4,822 research outputs found

    Disease modeling using Evolved Discriminate Function

    Get PDF
    Precocious diagnosis increases the survival time and patient quality of life. It is a binary classification, exhaustively studied in the literature. This paper innovates proposing the application of genetic programming to obtain a discriminate function. This function contains the disease dynamics used to classify the patients with as little false negative diagnosis as possible. If its value is greater than zero then it means that the patient is ill, otherwise healthy. A graphical representation is proposed to show the influence of each dataset attribute in the discriminate function. The experiment deals with Breast Cancer and Thrombosis & Collagen diseases diagnosis. The main conclusion is that the discriminate function is able to classify the patient using numerical clinical data, and the graphical representation displays patterns that allow understanding of the model

    Approximate Vanishing Ideal via Data Knotting

    Full text link
    The vanishing ideal is a set of polynomials that takes zero value on the given data points. Originally proposed in computer algebra, the vanishing ideal has been recently exploited for extracting the nonlinear structures of data in many applications. To avoid overfitting to noisy data, the polynomials are often designed to approximately rather than exactly equal zero on the designated data. Although such approximations empirically demonstrate high performance, the sound algebraic structure of the vanishing ideal is lost. The present paper proposes a vanishing ideal that is tolerant to noisy data and also pursued to have a better algebraic structure. As a new problem, we simultaneously find a set of polynomials and data points for which the polynomials approximately vanish on the input data points, and almost exactly vanish on the discovered data points. In experimental classification tests, our method discovered much fewer and lower-degree polynomials than an existing state-of-the-art method. Consequently, our method accelerated the runtime of the classification tasks without degrading the classification accuracy.Comment: 11 pages; AAAI'1

    Using Recurrent Neural Networks to Optimize Dynamical Decoupling for Quantum Memory

    Full text link
    We utilize machine learning models which are based on recurrent neural networks to optimize dynamical decoupling (DD) sequences. DD is a relatively simple technique for suppressing the errors in quantum memory for certain noise models. In numerical simulations, we show that with minimum use of prior knowledge and starting from random sequences, the models are able to improve over time and eventually output DD-sequences with performance better than that of the well known DD-families. Furthermore, our algorithm is easy to implement in experiments to find solutions tailored to the specific hardware, as it treats the figure of merit as a black box.Comment: 18 pages, comments are welcom

    Errors in quantum optimal control and strategy for the search of easily implementable control pulses

    Full text link
    We introduce a new approach to assess the error of control problems we aim to optimize. The method offers a strategy to define new control pulses that are not necessarily optimal but still able to yield an error not larger than some fixed a priori threshold, and therefore provide control pulses that might be more amenable for an experimental implementation. The formalism is applied to an exactly solvable model and to the Landau-Zener model, whose optimal control problem is solvable only numerically. The presented method is of importance for applications where a high degree of controllability of the dynamics of quantum systems is required.Comment: 13 pages, 3 figure

    Surface Reconstruction from 3D Point Data with a Genetic Programming/Evolution Strategy hybrid

    Get PDF
    Surface reconstruction is a hard key problem in the industrial domain of computer-aided design (CAD) applications. A physical object, like a workpiece, must be represented in some standard CAD object description format such that its representation can be efficiently used in a CAD process like redesign. To that end, a digitizing process represents the object surface as a weakly-structured discrete and digitized set of 3D points. Surface reconstruction attempts to transform this representation into an efficient CAD representation. Certain classic approaches produce inefficient reconstructions of surface areas that do not correspond to construction logic. Here, a new reconstruction principle in form of a computational-intelligence-based software system is presented that yields logical and efficient representations

    Robust monomer-distribution biosignatures in evolving digital biota

    Get PDF
    Because organisms synthesize component molecules at rates that reflect those molecules' adaptive utility, we expect a population of biota to leave a distinctive chemical signature on their environment that is anomalous given the local (abiotic) chemistry. We observe the same effect in the distribution of computer instructions used by an evolving population of digital organisms, and characterize the robustness of the evolved signature with respect to a number of different changes in the system's physics. The observed instruction abundance anomaly has features that are consistent over a large number of evolutionary trials and alterations in system parameters, which makes it a candidate for a non-Earth-centric life-diagnosticComment: 22 pages, 4 figures, 1 table. Supplementary Material available from C
    • ā€¦
    corecore