180,397 research outputs found

    Intersection SPaT Estimation by means of Single-Source Connected Vehicle Data

    Get PDF
    The file attached to this record is the author's final peer reviewed version.Current traffic management systems in urban networks require real-time estimation of the traffic states. With the development of in-vehicle and communication technologies, connected vehicle data has emerged as a new data source for traffic measurement and estimation. In this work, a machine learning-based methodology for signal phase and timing information (SPaT) which is highly valuable for many applications such as green light optimal advisory systems and real-time vehicle navigation is proposed. The proposed methodology utilizes data from connected vehicles travelling within urban signalized links to estimate the queue tail location, vehicle accumulation, and subsequently, link outflow. Based on the produced high-resolution outflow estimates and data from crossing connected vehicles, SPaT information is estimated via correlation analysis and a machine learning approach. The main contribution is that the single-source proposed approach relies merely on connected vehicle data and requires neither prior information such as intersection cycle time nor data from other sources such as conventional traffic measuring tools. A sample four-leg intersection where each link comprises different number of lanes and experiences different traffic condition is considered as a testbed. The validation of the developed approach has been undertaken by comparing the produced estimates with realistic micro-simulation results as ground truth, and the achieved simulation results are promising even at low penetration rates of connected vehicles

    VIRTUAL PROTOTYPING OF PEBB BASED POWER ELECTRONICS SYSTEM FOR GROUND VEHICLES

    Get PDF
    Power electronics are heavily involved in power and energy systems in plenty of applications nowadays. The increase of demand brings more challenges into simulations for development. Considering the complexity of the systems and high frequency operational conditions, this paper presents comprehensive research on modeling, simulating, and validation on ground vehicle propulsion system applications. To reduce the computational burden, the Power Electronics Building Blocks concept is utilized to simplify the structure of modeling under different conversion scenarios in ground vehicle systems. In addition, the Average and Switching versions models are included. To speedup the simulation, the engagement of advanced computing technique in simulations are introduced to realize faster-than-real-time simulations. By the comparison between widely used slower-than-real-time simulations in academy and faster-than-real-time simulation with advanced computational technology, the improvements are presented. Other than engaging advanced technique, this paper proposed an advanced model method different from the Average and Switch method but the combination with the advantages of accuracy and fast simulation time. Furthermore, to verify all the modeling and simulation results proposed, a hardware design is presented, and the results validation are provided at the end

    The identifying extended Kalman filter: parametric system identification of a vehicle handling model

    Get PDF
    This article considers a novel method for estimating parameters in a vehicle-handling dynamic model using a recursive filter. The well-known extended Kalman filter - which is widely used for real-time state estimation of vehicle dynamics - is used here in an unorthodox fashion; a model is prescribed for the sensors alone, and the state vector is replaced by a set of unknown model parameters. With the aid of two simple tuning parameters, the system self-regulates its estimates of parameter and sensor errors, and hence smoothly identifies optimal parameter choices. The method makes one contentious assumption that vehicle lateral velocity (or body sideslip angle) is available as a measurement, along with the more conventionally available yaw velocity state. However, the article demonstrates that by using the new generation of combined GPS/inertial body motion measurement systems, a suitable lateral velocity signal is indeed measurable. The system identification is thus demonstrated in simulation, and also proved by successful parametrization of a model, using test vehicle data. The identifying extended Kalman filter has applications in model validation - for example, acting as a reference between vehicle behaviour and higher-order multi-body models - and it could also be operated in a real-time capacity to adapt parameters in model-based vehicle control applications

    Discrete event simulation and virtual reality use in industry: new opportunities and future trends

    Get PDF
    This paper reviews the area of combined discrete event simulation (DES) and virtual reality (VR) use within industry. While establishing a state of the art for progress in this area, this paper makes the case for VR DES as the vehicle of choice for complex data analysis through interactive simulation models, highlighting both its advantages and current limitations. This paper reviews active research topics such as VR and DES real-time integration, communication protocols, system design considerations, model validation, and applications of VR and DES. While summarizing future research directions for this technology combination, the case is made for smart factory adoption of VR DES as a new platform for scenario testing and decision making. It is put that in order for VR DES to fully meet the visualization requirements of both Industry 4.0 and Industrial Internet visions of digital manufacturing, further research is required in the areas of lower latency image processing, DES delivery as a service, gesture recognition for VR DES interaction, and linkage of DES to real-time data streams and Big Data sets

    Towards lightweight convolutional neural networks for object detection

    Full text link
    We propose model with larger spatial size of feature maps and evaluate it on object detection task. With the goal to choose the best feature extraction network for our model we compare several popular lightweight networks. After that we conduct a set of experiments with channels reduction algorithms in order to accelerate execution. Our vehicle detection models are accurate, fast and therefore suit for embedded visual applications. With only 1.5 GFLOPs our best model gives 93.39 AP on validation subset of challenging DETRAC dataset. The smallest of our models is the first to achieve real-time inference speed on CPU with reasonable accuracy drop to 91.43 AP.Comment: Submitted to the International Workshop on Traffic and Street Surveillance for Safety and Security (IWT4S) in conjunction with the 14th IEEE International Conference on Advanced Video and Signal based Surveillance (AVSS 2017

    Full vehicle and tyre identification using unscented and extended identifying Kalman Filters

    Get PDF
    This paper considers identification of all significant vehicle handling and driveline dynamics of a test vehicle, including identification of a combined-slip tyre model, using only those sensors currently available on most vehicle CAN buses. The method extends previous work using augmented Kalman Filter state estimators to concentrate wholly on parameter identification, and it compares Extended and Unscented Kalman filter algorithms. Using an appropriately simple but efficient model structure, all of the independent parameters are found from test vehicle data, with the resulting model accuracy demonstrated on independent validation data. The method is suited to applications of system identification, but also in on-line model predictive controllers or estimators. It can also operate in real-time, so the model could be continuously identified to maintain accuracy with each new journey

    Kalman and particle filtering methods for full vehicle and tyre identification

    Get PDF
    This paper considers identification of all significant vehicle handling dynamics of a test vehicle, including identification of a combined-slip tyre model, using only those sensors currently available on most vehicle controller area network buses. Using an appropriately simple but efficient model structure, all of the independent parameters are found from test vehicle data, with the resulting model accuracy demonstrated on independent validation data. The paper extends previous work on augmented Kalman Filter state estimators to concentrate wholly on parameter identification. It also serves as a review of three alternative filtering methods; identifying forms of the unscented Kalman filter, extended Kalman filter and particle filter are proposed and compared for effectiveness, complexity and computational efficiency. All three filters are suited to applications of system identification and the Kalman Filters can also operate in real-time in on-line model predictive controllers or estimators

    Real-Time Sensor Validation, Signal Reconstruction, and Feature Detection for an RLV Propulsion Testbed

    Get PDF
    A real-time system for validating sensor health has been developed in support of the reusable launch vehicle program. This system was designed for use in a propulsion testbed as part of an overall effort to improve the safety, diagnostic capability, and cost of operation of the testbed. The sensor validation system was designed and developed at the NASA Lewis Research Center and integrated into a propulsion checkout and control system as part of an industry-NASA partnership, led by Rockwell International for the Marshall Space Flight Center. The system includes modules for sensor validation, signal reconstruction, and feature detection and was designed to maximize portability to other applications. Review of test data from initial integration testing verified real-time operation and showed the system to perform correctly on both hard and soft sensor failure test cases. This paper discusses the design of the sensor validation and supporting modules developed at LeRC and reviews results obtained from initial test cases
    corecore