns>

<connection_definition_manually> ::= "connect" (

<generic_interface_instance_name> | "all"

) ("and" | "to")

(<generic_interface_instance_name> |

"all") ";"

<connection_definition_using_patterns> ::= <pattern_name> "("

<generic_interface_instance_name> {","

<generic_interface_instance_name>} ")"

";"

<compound_connection_statement> ::= <for_loop> (

<simple_connection_statement> | ("{" (

<simple_connection_statement> |

<compound_connection_statement>)+

"}"))

<for_loop> ::= "for" "(" <for_loop_initialization> ";"

<for_loop_condition> ";"

<for_loop_counter_modify> ")"

<for_loop_initialization> ::= <identifier> "=" (<natural_literal> |

<identifier>)

C-10

<for_loop_condition> ::= <identifier> ("<" | ">" | "<=" | ">=" | "=="

| "!=") (<identifier> | <natural_literal>)

<for_loop_counter_modify> ::= <uni_counter> | <binary_counter>

<binary_counter> ::= <identifier> ("+=" | "-=")

<natural_literal>

<uni_counter> ::= (("++" | "--") <identifier>) |

(<identifier> ("++" | "--"))

<generic_interface_instance_name> ::= <interface_instance_name> ["[" (

<natural_Literal> | (<identifier> [("+" |

"-" | "*" | "/") <natural_Literal>])) "]"]

<minimum_array_count> ::= <natural_literal>

<maximum_array_count> ::= <natural_literal>

file:///C:/Documents%20and%20Settings/rabih/My%20Documents/Research/Thesis/my%20thesis/ALI%20Example/ALI%20parser/Pattern%20Templates/Pattern_Template.html%23prod9%23prod9

C-11

BNF for Product Configuration

<input> ::= <product_configuration> <EOF>

<product_configuration> ::= "product" "configurations" "{"

 {<product_instances_section>} "}"

<product_instances_section> ::= <product_instance_name> ":" "{"

{<meta_object>}

{product_defintion>}

"}"

<product_instance_name> ::= <identifier>

<product_defintion> ::=

 |

<simple_feature>

<parameterise_feature>

<simple_feature> ::= <feature_name> "=" <boolean_literal> ";"

<parameterise_feature> ::= <feature_name> "{" <feature_instance_name> "="

<natural_literal> {"," <feature_instance_name> "="

<natural_literal>}"}" ";"

C-12

BNF for Event

<input> ::= <event> <EOF>

<event> ::= "events" "{"

 {<meta_object>}

 {<event_instances>} "}"

<event_instances> ::= <event_instance_name> ":"

<single_interface_template> |

<multiple_interface_template> ";"

<single_interface_template> ::= "<" <interface_template> ","

 <interface_template> ">" ";"

<multiple_interface_template> ::= "<" "(" <interface_template> { ","

 <interface_template>} ")" "," "("

 <interface_template> { ","

 <interface_template>} ")"">" ";"

C-13

BNF for Condition

<input> ::= <condition> <EOF>

<condition> ::= "conditions" "{"

 {<meta_object>}

 {<condition_instances>} "}"

<condition_instances> ::= <condition_instance_name> ":"

<condition_description>

";"

<condition_description> ::= <string_literal>

C-14

BNF for Scenario

<input> ::= <scenario> <EOF>

<scenario> ::= "scenarios" "{"

 {<scenario_instances_section>} "}"

<scenario_instances_section> ::= <scenario_instance_name> ":" "{"

{<meta_object>}

<scenario_description_section>

<parameterisation_section>

"}"

<scenario_instance_name> ::= <identifier>

<scenario_description_section> ::= "description" ":"

 <string_literal> ";"

<parameterisation_section> ::= "parameterisation" ":" "{"

 {<condition_instance_name> "="

 <boolean_literal>} ";" "}"

C-15

BNF for Transaction Domain

<input> ::= <transaction_domain> <EOF>

<transaction_domain> ::= "transaction" "domain" <identifier> "{"

{<meta_object>}

<contents_section>

<transactions_section> "}"

<contents_section> ::= "contents" ":" "{"

 <component_instances_section>

 [<connector_instances_section>]

"}"

<component_instances_section> ::= "components" ":" "{"

["*"]<component_instance_name> {","

["*"]<component_instance_name>}

"}"

<connector_instances_section> ::= "connectors" ":" "{"

<connector_instance_name> {","

<connector_instance_name>}

"}"

<transactions_section> ::= "transactions" ":" "{"

{<transaction_instances_section>}

 "}"

<transaction_instances_section> ::= <transaction_instance_name> ":" "{"

{<meta_object>}

[<event_instances_section>]

<interaction_section>

"}"

<transaction_instance_name> ::= <identifier>

<event_instances_section> ::= "events" ":" "{"

<event_instance_name> {","

<event_instance_name>}

"}"

<interaction_section> ::= "interactions" ":" "{"

 {<interaction_section_body>}

"}"

<interaction_section_body> ::=

 |

<interaction_definition_statement>

<conditional_interaction_definition>

C-16

<interaction_definition_statement> ::=

 |

 |

 |

<simple_interaction_statement>

<fork_interaction_statement>

<join_interaction_statement>

<fork_join_interaction_statement>

<simple_interaction_statement> ::=

 |

<send_interaction_statement>

<receive_interaction_statement>

<send_interaction_statement> ::= ((<component_instance_name> "."

 <interface_instance_name>) |

 <transaction_instance_name>)

["sends" <event_instance_name> "/"

<connector_instance_name> "to"

((<component_instance_name> "."

 <interface_instance_name>) |

 <transaction_instance_name>)] ";"

<receive_interaction_statement> ::= ((<component_instance_name> "."

 <interface_instance_name>) |

 <transaction_instance_name>) ["receives"

<event_instance_name> "/"

<connector_instance_name>

"from" ((<component_instance_name> "."

 <interface_instance_name>) |

 <transaction_instance_name>)] ";"

<fork_interaction_statement> ::= "[" <fork_interaction_body> "]" ";"

<fork_interaction_body> ::= <send_interaction_statement>

 {("," | "|")

 <send_interaction_statement>}

<join_interaction_statement> ::= "[" <join_interaction_body> "]" ";"

<join_interaction_body> ::= <receive_interaction_statement>

 {("," | "|")

 <receive_interaction_statement>}

<fork_join_interaction_statement> ::= "[" "(" (join_interaction_body |

 <fork_interaction_body>)

 ")" {("," | "|")

 "(" (join_interaction_body |

 <fork_interaction_body>) ")"} "]" ";"

<conditional_interaction_definition> ::= "if" "(" <conditional_inclusion_expression>

")" (<interaction_definition_statement> |

"{" {<interaction_definition_statement>}

"}") ["else"

(<interaction_section_body> |

{<interaction_definition_statement>})]

C-17

BNF for Viewpoint

<input> ::= <viewpoint> <EOF>

<viewpoint> ::= "viewpoints" "{"

 {<viewpoint_instances_section>} "}"

<viewpoint_instances_section> ::= <viewpoint_instance_name> ":" "{"

{<meta_object>}

<viewpoint_description_section>

<transaction_domain_section>

"}"

<viewpoint_instance_name> ::= <identifier>

<viewpoint_description_section> ::= "description" ":"

 <string_literal> ";"

<transaction_domain_section> ::= "transaction" "domain" ":" "{"

 <transaction_domain_instance_name> {","

< transaction_domain_instance_name >} ";"

"}"

<transaction_domain_instance_name> ::= <identifier>

C-18

BNF for System Description

<input> ::= <system_description> <EOF>

<system_description> ::= "system" ":" "{"

 {<meta_object>}

 <components_section>

 <connectors_section>

 <arrangement_section>

 <viewpoints_section> "}"

<components_section> ::= "components" "{"

{<components_section_body>} "}"

<components_section_body> ::= <components_definition_statement>

 | <conditional_components_definition>

<components_definition_statement> ::= <component_instance_name> ["<"

<feature_name> {"," <feature_name>} ">"]

{"," <component_instance_name> ["<"

<feature_name> {"," <feature_name>} ">"] }

":" <component_type_name> ";"

<conditional_components_definition> ::= "if" "(" <conditional_inclusion_expression>

")" (<components_definition_statement> |

"{" {<components_definition_statement>}

"}")

["else" (<components_section_body> | "{"

{<components_definition_statement>} "}")]

<connectors_section> ::= "connectors" "{"

{<connectors_section_body>} "}"

<connectors_section_body> ::= <connectors_definition_statement>

 | <conditional_connectors_definition>

<connectors_definition_statement> ::= <connector_instance_name> ["<"

<feature_name> {"," <feature_name>} ">"]

{"," <connector_instance_name> ["<"

<feature_name> {"," <feature_name>} ">"] }

":" <connector_type_name> ";"

<conditional_connectors_definition> ::= "if" "(" <conditional_inclusion_expression>

")" (<connectors_definition_statement> | "{"

{<connectors_definition_statement>} "}")

["else" (<connectors_section_body> | "{"

{<connectors_definition_statement>} "}")]

C-19

< arrangement_section> ::= " arrangement " "{" {<

arrangement_section_body>} "}"

< arrangement_section_body> ::= < arrangement_definition_

 statement>

 | <conditional_ arrangement_definition>

< arrangement_definition_statement> ::= < arrangement_defintion_manually>

 | < arrangement_defintion_using_

 patterns>

< arrangement_defintion_manually> ::= ("connect" | "bind") <connection_argument>

["." <interface_instance_name>] "with"

<connection_argument> ["."

<interface_instance_name>] ";"

<connection_argument> ::= <component_instance_name>

 |

 |

 |

<connector_instance_name>

"my"

"*"

<structure_defintion_using_patterns> ::= <pattern_name> "(" [<interface_argument>

{"," <interface_argument>}] ")" ";"

<interface_argument> ::= <interface_instance_name>

 | <interface_name_array>

<conditional_

arrangement_definition>

::= "if" "(" <conditional_inclusion_expression>

")" (< arrangement_definition_statement> |

"{" {< arrangement_definition_statement>}

"}")

["else"

(<arrangement_section_body> | "{" {<

arrangement_definition_statement>} "}")]

<interface_name_array> ::= "[" <interface_instance_name> {","

<interface_instance_name>} "]"

<viewpoints_section> ::= "viewpoints" "{" <viewpoint_instance_name>

{"," <viewpoint_instance_name>} "}"

<viewpoint_instance_name> ::= <identifier>

C-20

Miscellaneous

ALI Structural Literals

<meta_object> ::= "meta" ":" <identifier> { "," <identifier> } "{"

{ <identifier> ":" (<string_literal> |

<natural_literal>) ";" } "}"

<interface_definition> ::= <interface_instance_name> ":"

<interface_template> "{"

<interface_instance_definition> "}"

<interface_instance_name> ::= <identifier>

<interface_instance_definition> ::= <string_literal>

<interface_template> ::= <identifier>

<component_instance_name> ::= <identifier>

<component_type_name> ::= <identifier>

<connector_instance_name> ::= <identifier>

<connector_type_name> ::= <identifier>

<pattern_name> ::= <identifier>

<feature_name> ::= <identifier> | <boolean_literal>

<feature_instance_name> ::= <identifier>

ALI Behavioural Literals

<event_instance_name> ::= <identifier>

<condition_instance_name> ::= <identifier>

C-21

ALI If Condition Expression

<conditional_inclusion_expression> ::= <or_expression>

<or_expression> ::= <and_expression> {"||" <and_expression>}

<and_expression> ::= <equality_expression> {"&&"

<equality_expression>}

<equality_expression> ::=

<unary_expression> {("==" | "!=" | "<" | ">" |

"<=" | ">=") <unary_expression>}

<unary_expression> ::= "!" <unary_expression> | <boolean_literal> |

<feature_value_literal> | <feature_name> |

<condition_instance_name> |

<predicate_expression> | "("

<conditional_inclusion_expression> ")"

<feature_value_literal> ::= <string_literal> | <natural_literal>

<predicate_expression> ::= <predicate> "(" <feature_name> ")"

<predicate> ::= "supported" | "unsupported"

 Generic Literals

<identifier> ::= <id_character> | <identifier> <id_character> |

<identifier> <digit>

<id_character> ::= <letter> | <break_character>

<letter> ::= A|B|C ... |Z|a|b|c ... |z

<digit> ::= 0|1| ... |9

<break_character> ::= _ | @ | # | $

<string_literal> ::= " <character> { <character> } "

<character> ::= <letter> | <digit> | <break_character>

<natural_literal>

::= <letter> | <digit>

<boolean literal> ::= "true" | "false"

D-1

Appendix D: AMS Case Study

This section contains the remaining architectural description of the AMS case study

presented in Chapter 7 using ALI V2 notations (discussed in Chapter 6).

D1: AMS Meta Types

meta type Meta_Processor {

 tag queuing_method, priority_process: text;

 tag max_jobs*: number;

 }

 meta type Meta_DbEquity {

 tag last_updated: date;

 tag DBA*, description*: text;

 }

meta type Meta_ShareValueData {

 tag stock_market*, risks*, intention: text;

 tag price_synchronised*: date;

 }

 meta type Meta_Valuator {

 tag acceptance_value, value_approximation,

 currency_acceptance*: text;

 tag last_request: date;

 }

 meta type Meta_Derivative {

 tag risk_mitigation: text;

 tag renewal_deadline: date;

 }

 meta type Meta_PortfolioDomain {

 tag purpose, compatibility, occurrence: text;

 }

 meta type Meta_Trade {

 tag updation_frequency, trade_condition*: text;

 tag max_request_per_order*, max_amount_per_order*: number;}

D-2

D2: AMS Features

features {

 … // defined in Section 7.3.2

 Share_Sector: {

 alternative names: {

 Designer.IS2, Developer.SS, Evaluator.F13;

 }

 parameters: {

 {Holdings = number,

 Total_Share_Value = number,

 Share_Sector_Category = text};

 }

}

 Equity_Derivative: {

 alternative names: {

 Designer.ID1, Developer.SD, Evaluator.F14;

 }

 parameters: {

 {Derivative_Type = text,

 Premium_Period = text,

 OTC = boolean};

 }

 }

 MarkToMarket_Method: {

 meta: Meta_AMSFeature {

 creation_date: 29-02-2016;

 standardized: true;

 }

 alternative names: {

 Designer.VF1, Developer.MTM, Evaluator.F15;

 }

 parameters: {

 // no parameters

 }

 }

D-3

 Share_Company_Method: {

 alternative names: {

 Designer.VF2, Developer.SC, Evaluator.F16;

 }

 parameters: {

 // no parameters

 }

 }

 Cash_Investment: {

 alternative names: {

 Designer.RF1, Developer.CI, Evaluator.F17;

 }

 parameters: {

 {InvestmentCurrency = text};

 }

 }

 Share_Investment: {

 alternative names: {

 Designer.RF2, Developer.SI, Evaluator.F18;

 }

 parameters: {

 {Max_Offer_Quantity = number,

 Max_Bid_Quantity = number};

 }

 }

 Financial_Asset: {

 alternative names: {

 Designer.GF1, Developer.FA, Evaluator.F19;

 }

 parameters: {

 // no parameters

 }

 }

 } // end of features

D-4

D3: AMS Interface Types

interface type {

 … // defined in Section 7.3.4

 AverageOperation: MethodInterface {

 Provider: {

 function Average

 {

 impLanguage: Java;

 invocation: average;

 parameterlist: (int);

 return_type: void;

 }

 }

 Consumer: {//nothing consumed}

 }

 NumericOperation: MethodInterface {

 Provider: {

 function GetValue

 {

 impLanguage: Java;

 invocation: getValue;

 parameterlist: (void);

 return_type: long_int;

 }

 }

 Consumer: {

 Call: add (long_int);

 Call: subtract (long_int);

 Call: multiply (long_int);

 Call: average (long_int);

 }

 InvestmentOperation: MethodInterface {

 Provider: {

 function Addition

 {

 impLanguage: Java;

 invocation: add;

 parameterlist: (int);

 return_type: void;

D-5

 }

 function GetValue

 {

 impLanguage: Java;

 invocation: getValue;

 parameterlist: (void);

 return_type: long_int;

 }

 }

 }

 Consumer: {

 Call: getValue (long_int);

 Call: add (long_int);

 }

 }

 DatabaseOperation: MethodInterface {

 Provider: {

 function InsertSQLData

 {

 impLanguage: Java;

 invocation: insert;

 parameterlist: (string);

 return_type: void;

 }

 function DeleteSQLData

 {

 impLanguage: Java;

 invocation: delete;

 parameterlist: (string);

 return_type: void;

 }

 }

 }

 Consumer: {

 Call: insert (string);

 Call: delete (string);

 }

 }

D-6

 DatabaseUpdation: MethodInterface {

 Provider: {

 function SearchSQLData

 {

 impLanguage: Java;

 invocation: search;

 parameterlist: (void);

 return_type: string;

 }

 function UpdateSQLData

 {

 impLanguage: Java;

 invocation: update;

 parameterlist: (string);

 return_type: void;

 }

 }

 }

 Consumer: {

 Call: search (string);

 Call: update (string);

 }

 }

 DatabaseOrder: MethodInterface {

 Provider: {

 function GetSQLMessage

 {

 impLanguage: Java;

 invocation: getMessage;

 parameterlist: (void);

 return_type: string;

 }

 }

 }

 Consumer: {

 Call: insert (string);

 Call: update (string);

 }

 }

D-7

 DerivativeOperation: MethodInterface {

 Provider: {

 function ValuePercentage

 {

 impLanguage: Java;

 invocation: percentage;

 parameterlist: (int);

 return_type: void;

 }

 function GetValue

 {

 impLanguage: Java;

 invocation: getValue;

 parameterlist: (void);

 return_type: long_int;

 }

 }

 Consumer: {

 Call: percentage (long_int);

 Call: getValue (long_int);

 }

 }

 } // end of interface types

D-8

D4: AMS Connector Types

HTTP_AMSUserInterface

connector type HTTP_AMSUserInterface

 {

 features: {

 Equity: “Type of financial instrument that deals with

 shares”,

 Commodity: “Type of financial instrument that deals with

 metal, agriculture, Oil & Gas and energy”,

 Foreign_Exchange: “Type of financial instrument that deals

 with currency”,

 Interest_Rate: “Type of financial instrument that deals

 with bonds”;

 }

interfaces: {

 requestport1, requestport2: PortfolioService;

 requestport3, requestport4: PortfolioStatus;

 }

layout: {

 connect requestport3 and requestport4;

 if (supported(Equity || Commodity || Foreign_Exchange ||

 Interest_Rate))

 connect requestport1 and requestport2;

 }

 }

HTTP_Equity

connector type HTTP_Equity

 {

 features: {

 Share: “Type of equity in financial instruments”,

 Derivative: “Used as a security for the equity asset”;

 }

 interfaces: {

 messageport1, messageport2, messageport3:

 PortfolioMessenger;

 }

 layout: {

 if (supported(Share)|| supported(Derivative))

D-9

 connect messageport1 and messageport2;

 else

 connect messageport1 and messageport3;

 }

 }

ODBC_EquityPortfolio

connector type ODBC_EquityPortfolio

 {

 features: {

 Currency_Investment_Method: “Managing portfolio with cash”,

 Share_Investment_Method: “Managing portfolio with share

 trading”;

 }

 interfaces: {

 dataport1, dataport2: DatabaseUpdation;

 dataport3, dataport4: DatabaseOperation;

 }

 layout: {

 connect dataport1 and dataport2;

 if (supported(Currency_Investment_Method ||

 Share_Investment_Method))

 connect dataport3 and dataport4;

 }

 }

HTTP_EquityValuator

connector type HTTP_EquityValuator

 {

 features: {

 MTM_Price_Method: “Share prices matched with market price”,

 Company_Price_Method: “Unlisted share price of an

 individual company”,

 Weighted_Average_Method: “Portfolio Valuation is done on

 the basis of average price”;

 }

 interfaces: {

 messageport1, messageport2: PortfolioMessenger;

 valueport1, valueport2, valueport3, valueport4:

 ValueData;

D-10

 }

 layout: {

 connect valueport3 and valueport4;

 if (supported(MTM_Price_Method || Company_Price_Method))

 connect valueport1 and valueport2;

 if (supported(Weighted_Average_Method))

 connect messageport1 to messageport2;

 }

 }

HTTP_ExternalSystem

connector type HTTP_ExternalSystem

 {

 features: {

 Financial_Asset: “Tradeable assets to manage portfolio”,

 MTM_Method: “Share prices matched with market price”,

 SCompany_Method: “Unlisted share price of an individual

 company”;

 }

 interfaces: {

 messaageport1, messageport2: PortfolioMessenger;

 valueport1, valueport2: ValueData;

 }

 layout: {

 if (supported(Financial_Asset))

 connect messageport1 and messageport2;

 if (supported(MTM_Method || SCompany_Method))

 connect valueport1 and valueport2;

 }

 }

D-11

ODBC_EquityTrade

connector type ODBC_EquityTrade

 {

 features: {

 Financial_Asset: “Tradeable assets to manage portfolio”,

 Share_Investment_Method: “Managing portfolio with share

 trading”,

 Share: “Type of equity in financial instruments”;

 }

 interfaces: {

 dataport1, dataport2: PortfolioData;

 dataport3, dataport4: DatabaseOrder;

 }

 layout: {

 if (supported(Share_Investment_Method || Share))

 connect dataport1 and dataport2;

 if (supported(Financial_Asset || Share_Investment_Method))

 connect dataport3 and dataport4;

 }

 }

HTTP_EquityTrade

 connector type HTTP_EquityTrade

 {

 features: {

 Currency_Investment_Method: “Managing portfolio with cash”,

 Share_Investment_Method: “Managing portfolio with share

 trading”;

 }

 interfaces: {

 msgport1, msgport2, msgport3: OrderMessenger;

 }

 layout: {

 connect msgport1 and msgport3;

 if (supported(Share_Investment_Method))

 connect msgport1 and msgport2;

 if (supported(Currency_Investment_Method))

 connect msgport1 to msgport3;

 }

 }

D-12

HTTP_EquityRate

connector type HTTP_EquityRate

 {

 features: {

 // no optional/alternative and parameterized features

 }

 interfaces: {

 valueport1, valueport2: ValueData;

 }

 layout: {

 connect valueport1 and valueport2;

 }

 }

Calculator_Derivative

connector type Calculator_Derivative

 {

 features: {

 // no optional/alternative and parameterized features

 }

 interfaces: {

 valueport1, valueportt2: DerivativeOperation;

 }

 layout: {

 connect valueport1 and valueport2;

 }

 }

D-13

D5: AMS Component Types

PortfolioAMS_GUI

SR

PortfolioAMS_GUI

US

component type PortfolioAMS_GUI

 {

 meta: { }

 features: {

 // no optional/alternative and parameterized features

 }

 interfaces: {

 definition: {

 // no need to define any interface/s

 }

 implements: {

 ServiceRequest, UpdationStatus: PortfolioMessenger;

 }

 }

 sub-system: {

 components { }

 connectors { }

 arrangement { }

 } // end of sub-system

 } // end of component type

D-14

Portfolio_EquityUIServer

SR

TM

Portfolio_EquityUIServer

NMUS

Financial_Trade

_Asset

DA

SCompany_

Method

PS

Weighted_Average_

Method

TD

component type Portfolio_EquityUIServer

 {

 meta: Meta_EquityServer {

 creatorID: “david045”;

 cost: 2000;

 version: 1.3;

 last_updated: 29-02-2016;

 }

 features: {

 Financial_Trade_Asset: “Tradeable assets to manage

 portfolio”,

 SCompany_Method: “Unlisted share price of an individual

 company”,

 Weighted_Average_Method: “Portfolio Valuation is done on the

 basis of average share price”;

 }

 interfaces: {

 definition: {

 // no need to define any interface/s

 }

D-15

 implements: {

 ServiceRequest, UpdationStatus, NotificationMessage:

 PortfolioMessenger;

 if (supported (Financial_Trade_Asset) &&

 unsupported (SCompany_Method))

 {TradeMessage: PortfolioMessenger;

 TradeData, DataAccess: DataUpdation;}

 if (supported (SCompany_Method || Weighted_Average_Method))

 PriceStatus: ValueData;

 }

 }

 sub-system: {

 components { }

 connectors { }

 arrangement { }

 } // end of sub-system

 } // end of component type

D-16

AMS_EquityDb

AMS_EquityDb

ShareData

Internal_EquityData

TD

OA

Share_
Investment_

Method

MTM_
Method

SOrderData

Order_Generator

OA

E_Share

PSVR

Scompany_
Method

WAV_Method

PS

MV

MV

CR

Money_
Investment
_Method

OD

UD

UD

EquityPortfolio

Portfolio_Db

CD

DA

DA

IV

HTTP_Datar1

r3

HTTP_ERate

v1

v2

HTTP_MTM

v1

v2

d3

d4DB_TOrder

d1

d2DB_EValue

d1

DB_ETrade
d4

DB_Cash

d1

d2

DB_PEquity

d3
d4DB_SOrder

IVd3

component type AMS_EquityDb

 {

 meta: Meta_DbEquity {

 last_updated: 29-02-2016;

 DBA: “David”;

 description: “stores all data related to equity-shares”;

 }

 features: {

 E_Share: “Type of equity in financial instruments”,

 Money_Investment_Method: “Managing portfolio with cash”,

 Share_Investment_Method: “Managing portfolio with share

 trading”,

 MTM_Method: “Share prices matched with market price”,

D-17

 SCompany_Method: “Unlisted share price of an individual

 company”,

 WAV_Method: “Portfolio Valuation is done on the basis of

 Average share price”;

 }

 interfaces: {

 definition: { //no need to define any interface/s }

 implements:{

 DataAccess: DatabaseUpdation;

 if (supported(Financial_Asset ||

 Share_Investment_Method)){

 OrderAccess: DatabaseOperation;

 TradeData: DatabaseOrder;}

 if (supported(Money_Investment_Method))

 InvestmentValue: InvestmentOperation;

 if (supported(MTM_Method || SCompany_Method ||

 WAV_Method)){

 CalculationRequest: PortfolioMessenger;

 PriceStatus: ValueData;}

 if (supported(MTM_Method))

 MarketValue: ValueOperation;

 }

 } //end of interfaces

 sub-system: {

 components {

 EquityPortfolio<Money_Investment_Method,

 Share_Investment_Method, MTM_Method, SCompany_Method,

 WAV_Method>: Portfolio_Db;

 if (supported(Share_Investment_Method))

 SOrderData<true, false>: Order_Generator;

 if (supported(MTM_Method || SCompany_Method ||

 Weighted_Average_Method))

 ShareData <MTM_Method, SCompany_Method, WAV_Method>:

 Internal_EquityData;

 }

 connectors {

 DB_PEquity<false, false>: ODBC_EquityPortfolio;

 if (supported(MTM_Method || SCompany_Method ||

 Weighted_Average_Method)){

 HTTP_Data<true, false, false, false>:

 HTTP_AMSUserInterface;

 HTTP_ERate< >: HTTP_EquityRate;

D-18

 DB_EValue<false, false, E_Share>: ODBC_EquityTrade;}

 if (supported(MTM_Method))

 HTTP_MTM<true, false, false>: HTTP_EquityValuator;

 if (supported(Share_Investment_Method)){

 DB_SOrder<true, true, E_Share>: ODBC_EquityTrade;

 DB_TOrder<false, true>: ODBC_EquityPortfolio;

 DB_EValue<false, false, E_Share>: ODBC_EquityTrade;}

 if (supported(Money_Investment_Method))

 DB_Cash<true, false>: ODBC_EquityPortfolio;

 }

 arrangement {

 connect EquityPortfolio.DataAccess with DB_PEquity.dataport1;

 connect my.DataAccess with DB_PEquity.dataport2;

 if (supported(MTM_Method || SCompany_Method ||

 Weighted_Average_Method)){

 connect ShareData.ValuationRequest with

 HTTP_Data.requestport3;

 connect my.CalculationRequest with HTTP_Data.requestport1;

 connect ShareData.PriceStatus with HTTP_ERate.valueport1;

 connect my.PriceStatus with HTTP_ERate.valueport2;

 connect ShareData.UpdatedData with DB_EValue.dataport1;

 connect EquityPortfolio.CurrentData with

 DB_EValue.dataport2;}

 if (supported(MTM_Method)){

 connect ShareData.MarketValue with HTTP_MTM.valueport2;

 connect my.MarketValue with HTTP_MTM.valueport1;}

 if (supported(Share_Investment_Method)){

 connect SOrderData.OrderAccess with DB_TOrder.dataport4;

 connect my.OrderAccess with DB_TOrder.dataport3;

 connect SOrderData.OrderData with DB_SOrder.dataport3;

 connect my.TradeData with DB_SOrder.dataport4;

 connect SOrderData.UpdatedData with DB_ETrade.dataport1;

 connect EquityPortfolio.CurrentData with

 DB_Trade.dataport2;}

 if (supported(Money_Investment_Method)){

 connect EquityPortfolio.InvestmentValue with

 DB_Cash.dataport3;

 connect my.InvestmentValue with DB_Cash.dataport4;}

 } // end of arrangement

 } // end of sub-system

 } // end of component type

D-19

Portfolio_Processor

Portfolio_Processor

CV

CM
PS

AR

NM

DA

OV

Weighted_Average_

Method

MTM_

Method

SCompany_

Method

Money_

Investment

_Method

Share_

Investment_

Method

OM

ShareOrder

Order_Generator

OAOM

OA

d3

d4
DB_TradeOrder

HTTP_ETrade
m2m1

Financial_Asset

IV

component type Portfolio_Processor

 {

 meta: Meta_Processor {

 queuing_method: “FIFO”;

 priority_process: “updated portfolio that has been

 requested”;

 }

 features: {

 Money_Investment_Method: “Managing portfolio with cash”,

 Financial_Asset: “Tradeable assets to manage portfolio”,

 Share_Investment_Method: “Managing portfolio with share

 trading”,

 MTM_Method: “Share prices matched with market price”,

D-20

 SCompany_Method: “Unlisted share price of an individual

 company”,

 Weighted_Average_Method: “Portfolio Valuation is done on

 the basis of average share

 price”;

 }

 interfaces: {

 definition: {

 //no need to define any interface/s

 }

 implements:{

 DataAccess: DatabaseUpdation;

 NotificationMessage: PortfolioMessenger;

 if (supported(Financial_Asset ||

 Share_Investment_Method)){

 OrderMessage: PortfolioMessenger;

 OrderAccess: DatabaseOperation;}

 if (supported(Money_Investment_Method))

 InvestmentValue: InvestmentOperation;

 if (supported(MTM_Method || SCompany_Method ||

 Weighted_Average_Method)){

 CalculationMessage: PortfolioMessenger;

 OperationalValue: ArithmeticOperation;}

 if (supported(MTM_Method || SCompany_Method)){

 CalculationValue: ValueOperation;

 PriceStatus: ValueData;}

 if (supported(Weighted_Average_Method))

 AverageRequest: PortfolioMessenger;

 }

 } //end of interfaces

 sub-system: {

 components {

 if (supported(Financial_Asset || Share_Investment_Method))

 ShareOrder<true, true>: Order_Generator;

 }

 connectors {

 if (supported(Financial_Asset || Share_Investment_Method)){

 HTTP_ETrade<false, true>:HTTP_EquityTrade;

 DB_TradeOrder<false, true, true>: ODBC_EquityTrade;}

 }

D-21

 arrangement {

 if (supported(Financial_Asset || Share_Investment_Method)){

 connect ShareOrder.OrderMessage with

 HTTP_ETrade.messageport2;

 connect my.OrderMessage with HTTP_ETrade.messageport1;

 connect ShareOrder.OrderAccess with

 DB_TradeOrder.dataport3;

 connect my.OrderAccess with DB_TradeOrder.dataport4;}

 } // end of arrangement

 } // end of sub-system

 } // end of component type

D-22

Portfolio_EquityValuator

MTMValuator

E_Share
MTM_Rate

_Method

Company_Rate

_Method

Weighted_Average_

Value_Method

Portfolio_EquityValuator

EquityCalculator

CRValuator

EquityCalculator

WeightedValuator

EquityCalculator

PValueProcessor

Portfolio_Processor

CM

CV

HTTP_EMarket
CM

v1

OV

OV

AV

v2

Cal_MTM

Cal_CR

v2

v3

Cal_MTM

Cal_CR Cal_WAV

HTTP_VProcessor
m2m1 PS v1 PSv2

NV
v4

AR m1

AM m2

HTTP_CalWAV

component type Portfolio_EquityValuator

 {

 meta: Meta_Valuator, Meta_ShareTradeData {

 // demonstrates meta object comprises of two meta types

 acceptance_value: “any numerical value”;

 value_approximation: “2 significant figures”;

 curreny_acceptance: “all top international trading currencies

 that exists in stock exchange”;

 last_request: 18-01-2016;

 intention: “to calculate the portfolio value on the basis of

 current business day trading”;

D-23

 }

 features: {

 E_Share: “Type of equity in financial instruments”,

 MTM_Rate_Method: “Share prices matched with market price”’

 Company_Rate_Method: “Unlisted share price of an individual

 company”,

 Weighted_Average_Value_Method: “Portfolio Valuation is done on

 the basis of average share price”;

 }

 interfaces: {

 definition: { //No need to define any interface/s }

 implements:{

 NumercialValue: NumericOperation;

 if (supported (MTM_Rate_Method || Company_Rate_Method))

 PriceStatus: ValueData;

 if (supported (Weighted_Average_Value_Method))

 CalculationMessage: PortfolioMessenger;

 }

 } //end of interfaces

 sub-system: {

 components {

 PValueProcessor<false, false, false, true, true, true>:

 Portfolio_Processor;

 if (supported(E_Share)) {

 if (supported(MTM_Rate_Method)&&

 unsupported(Weighted_Average_Value_Method))

 MTMValuator<true, false, false, false>: EquityCalculator;

 else if (supported(Company_Rate_Method))

 CRValuator<false, true, false, false>: EquityCalculator;

 else

 WeightedValuator<false, false, true, false>:

 EquityCalculator;

 }

 }

 connectors {

 HTTP_EMarket<MTM_Rate_Method, Company_Rate_Method, false>:

 HTTP_EquityValuator;

 if (supported(MTM_Rate_Method) &&

 unsupported(Weighted_Average_Value_Method))

 Cal_MTM<true, false, false>: Calculator_Equity;

 else if (supported(Company_Rate_Method))

 Cal_CR<false, true, false>: Calculator_Equity;

D-24

 else {

 HTTP_VProcessor<true, false>: HTTP_Equity;

 HTTP_CalWAV<false, false, true>: HTTP_EquityCalculator;

 Cal_WAV<false, false, true>: Calculator_Equity;}

 }

 arrangement {

 connect PValueProcessor.CalculationMessage with

 HTTP_VProcessor.msgport2;

 connect my.CalculationMessage with HTTP_VProcessor.msgport1;

 if (supported (MTM_Rate_Method || Company_Rate_Method)){

 connect PValueProcessor.PriceStatus with

 HTTP_EMarket.valueport1;

 connect my.PriceStatus with HTTP_EMarket.valueport2;}

 if (supported(MTM_Rate_Method) &&

 unsupported(Weighted_Average_Value_Method)){

 connect PValueProcessor.CalculationValue with

 Cal_MTM.valueport1;

 connect MTMValuator.OperationalValue with

 Cal_MTM.valueport2;

 connect MTMValuator.OperationalValue with

 Cal_MTM.valueport2;}

 connect my.NumericalValue with Cal_MTM.valueport4;

 else if (supported(Company_Rate_Method)) {

 connect PValueProcessor.CalculationValue with

 Cal_CR.valueport1;

 connect CRValuator.OperationalValue with Cal_CR.valueport2;

 connect CRValuator.OperationalValue with Cal_CR.valueport2;

 connect my.NumericalValue with Cal_CR.valueport4;}

 else {

 connect PValueProcessor.AverageRequest with

 HTTP_CalWAV.messageport1;

 connect WeightedValuator.AverageMessage with

 HTTP_CalWAV.messageport2;

 connect WeightedValuator.AverageValue with

 Cal_WAV.valueport3;

 connect my.NumericalValue with Cal_WAV.valueport4;}

 } // end of arrangement

 } // end of sub-system

 } // end of component type

D-25

Portfolio_EquityCalculator

E_Derivative
MTM_

Method
SCompany_

Method WAV_Method

EquityCalculator

PShareDerivative

DerivativeValuator

DR

OV

DVDVv1
DRm2

v2
Cal_Derivative

HTTP_DValue

m1

AMAV

WAVData

Internal_EquityData

VR m2 m1

HTTP_CalWAV
Cal_WAVv4 AVv3

component type EquityCalculator

 {

 meta: Meta_Valuator {

 acceptance_value: “any numerical value”;

 value_approximation: “2 significant figures”;

 last_request: 10-02-2016;

 }

 features: {

 MTM_Method: “Share prices matched with market price”’

 SCompany_Method: “Unlisted share price of an individual

 company”,

 WAV_Method: “Portfolio Valuation is done on the basis of

 average share price”,

 E_Derivative: “Used as a security for the equity asset”;

 }

 interfaces: {

 definition: { //no need to define any interface/s }

 implements:{

 if (supported(MTM_Method || SCompany_Method))

D-26

 OperationalValue: ArithmeticOperation;

 if (supported(WAV_Method)){

 AverageMessage: PortfolioMessenger;

 AverageValue: AverageOperation;}

 if (supported(E_Derivative)){

 DerivativeRequest: PortfolioMessenger;

 DerivativeValue; DerivativeOperation;}

 }

 } //end of interfaces

 sub-system: {

 components {

 if (supported(E_Derivative))

 PShareDerivative< >: DerivativeValuator;

 if (supported(WAV_Method))

 WAVData <false, false, true>: Internal_EquityData;

 }

 connectors {

 if (supported(E_Derivative)){

 Cal_Derivative< >: Calculator_Derivative;

 HTTP_DValue<true, true>: HTTP_Equity;}

 if (supported(WAV_Method)){

 HTTP_CalWAV<false, false, true>: HTTP_EquityCalculator;

 Cal_WAV<false, false, true>: Calculator_Equity;}

 }

 arrangement {

 if (supported(E_Derivative)){

 connect PShareDerivative.DerivativeRequest with

 HTTP_DValue.messageport2;

 connect my.DerivativeRequest with HTTP_DValue.messageport1;

 connect PShareDerivative.DerivativeValue with

 Cal_Derivative.valueport1;

 connect my.DerivativeValue with Cal_Derivative.valueport2;}

 if (supported(WAV_Method)){

 connect WAVData.ValuationRequest with

 HTTP_CalWAV.messageport2;

 connect my.AverageMessage with HTTP_CalWAV.messageport1;

 connect WAVData.AverageValue with Cal_WAV.valueport3;

 connect my.AverageValue with Cal_WAV.valueport4;}

 } // end of arrangement

 } // end of sub-system

 } // end of component type

D-27

PortfolioDb

Portfolio_Db

DACD

IV

Share_

Investment_

Method

MTM_Rate

_Method

SCompany_

Method

Weighted_Average_

Method

Money_

Investment

_Method

component type PortfolioDb

 {

 meta: Meta_DbEquity {

 last_updated: 29-02-2016;

 DBA: “Mark”;

 description: “stores portfolios of all the financial

 instruments”;

 }

 features: {

 Money_Investment_Method: “Managing portfolio with cash”,

 Share_Investment_Method: “Managing portfolio with share

 trading”,

 MTM_Rate_Method: “Share prices matched with market price”,

 SCompany_Method: “Unlisted share price of an individual

 company”,

 Weighted_Average_Method: “Portfolio Valuation is done on the

 basis of average share price”;

 }

 interfaces: {

 definition: {

 //no need to define any interface/s

 }

D-28

 implements:{

 DataAccess: DatabaseUpdation;

 if (supported(Share_Investment_Method || MTM_Rate_Method ||

 SCompany_Method || Weighted_Average_Method))

 CurrentData: DatabaseUpdation;

 if (supported(Money_Investment_Method))

 InvestmentValue: InvestmentOperation;

 }

 } //end of interfaces

 sub-system: {

 components {}

 connectors {}

 arrangement {}

 } // end of sub-system

 } // end of component type

D-29

Order_Generator

Order_Generator

OAOM

OD

Financial_Trade_
Asset

Share_
Investment_

Method

UD

component type Order_Generator

 {

 meta: Meta_Trade {

 updation_frequency: “whenever trade request is made”;

 max_request_per_order: 50;

 max_amount_per_order: 10,050;

 }

 features: {

 Financial_Trade_Asset: “Tradeable assets to manage

 portfolio”,

 Share_Investment_Method: “Managing portfolio with share

 trading;

 }

 interfaces: {

 definition: {

 //no need to define any interface/s

 }

 implements:{

 OrderData: DatabaseOrder;

 UpdatedData: DatabaseUpdation;

 if (supported(Share_Investment_Method))

 OrderAccess: DatabaseOperation;

 if (supported(Financial_Trade_Asset))

 OrderMessage: PortfolioMessenger;

 }

D-30

 } //end of interfaces

 sub-system: {

 components {}

 connectors {}

 arrangement {}

 } // end of sub-system

 } // end of component type

D-31

Internal_EquityTrade

Internal_EquityTrade

OD UD

Financial_Trade

_Asset

component type Internal_EquityTrade

 {

 meta: Meta_Trade {

 updation_frequency: “whenever trade request is made”;

 trade_condition: “internal share trade price should not

 exceed external share trade price”;

 }

 features: {

 Financial_Trade_Asset: “Tradeable assets to manage

 portfolio”;

 }

 interfaces: {

 definition: { //no need to define any interface/s }

 implements:{

 if (supported(Financial_Trade_Asset))

 OrderData: DatabaseOrder;

 UpdatedData: DatabaseUpdation;

 }

 } //end of interfaces

 sub-system: {

 components {}

 connectors {}

 arrangement {}

 } // end of sub-system

 } // end of component type

D-32

Derivative_Valuator

DerivativeValuator

DVDR

component type DerivativeValuator

 {

 meta: Meta_Derivative {

 risk_mitigation: “alpha and beta”;

 renewal_deadline: 28-02-2018;

 }

 features: { }

 interfaces: {

 definition: {

 //no need to define any interface/s

 }

 implements:{

 DerivativeRequest: PortfolioMessenger;

 DerivativeValue: DerivativeOperation;

 }

 } //end of interfaces

 sub-system: {

 components {}

 connectors {}

 arrangement {}

 } // end of sub-system

 } // end of component type

D-33

D6: AMS Product Configurations

 product configurations {

 … // defined in Section 7.3.7

 Equity_Share_Traded: {

 Equity {Equity_Type = long};

 Equity_Share = true;

 MarkToMarket_Method = false;

 Share_Company_Method = true;

 }

 Equity_Share_Investment: {

 Equity {Equity_Type = (long, short)};

 Equity_Share = true;

 Financial_Asset = true;

 Cash_Investment {InvestmentCurrency = GBP};

 Share_Investment {Max_Offer_Quantity = 5,

 Max_Bid_Quantity = 10};

 }

 Equity_Share_Derivative: {

 Equity {Equity_Type = long};

 Equity_Share = true;

 Equity_Derivative {Derivative_Type = Options,

 Premium_Period = 1year,

 OTC = false};

 Share_Sector {Holdings = 100,

 Total_Share_Value = 1,550,

 Share_Sector_Category = (Banking,

 Pharmaceutical, Automotive)};

 }

 } // end of product configuration

D-34

D7: AMS Events

events {

 ValuationRequest: <WSDL, WSDL>;

 RequestValuationDetails: <MethodInterface, MethodInterface>;

 SendValuationDetails: <MethodInterface, MethodInterface>;

 RequestPrice: <WSDL, WSDL>;

 CurrentStatus: <WSDL, WSDL>;

 RequestPriceList: <WSDL, WSDL>;

 CurrentPrice: <WSDL, WSDL>;

 UpdatedPriceList: <WSDL, WSDL>;

 SendValuation: <MethodInterface, MethodInterface>;

 UpdateValue: <MethodInterface, MethodInterface>;

 Update: <MethodInterface, MethodInterface>;

 Notify: <MethodInterface, MethodInterface>;

 Inform: <(MethodInterface, WSDL), (MethodInterface, WSDL)>;

 Access: <MethodInterface, MethodInterface>;

 RebalanceRequest: <WSDL, WSDL>;

 PortfolioRequest: <MethodInterface, MethodInterface>;

 SendCurentPortfolio: <MethodInterface, MethodInterface>;

 UpdatedPortfolio: <MethodInterface, MethodInterface>;

 CurrentPortfolio: <WSDL, WSDL>;

 WriteOrderList: <MethodInterface, MethodInterface>;

 SendOrderList: <WSDL, WSDL>;

 CurrentStatus: <WSDL, WSDL>;

 TradingRequest: <WSDL, WSDL>;

 OrderRequest: <WSDL, WSDL>;

 PlaceOrder: <(MethodInterface, WSDL), (MethodInterface, WSDL)>;

 OrderUpdate: <(MethodInterface, WSDL), (MethodInterface, WSDL)>;

} // end of events

D-35

D8: AMS Scenarios

scenarios {

 … // defined in Section 7.3.10

 P.RevaluatingPC.ST_IL: {

 Description: “Revaluating portfolio due to change in share

 price and illiquid shares trading both”;

 Parameterisation: {

 PriceChanged = true;

 PriceUnchanged = false;

 ShareTrade = true;

 Exchange_Traded = true;

 Illiquid = true;

 }

 }

 P.RevaluatingST_ET: {

 Description: “Revaluating portfolio due to exchange

 trading”;

 Parameterisation: {

 PriceChanged = false;

 PriceUnchanged = true;

 ShareTrade = true;

 Exchange_Traded = true;

 Illiquid = false;

 }

}

 P.RevaluatingST_IL: {

 Description: “Revaluating portfolio due to illiquid

 shares trading”;

 Parameterisation: {

 PriceChanged = false;

 PriceUnchanged = true;

 ShareTrade = true;

 Exchange_Traded = false;

 Illiquid = true;

 }

 }

D-36

 P.RebalancingCash: {

 Description: “Portfolio rebalancing is done via cash

 investment”;

 Parameterisation: {

 Further_Investment = true;

 Financial_Instr_Equity = false;

 }

}

 P.Rebalancing_EquityInternally: {

 Description: “Portfolio rebalancing is done via financial

 instrument – equity as internal trading”;

 Parameterisation: {

 Further_Investment = false;

 Financial_Instr_Equity = true;

 OrderFilled = true;

 OrderForwarded = false;

 }

 }

 P.Rebalancing_EquityExternally: {

 Description: “Portfolio rebalancing is done via financial

 instrument – equity as external trading”;

 Parameterisation: {

 Further_Investment = false;

 Financial_Instr_Equity = true;

 OrderFilled = false;

 OrderForwarded = true;

 }

 }

 } // end of scenarios

D-37

D9: AMS Transaction Domain

D9.1: Interactions of the components in the transaction domain

PortfolioValuation

Portfolio GUI

 Provided in Section 7.3.11

UI Server

Job Processor.

NM

Portfolio GUI.

SR
SR

ValuationRequest/
HTTP_Processor

Inform/
HTTP_Processor

ValuationRequest/
HTTP_GUI

CurrentStatus/
HTTP_Status

US
Portfolio GUI.

US
NM

Value Processor.

NM

CurrentStatus/
HTTP_Status

Inform/
HTTP_Processor

alt

[ShareTrade || PriceChanged]

[PriceUnchanged]

D-38

Job Processor

EquityDb.

DA
DANM

UI Server.

NM

ValuationRequest/
HTTP_Processor

RequestValuationDetails/
DB_VProcessor

Notify/
DB_VProcessor

alt

[ShareTrade || PriceChanged]

D-39

EquityDb

Job Processor.

DA
DA

Value Processor.

DA

RequestValuationDetails/
DB_VProcessor

SendValuationDetails/
DB_VProcessor

UpdateValue/
DB_VProcessor

Notify/
DB_VProcessor

alt

[ShareTrade || PriceChanged]

D-40

Value Processor

DA
EquityDb.

DA

SendValuationDetails/
DB_VProcessor

NM
UI Server.

NM

Inform/
HTTP_Processor

CM PS
Market Share

Data. CR

*Company

Financial Account

RequestPriceList/
HTTP_Processor

RequestPrice/
HTTP_ExCRate

Portfolio Value

Calculator. NV
OV *P/L System

SendValuation/
Cal_Processor

UpdateValue/
DB_VProcessor

Notify/
HTTP_External

Inform/
HTTP_Processor

alt

[ExchangeTraded]

[Illiquid]

par

alt

[ShareTrade || PriceChanged]

[PriceUnchanged]

D-41

Market Share Data

MV
Value Processor.

CM
CR *Stock Market

RequestPriceList/
HTTP_Processor

RequestPrice/
HTTP_ExMRate

alt

[ShareTrade || PriceChanged]

alt

[ExchangeTraded]

UI Price Server

PS
*Company

Financial Account

Equity Market

Data. PS

CurrentPrice/
HTTP_ExCRate

CurrentPrice/
HTTP_CRate

alt

[ShareTrade || PriceChanged]

alt

[Illiquid]

D-42

Equity Market Data

PS
UI Price Server.

PS
*Stock Market

Portfolio Value

Calculator. PS

RequestPrice/
HTTP_ExMRate

CurrentPrice/
HTTP_CRate

UpdatedPriceList/
HTTP_Price

alt

[ShareTrade || PriceChanged]

alt

[ExchangeTraded]

[Illiquid]

Portfolio Value Calculator

PS NV
Equity Market

Data. PS

Value Processor.

OV

UpdatedPriceList/
HTTP_Price

SendValuation/
Cal_Processor

alt

[ShareTrade || PriceChanged]

D-43

*Stock Market

*Stock Market
Market Share

Data. MV

Equity Market

Data. PS

RequestPrice/
HTTP_ExMRate

CurrentPrice/
HTTP_ExMRate

alt

[ShareTrade || PriceChanged]

alt

[ExchangeTraded]

*Company Financial Account

*Company

Financial Account

UI Price Server.

PS

Value Processor.

PS

RequestPrice/
HTTP_ExCRate

CurrentPrice/
HTTP_ExMRate

alt

[ShareTrade || PriceChanged]

alt

[Illiquid]

D-44

*P/L System

*P/L System
Value Processor.

NM

Notify/
HTTP_External

alt

[ShareTrade || PriceChanged]

D-45

D9.2: Transaction Domain PortfolioRebalance

transaction domain PortfolioRebalance

 {

 meta: Meta_PortfolioDomain {

 purpose: “To rebalance portfolio”;

 compatibility: “financial instrument –equity”;

 occurrence: “Depends on the portfolio strategy set by the

 fund manager”;

 }

 contents: {

 /*provides the list of components and connectors involved in

 this transaction domain*/

 Components: {Portfolio_GUI, UI_Server, EquityDb,

 Job_Processor, Rebalance_Processor,

 Cash_EquityDb, Trade_EquityDb, UI_Trade_Server,

 Order_Gateway, Matching_Engine, *Trading_System}

 Connectors: {HTTP_GUI, HTTP_Status, HTTP_Processor,

 HTTP_ShareOrder, HTTP_ExTrade, DB_VProcessor,

 DB_CRebalance, DB_ShareOrder}

 }

 transactions:

 {

 INITIALREQUEST:

 {

 events: {RebalanceRequest, PortfolioRequest,

 SendCurrentPortfolio, Update, Inform,

 WriteOrderList, SendOrderList}

 interactions: {

 Portfolio_GUI.ServiceRequest sends

 RebalanceRequest/HTTP_GUI to UI_Server.ServiceRequest;

 UI_Server.NotificationMessage sends

 RebalanceRequest/HTTP_Processor to

 Job_Processor.NotificationMessage;

 Job_Processor.DataAccess sends

 PortfolioRequest/DB_VProcessor to EquityDb.DataAccess;

 EquityDb.DataAccess sends

 SendCurrentPortfolio/DB_VProcessor to

 Rebalance_Processor.DataAccess;

 if (supported (Cash_Investment)&&

 (Further_Investment)){

 [Rebalance_Processor.InvestmentValue sends

D-46

 Update/DB_CRebalance,

 Rebalance_Processor.NotificationMessage sends

 Inform/HTTP_Processor];}

 else {

 [Rebalance_Processor.OrderAccess sends

 WriteOrderList/DB_ShareOrder,

 Rebalance_Processor.OrderMessage sends

 SendOrderList/HTTP_ShareOrder];}

 }

 }

 INVESTMENTUPDATE:

 {

 events: {Update, Notify}

 interactions: {

 EquityDb.DataAccess receives Update/DB_CRebalance;

 EquityDb.DataAccess sends Notify/DB_CRebalance to

 Rebalance_Processor.DataAccess;

 }

 }

 INVESTMENTNOTIFICATION:

 {

 events: {Inform, Access, UpdatedPortfolio,

 CurrentPortfolio}

 interactions: {

 UI_Server.NotificationMessage receives

 Inform/HTTP_Processor;

 UI_Server.DataAccess sends Access/DB_VProcessor to

 Cash_EquityDb.DataAccess;

 EquityDb.DataAccess sends

 UpdatedPortfolio/DB_VProcessor to

 UI_Server.DataAccess;

 UI_Server.UpdationStatus sends

 CurrentPortfolio/HTTP_Status to

 Portfolio_GUI.UpdationStatus;

 }

 }

 ORDERLISTUPDATE:

 {

 events: {WriteOrderList, Notify}

 interactions: {

 Trade_EquityDb.OrderAccess receives

 WriteOrderList/DB_ShareOrder;

D-47

 Trade_EquityDb.OrderAccess sends Notify/DB_ShareOrder

 to Rebalance_Processor.OrderAccess;

 }

 }

 ORDERPLACEMENT:

 {

 events: {SendOrderList, Access, Notify, CurrentStatus,

 TradingRequest, OrderRequest, PlaceOrder,

 OrderUpdate, Inform, Update}

 interactions:{

 UI_Trade_Server.TradeMessage receives

 SendOrderList/HTTP_ShareOrder;

 UI_Trade_Server.DataAccess sends Access/DB_SOrderData

 to Trade_EquityDb.DataAccess;

 Trade_EquityDb.DataAccess sends Notify/DB_SOrderData to

 UI_Trade_Server.DataAccess;

 UI_Trade_Server.UpdationStatus sends

 CurrentStatus/HTTP_Status to

 Portfolio_GUI.UpdationStatus;

 Portfolio_GUI.ServiceRequest sends

 TradingRequest/HTTP_GUI to

 UI_Trade_Server.ServiceRequest;

 UI_Trade_Server.TradeMessage sends

 OrderRequest/HTTP_ShareOrder to

 Order_Gateway.OrderMessage;

 Order_Gateway.OrderData sends PlaceOrder/DB_ShareOrder

 to Matching_Engine.OrderData;

 Matching_Engine.UpdatedData sends

 OrderUpdate/DB_VProcessor to Order_Gateway.UpdatedData;

 if (supported(Share_Investment)&& (OrderForwarded)) {

 Order_Gateway.OrderMessage sends

 PlaceOrder/HTTP_ExTrade to *Trading_System;

 *Trading_System sends OrderUpdate/HTTP_ExTrade to

 OrderGateway.OrderMessage;}

 UI_Trade_Server.TradeMessage receives

 Inform/HTTP_ShareOrder from Order_Gateway.OrderMessage;

 UI_Trade_Server.TradeData sends Update/DB_VProcessor to

 Trade_EquityDb.TradeData;

 Trade_EquityDb.TradeData sends Notify/DB_VProcessor

 to UI_Trade_Server.TradeData;

 UI_Trade_Server.UpdationStatus sends

 CurrentStatus/HTTP_Status to

D-48

 Portfolio_GUI.UpdationStatus;

 }

 }

 REBALANCINGPORTFOLIO:

 {

 events: {Update, Inform, WriteOrderList, SendOrderList}

 interactions: {

 if (supported (Cash_Investment)&& (Further_Investment)){

 [INVESTMENTUPDATE receives Update/DB_CRebalance from

 INITIALREQUEST,

 INVESTMENTNOTIFICATION receives

 Inform/HTTP_Processor from INITIALREQUEST];}

 else {

 [ORDERLISTUPDATE receives WriteOrderList/DB_ShareOrder

 from INITIALREQUEST,

 ORDERPLACEMENT receives SendOrderList/HTTP_ShareOrder

 from INITIALREQUEST];}

 } //end of interactions

 } //end of transaction

 } //end of transactions

 } //end of transaction domain

D-49

AMS Graphical Behavioural Representation of Transaction Domain PortfolioRebalance

RebalanceRequest/
HTTP_Processor

RebalanceRequest/
HTTP_GUI

PortfolioRequest/
DB_VProcessor

SendCurrentPortfolio/
DB_VProcessor

WriteOrderList/
DB_ShareOrder

SendOrderList/
HTTP_ShareOrder

Inform/
HTTP_Processor

Update/
DB_CRebalance

Access/
DB_SOrderData

Notify/
DB_CRebalance

Notify/
DB_ShareOrder

Access/
DB_VProcessor

UpdatedPortfolio/
DB_VProcessor

CurrentPortfolio/
HTTP_Status

CurrentStatus/
HTTP_Status

TradingRequest/
HTTP_GUI

Notify/
DB_SOrderData

OrderRequest/
HTTP_ShareOrder

PlaceOrder/
DB_ShareOrder

OrderUpdate/
DB_VProcessor

Update/
DB_VProcessor

CurrentStatus/
HTTP_Status

Notify/
DB_VProcessor

OrderUpdate/
HTTP_ExTrade

Inform/
HTTP_ShareOrder

PlaceOrder/
HTTP_ExTrade

Inform/
HTTP_ShareOrder

[OrderFilled]

[OrderForwarded]

Portfolio
GUI

UI Server

Order
Gateway

Cash
EquityDb

UI Server

UI Trade
Server

Rebalance
Processor

Job
Processor

Trade
EquityDb

EquityDb

Portfolio
GUI

Rebalance
Processor

Trade
EquityDb

UI Trade
Server

UI Trade
Server

Rebalance
Processor

Portfolio
GUI

Trade
EquityDb

Cash
EquityDb

Portfolio
GUI

UI Server

UI Trade
Server

Matching
Engine

Order
Gateway

Trading
System

Order
Gateway

UI Trade
Server

D-50

AMS Graphical Structural Representation of Transaction Domain PortfolioRebalance

Portfolio GUI UI ServerSR SR

NM

US US

HTTP_GUI
r2r1

HTTP_Status

r3r4

Job Processor

NM
m1HTTP_Processor

NM
m2

DA

EquityDb

DB_VProcessor
DAd1 d2

Rebalance Processor

Cash EquityDb IV

Trade EquityDbUI Trade Server

DAd2
DB_VProcessor

d1

NM

Order GatewayMatching Engine Trading System

IV

DB_CRebalance

d3

d4

HTTP_Processor

m1

m2

DAd1
DAd2

DB_VProcessor

TM

OM

OA

OA

d3

d4

DB_ShareOrder

m1

HTTP_ShareOrder

m2

DA DADB_SOrderData
d1 d2

US

HTTP_Status

r3

SR

r2

HTTP_GUI

OMm1

HTTP_ShareOrder

ODOD

UD UD

d3d4
DB_ShareOrder

DB_VProcessor
d1 d2

m2m1

HTTP_ExTrade

TD

TDd3

d4

DB_VProcessor

D-51

Interactions of the components in the transaction domain PortfolioRebalance

Portfolio GUI

UI Server. SRSR USUI Server. US

RebalanceRequest/
HTTP_GUI

CurrentPortfolio/
HTTP_Status

UI Trade

Server. US

CurrentStatus/
HTTP_Status

UI Trade

Server. SR

TradingRequest/
HTTP_GUI

CurrentStatus/
HTTP_Status

alt

[Further_Investment]

[Financial_Instr_Equity]

D-52

 UI Server

USSR NM DA
Rebalance

Processor. NM

Job Processor.

NM

Cash

EquityDb. DA

Portfolio GUI.

SR

RebalanceRequest/
HTTP_Processor

RebalanceRequest/
HTTP_GUI

Inform/
HTTP_Processor

Access/
DB_VProcessor

UpdatedPortfolio/
DB_VProcessor

Portfolio GUI.

US

CurrentPortfolio/
HTTP_Status

alt

[Further_Investment]

D-53

Job Processor

NMUI Server. NM DA EquityDb. DA

RebalanceRequest/
HTTP_Processor

PortfolioRequest/
DB_VProcessor

EquityDb

DA
Rebalance

Processor. DA

Job Processor.

DA

PortfolioRequest/
DB_VProcessor

SendCurrentPortfolio/
DB_VProcessor

D-54

Rebalance Processor

NM UI Server. NMDAEquityDb. DA IV
Cash

EquityDb. IV
OA

Trade

EquityDb. OA

UI Trade

Server. TM
OM

SendCurrentPortfolio/
DB_VProcessor

Update/
DB_CRebalance

Notify/
DB_CRebalance

Inform/
HTTP_Processor

WriteOrderList/
DB_ShareOrder

SendOrderList/
HTTP_ShareOrder

par

par

Notify/
DB_ShareOrder

alt

[Further_Investment]

[Financial_Instr_Equity]

D-55

Cash EquityDb

UI Server. DA DAIV
Rebalance

Processor. IV

Update/
DB_CRebalance

Notify/
DB_CRebalance

Access/
DB_VProcessor

UpdatedPortfolio/
DB_VProcessor

par

alt

[Further_Investment]

D-56

Trade EquityDb

OA
Rebalance

Processor. OA
DA

UI Trade

Server. DA
TD

UI Trade

Server. TD

WriteOrderList/
DB_ShareOrder

Access/
DB_SOrderData

Notify/
DB_ShareOrder

Update/
DB_VProcessor

Notify/
DB_VProcessor

par

alt

[Financial_Instr_Equity]

D-57

UI Trade Server

Order Gateway.

OM

Portfolio GUI.

SR

Portfolio GUI.

US

Trade

EquityDb. DA

Trade

EquityDb. TD

Rebalance

Processor. OM
SRUS TDTM DA

SendOrderList/
HTTP_ShareOrder

Access/
DB_SOrderData

Notify/
DB_SOrderData

CurrentStatus/
HTTP_Status

TradingRequest/
HTTP_GUI

OrderRequest/
HTTP_ShareOrder

Inform/
HTTP_ShareOrder

Inform/
HTTP_ShareOrder

Update/
DB_VProcessor

Notify/
DB_VProcessor

CurrentStatus/
HTTP_Status

alt

[OrderFilled]

[OrderForwarded]

alt

[Financial_Instr_Equity]

D-58

Order Gateway

Matching

Engine. OD
ODOM UD

Matching

Engine. UD
*Trading System

UI Trade Server.

TM

OrderRequest/
HTTP_ShareOrder

PlaceOrder/
DB_ShareOrder

OrderUpdate/
DB_VProcessor

Inform/
HTTP_ShareOrder

PlaceOrder/
HTTP_ExTrade

OrderUpdate/
HTTP_ExTrade

Inform/
HTTP_ShareOrder

alt

[OrderFilled]

[OrderForwarded]

alt

[Financial_Instr_Equity]

D-59

Matching Engine

Order Gateway.

OD
UDOD

Order Gateway.

UD

PlaceOrder/
DB_ShareOrder

OrderUpdate/
DB_VProcessor

alt

[Financial_Instr_Equity]

*Trading System

*Trading System
Order Gateway.

OM

PlaceOrder/

HTTP_ExTrade

OrderUpdate/

HTTP_ExTrade

alt

[OrderForwarded]

alt

[Financial_Instr_Equity]

D-60

D10: Asset Management System (AMS)

system

 {

components {

 Portfolio_GUI<>: PortfolioAMS_GUI;

 UI_Server<false, false, false>: Portfolio_EquityUIServer;

 Job_Processor<false, false, false, false, false, false>:

 Portfolio_Processor;

 EquityDb<true, false, false, false, false, false>:

 AMS_EquityDb;

 if (supported(Equity_Share)){

 // portfolio valuation

 Value_Processor<false, false, false, true, true, false>:

 Portfolio_Processor;

 if (supported(MarkToMarket_Method) &&

 unsupported(Share_Company_Method)){

 Market_Share_Data<false, false, false, true, false, false>:

 AMS_EquityDb;

 *Stock_Market;}

 else {

 *Company_Financial_Account;

 UI_Price_Server<false, false, true>: Portfolio_EquityUIServer;}

 }

 Equity_Market_Data<false, false, false, true, true, false>:

 AMS_EquityDb;

 Portfolio_Value_Calculator<true, MarkToMarket_Method,

 Share_Company_Method, false>: Portfolio_EquityValuator;

 *P/L_System;}

 // portfolio rebalancing

 if (supported(Cash_Investment || Share_Investment))

 Rebalance_Processor<Cash_Investment, Financial_Asset,

 Share_Investment, false, false, false>: Portfolio_Processor;

 if (supported(Cash_Investment))

 Cash_EquityDb<true, true, false, false, false, false>:

 AMS_EquityDb;

 if (supported(Share_Investment || Financial_Asset)){

 Trade_EquityDb<true, false, true, false, false, false>:

 AMS_EquityDb;

 UI_Trade_Server<true, false, false>: Portfolio_EquityUIServer;

 Order_Gateway<true, true>: Order_Generator;

 Matching_Engine<true>: Internal_EquityTrade;

D-61

 *Trading_System;}

} // end of components

connectors {

 HTTP_GUI<true, false, false, false>: HTTP_AMSUserInterface;

 HTTP_Processor<true, false>: HTTP_Equity;

 DB_VProcessor<false, false>: ODBC_EquityPortfolio;

 HTTP_Status<false, false, false, false>: HTTP_AMSUserInterface;

 if (supported(Equity_Share)){

 if (supported(MarkToMarket_Method))

 HTTP_ExMRate<false, true, false>: HTTP_ExternalSystem;

 if (supported(Share_Company_Method)){

 HTTP_ExCRate<false, false, true>: HTTP_ExternalSystem;

 HTTP_CRate<false, true, false>: HTTP_EquityValuator;}

 HTTP_Price<true, true, false>: HTTP_EquityValuator;

 Cal_Processor<false, false, false>: Calculator_Equity;

 HTTP_External<false, false, false>: HTTP_ExternalSystem;}

 if (supported(Cash_Investment))

 DB_CRebalance<true, false>: ODBC_EquityPortfolio;

 if (supported(Share_Investment || Financial_Asset)){

 DB_ShareOrder<true, true, Equity_Share>; ODBC_EquityTrade;

 DB_SOrderData<false, true, Equity_Share>; ODBC_EquityTrade;

 HTTP_ShareOrder<false, true>; HTTP_EquityTrade;

 HTTP_ExTrade<true, false, false>: HTTP_ExternalSystem;}

} // end of connectors

 arrangement {

 //similar to component type arrangement

 connect Portfolio_GUI.ServiceRequest with HTTP_GUI.requestport1;

 connect UI_Server.ServiceRequest with HTTP_GUI.requestport2;

 connect UI_Server.UpdationStatus with HTTP_Status.requestport3;

 connect Portfolio_GUI.UpdationStatus with

 HTTP_Status.requestport4;

 connect UI_Server.NotificationMessage with

 HTTP_Processor.messageport1;

 connect Job_Processor.NotificationMessage with

 HTTP_Processor.messageport2;

 connect Job_Processor.DataAccess with DB_VProcessor.dataport1;

 connect EquityDb.DataAccess with DB_VProcessor.dataport2;

 if (supported(Equity_Share)){

 // portfolio valuation

 connect EquityDb.DataAccess with DB_VProcessor.dataport1;

D-62

 connect Value_Processor.DataAccess with

 DB_VProcessor.dataport2;

 // connections for valuation methods

 if (supported(MarkToMarket_Method) &&

 unsupported(Share_Company_Method)){

 connect Value_Processor.CalculationMessage with

 HTTP_Processor.messageport1;

 connect Market_Share_Data.CalculationMessage with

 HTTP_Processor.messageport2;

 connect Market_Share_Data.MarketValue with

 HTTP_ExMRate.valueport1;

 connect *Stock_Market with HTTP_ExMRate.valueport2;

 connect *Stock_Market with HTTP_ExMRate.valueport1;

 connect Equity_Market_Data.PriceStatus with

 HTTP_ExMRate.valueport2;}

 else {

 connect Value_Processor.PriceStatus with

 HTTP_ExCRate.valueport1;

 connect *Company_Financial_Account with

 HTTP_ExCRate.valueport2;

 connect *Company_Financial_Account with

 HTTP_ExCRate.valueport1;

 connect UI_Price_Server.PriceStatus with

 HTTP_ExCRate.valueport2;

 connect UI_Price_Server.PriceStatus with

 HTTP_CRate.valueport1;

 connect Equity_Market_Data.PriceStatus with

 HTTP_CRate.valueport2;}

 // connections for portfolio revaluation

 connect Equity_Market_Data.PriceStatus with

 HTTP_Price.valueport2;

 connect Portfolio_Value_Calculator.PriceStatus with

 HTTP_Price.valueport1;

 connect Portfolio_Value_Calculator.NumericalValue with

 Cal_Processor.valueport4;

 connect Value_Processor.OperationalValue with

 Cal_Processor.valueport1;

 connect Value_Processor.NotificationMessage with

 HTTP_External.messageport1;

 connect *P/L_System with HTTP_External.messageport2;

 connect Value_Processor.NotificationMessage with

 HTTP_Processor.messageport1;

D-63

 connect UI_Server.NotificationMessage with

 HTTP_Processor.messageport2;}

 if (supported(Cash_Investment || Share_Investment)){

 connect EquityDb.DataAccess with DB_VProcessor.dataport1;

 connect Rebalance_Processor.DataAccess with

 DB_VProcessor.dataport2;}

 if (supported(Cash_Investment)){

 connect Rebalance_Processor.InvestmentValue with

 DB_CRebalance.dataport4;

 connect Cash_EquityDb.InvestmentValue with

 DB_CRebalance.dataport3;

 connect Rebalance_Processor.NotificationMessage with

 HTTP_Processor.messageport1;

 connect UI_Server.NotificationMessage with

 HTTP_Processor.messageport2;

 connect Cash_EquityDb.DataAccess with DB_VProcessor.dataport2;

 connect UI_Server.DataAccess with DB_VProcessor.dataport1;}

 if (supported(Share_Investment || Financial_Asset)){

 connect Rebalance_Processor.OrderAccess with

 DB_ShareOrder.dataport3;

 connect Trade_Equity_Db.OrderAccess with

 DB_ShareOrder.dataport4;

 connect Rebalance_Processor.OrderMessage with

 HTTP_ShareOrder.messageport1;

 connect UI_Trade_Server.TradeMessage with

 HTTP_ShareOrder.messageport2;

 connect UI_Trade_Server.DataAccess with

 DB_SOrderData.dataport1;

 connect Trade_EquityDb.DataAccess with

 DB_SOrderData.dataport2;

 connect UI_Trade_Server.UpdationStatus with

 HTTP_Status.requestport3;

 connect Portfolio_GUI.UpdationStatus with

 HTTP_Status.requestport4;

 connect Portfolio_GUI.ServiceRequest with

 HTTP_GUI.requestport1;

 connect UI_Trade_Server.ServiceRequest with

 HTTP_GUI.requestport2;

 connect UI_Trade_Server.TradeMessage with

 HTTP_ShareOrder.messageport2;

 connect Order_Gateway.OrderMessage with

 HTTP_ShareOrder.messageport1;

D-64

 connect Order_Gateway.OrderData with DB_ShareOrder.dataport3;

 connect Matching_Engine.OrderData with

 DB_ShareOrder.dataport4;

 connect Matching_Engine.UpdatedData with

 DB_VProcessor.dataport1;

 connect Order_Gateway.UpdatedData with

 DB_VProcessor.dataport2;

 connect Order_Gateway.OrderMessage with

 HTTP_ExTrade.messageport1;

 connect *Trading_System with HTTP_ExTrade.messageport2;

 connect UI_Trade_Server.TradeData with

 DB_VProcessor.dataport3;

 connect Trade_EquityDb.TradeData with

 DB_VProcessor.dataport4;}

 } // end of arrangement

 viewpoints {

 PortfolioInvestment;

 } // end of viewpoints

 } // end of AMS

E-1

Appendix E: WBS Case Study

This section contains the remaining architectural description of the WBS case study

presented in Chapter 8 using ALI V2 notations (discussed in Chapter 6).

E1: WBS Meta Types

meta type Meta_Brake {

 tag monitored_by, application: text;

 tag battery_charged_on*: date;

 }

meta type Meta_BrakePump {

 tag responsible_technician, failure_rate: text;

 tag threshold_value: number;

 }

meta type Meta_BrakeValve {

 tag average_life, placed_by: text;

 tag service_duedate: date;

 }

meta type Meta_BrakeCU {

 tag processor_manufacturer*, processing_time,

 stand_by_time: text;

 tag processor_version: number;

 tag power_supply_backup: boolean;

 }

meta type Meta_DecelerationDomain {

 tag purpose, minimum_wheels_active: text;

 }

E-2

E2: WBS Features

features {

 … // defined in Section 8.3.2

 Electrical_Brake: {

 alternative names: {

 Designer.AF1, Developer.EB, Evaluator.F12;

 }

 parameters: {

 {Pedal_Value = number};

 }

 }

 Electrical_Power: {

 alternative names: {

 Designer.AF2, Developer.EP, Evaluator.F13;

 }

 parameters: {

 {Voltage = string};

 }

 }

 Mechanical_Brake: {

 alternative names: {

 Designer.AF3, Developer.MP, Evaluator.F14;

 }

 parameters: {

 {Max_Pedal_Force = string};

 }

 }

 Piston_Pressure: {

 alternative names: {

 Designer.AF4, Developer.PP, Evaluator.F15;

 }

 parameters: {

 {Maximum = string,

 Minimum = string};

 }

 }

E-3

 Accumulator_Pressure: {

 alternative names: {

 Designer.AF5, Developer.AP, Evaluator.F16;

 }

 parameters: {

 {Pressure_Supplied = string};

 }

 }

 } // end of features

E-4

E3: WBS Interface Types

interface type {

 … // defined in Section 8.3.4

 ElectricOperation: MethodInterface {

 Provider: {

 function SupplyPowerVoltage

 {

 impLanguage: Java;

 invocation: voltage;

 parameterlist: (string);

 return_type: void;

 }

 }

 }

 Consumer: {

 Call: voltage (string);

 }

 }

 CommandOperation: MethodInterface {

 Provider: {

 function GenerateBrakeCommand

 {

 impLanguage: Java;

 invocation: command;

 parameterlist: (string);

 return_type: void;

 }

 }

 }

 Consumer: {

 Call: command (string);

 }

 }

 PressureOperation: MethodInterface {

 Provider: {

 function BrakePressureValue

 {

 impLanguage: Java;

 invocation: pressure;

E-5

 parameterlist: (long_int);

 return_type: void;

 }

 }

 }

 Consumer: {

 Call: pressure (long_int);

 }

 }

 ValueOperation: MethodInterface {

 Provider: {

 function GetPedalValue

 {

 impLanguage: Java;

 invocation: getValue;

 parameterlist: (void);

 return_type: long_int;

 }

 }

 Consumer: {//nothing consumed}

 }

 Notifier: MethodInterface {

 Provider: {

 function PressureCall

 {

 impLanguage: Java;

 invocation: message;

 parameterlist: (string);

 return_type: void;

 }

 }

 Consumer: {

 Call: message (string);

 }

 }

} // end of interface types

E-6

E4: WBS Component Types

Aircraft_ElectricPower

Aircraft_ElectricPower

EV

component type Aircraft_ElectricPower

 {

 meta: Meta_Brake {

 monitored_by: “David Christopher”;

 application: “Provide electrical voltage to brake control

 unit”;

 battery_charged_on: 01-04-2016;

 }

 features: { }

 interfaces: {

 definition: { // no need to define any interface/s

 }

 implements:{

 ElectricVoltage: ElectricOperation;

 }

 } //end of interfaces

 sub-system: {

 components { }

 connectors { }

 arrangement { }

 } // end of sub-system

 } // end of component type

E-7

Brake_ControlUnit

Brake_ControlUnit

BrakeCommand

Command_Generator

BrakeValuator

Value_Monitor

CV

EV

BD

BD

VV

SkidCommand

Command_Generator

AV

CV

VV

AV

E_Brake E_Power

component type Brake_ControlUnit

 {

 meta: Meta_BrakeCU {

 processing_time: “10bytes/sec”;

 stand_by_time: “20 minutes”;

 processor_version: 1.1;

 power_supply_backup: true;

 }

 features: {

 E_Brake: “Electrical pedal used to stop the aircraft wheel”,

 E_Power: “Electric power supplied to the braking control

 unit system”;

 }

E-8

 interfaces: {

 definition: {

 // no need to define any interface/s

 }

 implements:{

 if (supported(E_Power)){

 {ElectricVoltage: ElectricOperation;

 AntiskidValue: CommandOperation;}

 if (supported(E_Brake)){

 BrakeData: DataOperation;

 ValidatedValue: ValueOperation;}

 }

 } //end of interfaces

 sub-system: {

 components {

 if (supported(E_Power)){

 SkidCommand<false, true, false, false, false>:

 Command_Generator;

 if (supported(E_Brake)){

 BrakeCommand<true, true, false, false, false>:

 Command_Generator;

 BrakeValuator<true, true, false, false>: Value_Monitor;}

 }

 }

 connectors { }

 arrangement {

 bind BrakeCommand.CommandValue with

 BrakeValuator.CommandValue;

 if (supported(E_Power)){

 bind SkidCommand.AntiskidValue with my.AntiskidValue;

 if (supported(E_Brake)){

 bind BrakeCommand.BrakeData with my.BrakeData;

 bind BrakeValuator.ValidatedValue with

 my.ValidatedValue;}

 } // end of arrangement

 } // end of sub-system

 } // end of component type

E-9

Aircraft_WheelControlUnit

Aircraft_WheelControlUnit

EV

BD

System1

Brake_ControlUnit

System2

Brake_ControlUnit

BC

AC

CN

VV

VV

AV

AV

EV

BD

EV

BD

CommandValuator

Value_Monitor

CN

VV

Electronic_Brake Electronic_Power

BC

component type Aircraft_WheelControlUnit

 {

 meta: Meta_BrakeCU {

 processor_manufacturer: “Intel”;

 processing_time: “15bytes/sec”;

 stand_by_time: “30 minutes”;

 processor_version: 1.3;

 power_supply_backup: true;

 }

 features: {

 Electronic_Brake: “Electrical pedal used to stop the

 aircraft wheel”,

 Electronic_Power: “Electric power supplied to the braking

 control unit system”;

 }

E-10

 interfaces: {

 definition: { // no need to define any interface/s }

 implements:{

 if (supported(Electronic_Power)){

 {ElectricVoltage: ElectricOperation;

 AntiskidCommand: CommandOperation;

 CommandNotification: Notifier;}

 if (supported(Electronic_Brake)){

 BrakeData: DataOperation;

 BrakeCommand: CommandOperation;}

 }

 }

 } //end of interfaces

 sub-system: {

 components {

 System1<Electronic_Brake, Electonic_Power>,

 System2<Electronic_Brake, Electonic_Power>:

 Brake_ControlUnit;

 if (supported(Electronic_Brake && Electonic_Power))

 CommandValuator<true, true, false, false>: Value_Monitor;

 }

 connectors { }

 arrangement {

 if (supported(E_Power)){

 bind System1.ElectricVoltage with my.ElectricVoltage;

 bind System2.ElectricVoltage with my.ElectricVoltage;

 bind System1.AntiskidValue with my.AnitskidCommand;

 bind System2.AntiskidValue with my.AnitskidCommand;

 bind CommandValuator.CommandNotification with

 my.CommandNotification;

 if (supported(E_Brake)){

 bind System1.BrakeData with my.BrakeData;

 bind System2.BrakeData with my.BrakeData;

 bind System1.ValidatedValue with

 CommandValuator.ValidatedValue;

 bind System2.ValidatedValue with

 CommandValuator.ValidatedValue;

 bind CommandValuator.BrakeCommand with

 my.BrakeCommand;}

 } // end of arrangement

 } // end of sub-system

 } // end of component type

E-11

Aircraft_PressurePump

Aircraft_PressurePump

E_Brake M_Brake P_Pressure R_Pressure

PM AP

NP

RP

component type Aircraft_PressurePump

 {

 meta: Meta_BrakePump {

 responsible_technician: “Keo Yang”;

 failure_rate: “0.2% in a year”;

 threshold_value: 10.1;

 }

 features: {

 E_Brake: “Electrical pedal used to stop the aircraft wheel”,

 M_Brake: “Mechanical pedal applied to stop the aircraft

 wheel”,

 P_Pressure: “Pressure supplied by hydraulic pistons”,

 R_Pressure: “Supplies stored pressure to the wheel”;

 }

 interfaces: {

 definition: {

 // no need to define any interface/s

 }

E-12

 implements:{

 PressureMessage: Notifier;

 if (supported(E_Brake && P_Pressure) unsupported

 (R_Pressure))

 NormalPressure: PressureOperation;

 if (supported(M_Brake)) {

 if (supported(P_Pressure))

 AlternatePressure: PressureOperation;

 else

 ReservePressure: PressureOperation;

 }

 }

 } //end of interfaces

 sub-system: {

 components { }

 connectors { }

 arrangement { }

 } // end of sub-system

 } // end of component type

E-13

Aircraft_BrakeValve

Aircraft_BrakeValve

PMCN

Electronic_Power

MP

Mechanic_Brake

component type Aircraft_BrakeValve

 {

 meta: Meta_BrakeValve {

 average_life: “1.5 years”;

 placed_by: “Zach Automotive”;

 service_duedate: 22-06-2018;

 }

 features: {

 Electronic_Power: “Electric power supplied to the braking

 control unit system”,

 Mechanic_Brake: “Mechanical pedal applied to stop the

 aircraft wheel”;

 }

 interfaces: {

 definition: {

 // no need to define any interface/s

 }

 implements:{

 PressureMessage: Notifier;

 if (supported(Electronic_Power))

 PressureMessage: Notifier;

 if (supported(Mechanic_Brake))

 MechanicalPosition: ValueOperation;

 }

 }

E-14

 } //end of interfaces

 sub-system: {

 components { }

 connectors { }

 arrangement { }

 } // end of sub-system

 } // end of component type

E-15

Aircraft_PressureValve

Aircraft_PressureValve

Electronic_Brake Mechanic_Brake P_Pressure R_Pressure

AP

NP

RP

Electronic_Power

MC

AC

BP

PressureValuator

Value_Monitor

BC

CommandValidator

Command_Generator

CV

BD

AVIP

MC

VPCV

component type Aircraft_PressureValve

 {

 meta: Meta_BrakeValve {

 average_life: “2 years”;

 placed_by: “RTC Company”;

 service_duedate: 23-03-2017;

 }

 features: {

 Electronic_Brake: “Electrical pedal used to stop the

 aircraft wheel”,

 Mechanic_Brake: “Mechanical pedal applied to stop the

 aircraft wheel”,

 P_Pressure: “Pressure supplied by hydraulic pistons”,

E-16

 R_Pressure: “Supplies stored pressure to the wheel”,

 Electronic_Power: “Electric power supplied to the braking

 control unit system”;

 }

 interfaces: {

 definition: {

 // no need to define any interface/s

 }

 implements:{

 BrakePressure: PressureOperation;

 if (supported(Electronic_Brake && Electronic_Power)){

 BrakeCommand: CommandOperation;

 if (supported(P_Pressure))

 NormalPressure: PressureOperation;}

 if (supported(Mechanic_Brake)){

 MechanicalCommand: CommandOperation;

 if (supported(P_Pressure))

 AlternatePressure: PressureOperation;

 else

 ReservePressure: PressureOperation;}

 if (supported(Electronic_Power))

 AntiskidCommand: CommandOperation;

 }

 }

 } //end of interfaces

 sub-system: {

 components {

 CommandValidator<Electronic_Brake, Electronic_Power,

 Mechanic_Brake, P_Pressure, R_Pressure>:

 Command_Generator;

 PressureValuator<Electronic_Brake, Electronic_Power,

 P_Pressure, R_Pressure>: Value_Monitor;

 }

 connectors { }

 arrangement {

 bind CommandValidator.CommandValue with

 PressureValuator.CommandValue;

 bind PressureValuator.ValidatedPressure with

 my.BrakePressure;

 if (supported(Electronic_Brake && Electronic_Power)) {

 bind CommandValidator.BrakeData with my.BrakeCommand;

E-17

 if (supported(P_Pressure))

 bind CommandValidator.InputPressure with

 my.NormalPressure;}

 if (supported(Mechanic_Brake)){

 bind CommandValidator.MechanicalCommand with

 my.MechanicalCommand;

 if (supported(P_Pressure))

 bind CommandValidator.InputPressure with

 my.AlternatePressure;

 else

 bind CommandValidator.InputPressure with

 my.ReservePressure;}

 if (supported(Electronic_Power))

 bind CommandValidator.AntiskidValue with

 my.AntiskidCommand;

 } // end of arrangement

 } // end of sub-system

 } // end of component type

E-18

Command_Generator

Command_Generator

CVBD

AV

E_Brake E_Power

IP MC

M_Brake P_Pressure R_Pressure

component type Command_Generator

 {

 meta: Meta_Brake {

 monitored_by: “Matthew Johnson”;

 application: “To generate brake command value/s”;

 }

 features: {

 E_Brake: “Electrical pedal used to stop the aircraft wheel”,

 E_Power: “Electric power supplied to the braking control

 unit system”,

 M_Brake: “Mechanical pedal applied to stop the aircraft

 wheel”,

 P_Pressure: “Pressure supplied by hydraulic pistons”,

 R_Pressure: “Supplies stored pressure to the wheel”;

 }

 interfaces: {

 definition: {

 // no need to define any interface/s

 }

E-19

 implements:{

 CommandValue: CommandOperation;

 if (supported(E_Power)){

 if (supported(E_Brake))

 BrakeData: DataOperation;

 else

 AntiskidValue: CommandOperation;}

 if (supported(M_Brake))

 MechanicalCommand: CommandOperation;

 if (supported(P_Pressure || R_Pressure))

 InputPressure: PressureOperation;

 }

 } //end of interfaces

 sub-system: {

 components { }

 connectors { }

 arrangement { }

 } // end of sub-system

 } // end of component type

E-20

Value_Monitor

Value_Monitor

BC

VV

CN

E_Brake E_Power

CV

VP

P_Pressure R_Pressure

component type Value_Monitor

 {

 meta: Meta_Brake {

 monitored_by: “Mark James”;

 application: “To validate brake command values”;

 }

 features: {

 E_Brake: “Electrical pedal used to stop the aircraft wheel”,

 E_Power: “Electric power supplied to the braking control

 unit system”,

 P_Pressure: “Pressure supplied by hydraulic pistons”,

 R_Pressure: “Supplies stored pressure to the wheel”;

 }

 interfaces: {

 definition: {

 // no need to define any interface/s

 }

E-21

 implements:{

 if (supported(E_Power)){

 if (supported(E_Brake)){

 {BrakeCommand: CommandOperation;

 ValidatedValue: ValueOperation;}

 else

 CommandNotification: Notifier;}

 else

 CommandValue: CommandOperation;}

 if (supported(P_Pressure || R_Pressure))

 ValidatedPressure: PressureOperation;

 }

 } //end of interfaces

 sub-system: {

 components { }

 connectors { }

 arrangement { }

 } // end of sub-system

 } // end of component type

E-22

Aircraft_Wheel

Aircraft_Wheel

IP

component type Aircraft_Wheel

 {

 meta: { }

 features: { }

 interfaces: {

 definition: {

 // no need to define any interface/s

 }

 implements:{

 InputPressure: PressureOperation;

 }

 }

 } //end of interfaces

 sub-system: {

 components { }

 connectors { }

 arrangement { }

 } // end of sub-system

 } // end of component type

E-23

E5: Scenarios

scenarios {

 … // defined in Section 8.3.9

 AlternateOperation {

 Description: “WBS is in alternate mode with Antiskid

 command”;

 Parameterisation {

 BSCU_Active = true;

 GreenPressure_Failed = true;

 BluePressure = true;

 AccumulatorPump = false;

 }

 }

 BSCUFailureOperation {

 Description: “WBS is in alternate mode without Antiskid

 command”;

 Parameterisation {

 BSCU_Failed = true;

 GreenPressure = true;

 BluePressure = true;

 AccumulatorPump = false;

 }

 }

 EmergencyOperation {

 Description: “WBS is in emergency mode”;

 Parameterisation {

 BSCU_Failed = true;

 GreenPressure_Failed = true;

 BluePressure_Failed = true;

 AccumulatorPump = true;

 }

 }

} // end of scenarios

E-24

E6: WBS Transaction Domain

Interactions of the components in the transaction domain

WheelDecelerationOnGround

Electrical_Pedal

 Provided in Section 8.3.10

Power

EV BSCU. EV

Send Power Signal1

Send Power Signal2

par

alt

[BSCU_Active && GreenPressure]

[BSCU_Active && GreenPressure_Failed]

Send Power Signal1

Send Power Signal2

par

E-25

BSCU

BD
ShutOff Valve.

CN
BCEV ACCN

Meter Valve.

AC

Meter Valve.

BC

Electrical

Pedal. BD
Power. EV

Send Power Signal1

Send Power Signal2

par

Send EPedal Position1

Send EPedal Position2

Inform

CMD AntiSkid

par

Send Power Signal1

Send Power Signal2

par

Send EPedal Position1

Send EPedal Position2

Inform

AntiSkid

par

alt

[BSCU_Active && GreenrPressure]

[BSCU_Active && GreenPressure_Failed]

E-26

Green_Pump

Selector Valve.

PM
PM

Meter Valve.

NP
NP

Hydraulic Pressure Request

Send Hydraulic Pressure

Hydraulic Pressure Request

No Hydraulic Pressure Supply

alt

[BSCU_Active && GreenPressure]

[BSCU_Active && GreenPressure_Failed]

E-27

Mechanical_Pedal

MP
Selector Valve.

MP

Meter Valve.

MC
MC

MPedal Position Request

Send MPedal Position

MPedal Position Request

Send MPedal Position

MPedal Position Request

Send MPedal Position

alt

[BluePressure_Failed]

[BSCU_Active && GreenPressure_Failed]

[BSCU_Failed && GreenPressure]

E-28

Blue_Pump

Selector Valve.

PM
PM

Meter Valve.

AP
AP

Hydraulic Pressure Request

Send Hydraulic Pressure

Hydraulic Pressure Request

Send Hydraulic Pressure

alt

[BSCU-Active && GreenPressure_Failed]

[BSCU_Failed && GreenPressure]

E-29

ShutOff_Valve

BSCU. CN CN
Selector Valve.

PM
PM

Inform

Notify

Inform

Notify

alt

[BSCU_Active && GreenPressure]

[BSCU_Active && GreenPressure_Failed]

E-30

Selector_Valve

ShutOff Valve.

PM
PM MP

Green Pump.

PM
Blue Pump. PM

Accumulator.

PM

Mechanical

Pedal. MP

Notify

Hydraulic Pressure

Request

MPedal Position

Request

Reserve Pressure

Request

Notify

Hydraulic Pressure

Request

No Hydraulic Pressure

Supply

MPedal Position

Request

Hydraulic Pressure

Request

MPedal Position

Request

Hydraulic Pressure

Request

par

alt

[BSCU_Active && GreenPressure]

[BluePressure_Failed]

[BSCU_Active && GreenPressure_Failed]

[BSCU_Failed && GreenPressure]

E-31

Meter_Valve

ACBC
Accumulator.

RP
BSCU. AC NP MC APRPBP

Mechanical

Pedal. MC

Green Pump.

NP
Blue Pump. APWheel. IPBSCU. BC

CMD

par

AntiSkid

Send Hydraulic

Pressure

Decelerate

Send MPedal

Position

par

Send Hydraulic

Pressure

Decelerate

Send MPedal

Position

par

Send Hydraulic

Pressure

Decelerate

Send MPedal

Position

par

Send Hydraulic

Pressure

Decelerate

alt

[BSCU_Active && GreenPressure]

[BluePressure_Failed]

[BSCU_Active && GreenPressure_Failed]

[BSCU_Failed && GreenPressure]

E-32

Accumulator

Selector Valve.

PM
PM

Meter Valve.

RP
RP

Reserve Pressure Request

Send Hydraulic Pressure

alt

[BluePressure_Failed]

Wheel

Meter Valve.

BP
IP

Decelerate

E-33

E7: Wheel Brake System (WBS)

system

 {

components {

 Selector_Valve<Electrical_Power>: Aircraft_BrakeValve;

 Wheel<>: Aircraft_Wheel;

 Meter_Valve<Electrical_Brake, Mechanical_Brake, Piston_Pressure,

 Accumulator_Pressure, Electrical_Power>:

 Aircraft_PressureValve;

 if (supported(Electrical_Power)) {

 {Power<>: Aircraft_ElectricPower;

 BSCU<Electrical_Brake, Electrical_Power>:

 Aircraft_WheelControlUnit;

 Shutoff_Valve<true>: Aircraft_BrakeValve;}

 if (supported(Electrical_Brake))

 Electrical_Pedal<true, false>: Aircraft_BrakePedal;

 }

 if (supported(Mechanical_Brake))

 Mechanical_Pedal<false, true>: Aircraft_BrakePedal;

 if (supported(Electrical_Brake && Piston_Pressure)){

 Green_Pump<true, false, true, false>: Aircraft_PressurePump;

 else if (supported(Mechanical_Brake && Piston_Pressure))

 Blue_Pump<false, true, true, false>: Aircraft_PressurePump;

 else

 Accumulator<false, true, false, true>: Aircraft_PressurePump;}

 } // end of components

connectors { }

arrangement {

 bind Meter_Valve.BrakePressure with Wheel.InputPressure;

 if (supported(Electrical_Power)) {

 {bind Power.ElectircVoltage with BSCU.ElectircVoltage;

 bind BSCU.CommandNotification with

 Shutoff_Valve.CommandNotification;

 bind BSCU.AntiskidCommand with Meter_Valve.AntiskidCommand;

 }

 if (supported(Electrical_Brake)){

 {bind Electrical_Pedal.BrakeData with BSCU.BrakeData;

 bind BSCU.BrakeCommand with Meter_Valve.BrakeCommand;}

 }

E-34

 if (supported(Mechanical_Brake)){

 bind Mechanical_Pedal.MechanicalPosition with

 Meter_Valve.MechanicalPosition;

 bind Mechanical_Pedal.MechanicalCommand with

 Meter_Valve.MechanicalCommand;

 }

 if (supported(Electrical_Brake && Piston_Pressure)){

 {bind Shutoff_Valve.PressureMessage with

 Selector_Valve.PressureMessage;

 bind Selector_Valve.PressureMessage with

 Green_Pump.PressureMessage;

 bind Green_Pump.NormalPressure with

 Meter_Valve.NormalPressure;}

 else if (supported(Mechanical_Brake && Piston_Pressure))

 {bind Selector_Valve.PressureMessage with

 Blue_Pump.PressureMessage;

 bind Blue_Pump.AlternatePressure with

 Meter_Valve.AlternatePressure;}

 else

 {bind Selector_Valve.PressureMessage with

 Accumulator.PressureMessage;

 bind Accumulator.ReservePressure with

 Meter_Valve.ReservePressure;}

 } // end of arrangement

 viewpoints {

 WheelDeceleration;

 } // end of viewpoints

} // end of WBS

