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ABSTRACT
This paper considers identification of all significant vehicle handling
dynamics of a test vehicle, including identification of a combined-
slip tyre model, using only those sensors currently available on most
vehicle controller area network buses. Using an appropriately sim-
ple but efficient model structure, all of the independent param-
eters are found from test vehicle data, with the resulting model
accuracy demonstrated on independent validation data. The paper
extends previous work on augmented Kalman Filter state estimators
to concentrate wholly on parameter identification. It also serves as a
review of three alternative filteringmethods; identifying forms of the
unscented Kalman filter, extended Kalman filter and particle filter are
proposed and compared for effectiveness, complexity and computa-
tional efficiency. All three filters are suited to applications of system
identification and the Kalman Filters can also operate in real-time in
on-line model predictive controllers or estimators.
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Nomenclature

Abbreviations

CAN Controller Area Network
CG Centre of gravity
E Percentage explanation of accuracy (match between modelled and measured vari-

ables)
EKF Extended Kalman filter
h+ Over-parametrised identification case (IEKF)
IEKF Identifying extended Kalman filter
IN Inertial Navigation
PF Particle filter
UKF Unscented Kalman filter

Identifying filters

f Continuous nonlinear system state derivatives vector (model)
F State derivative (system model) Jacobian
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h Continuous nonlinear system output vector (model)
H Output model Jacobian
np Number of particles in PF (tuning parameter)
P State error covariance matrix
Pxy State-output cross correlation matrix in UKF
Pyy Output error covariance matrix in UKF
Q Model error covariance matrix
R Output (measurement) covariance matrix
T Discrete time step
u[a,b] Uniform distribution over range a, b for particle generation
u Input vector of continuous nonlinear state-space system
W Weighting of sigma point (UKF) or Particle (PF)
x State vector of continuous nonlinear state-space system
y Output (measurement) vector of continuous nonlinear state-space system
z Combined state and parameter vector
ϕ Output error probability density function (PF)
κ UKF parameter
θ Model parameter vector of continuous nonlinear state-space system
ρ EKF and UKF tuning parameter
σ Output error variance (PF)
υ Output (measurement) error vector
ω State propagation and modelling error vector
ϒ Output estimate from Sigma point (UKF) or Particle (PF)
χ Sigma point (UKF) or Particle (PF)

Vehiclemodel

a, b Front, rear axle distances from vehicle CG (m)
Bφ Roll damping (Nms/rad)
c Vehicle half-track (m)
Cα Tyre cornering stiffness (N/rad)
C, D, E Pacejka magic formula coefficients
Ftx, Fty Longitudinal, lateral tyre forces in tyre axis system (N)
Fx, Fy Longitudinal, lateral tyre forces in vehicle body axis system (N)
Fz Vertical tyre loads (N)
h Height of vehicle CG above roll axis (m)
hG Vehicle CG height (m)
hR Roll centre height (front, rear) (m)
Ixx, Iyy Vehicle roll, yaw inertia (kgm2)
k Normalised slip vector
Kφ Roll stiffness (Nm/rad)
Kx Tyre longitudinal stiffness
L Vehicle wheelbase (m)
M Vehicle mass (kg)
p, r Vehicle body roll, yaw angular velocities (SAE) (rad/s)
P(|k|) Simplified Pacejka magic formula
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Si Longitudinal slip ratio, i = 1–4 (front left, front right, rear left, rear right)
U, V Vehicle body longitudinal, lateral velocities (SAE axes) (m/s)
Uxi, Uyi Wheel-oriented longitudinal, lateral velocities, i = 1–4 (front left, front right,

rear left, rear right) (m/s)
W Vehicle weight (front, rear) (N)
αi Slip angle, i = 1–4 (front left, front right, rear left, rear right) (rad)
δ Steered wheel angle (rad)

lat Lateral load transferred (N)
φ Vehicle body roll angle (rad)
ωi Wheel angular velocities, i = 1–4 (front left, front right, rear left, rear right)

(rad/s)

Qualifications

* Updated/propagated vector/matrix
ˆ Optimal estimate of vector
k Time step
f Front
r Rear

1. Introduction

Advanced automotive control requires accurate dynamic models to predict vehicle
response. In recent years, dynamic modelling has also become increasingly important
in vehicle development, due to obvious time and cost saving advantages over traditional
prototype testing [1]. Regardless of the application, a compromise between accuracy and
complexity needs to be sought, as the ability to run in real time is a major goal in both con-
trol and simulation. Hence, the employed models need to be simple and efficient, rather
than complex and heavy. The validity of these necessarily simplified models depends on
many fixed or estimated parameters. Some of these, such as the centre of gravity (CG)
height or the moment of inertia are difficult and expensive to measure. Others, as pointed
out in [2] depend on external factors: tyre adherence boundaries for example are heav-
ily influenced by asphalt conditions and precise lab measurements often don’t correlate
well with the real world. Furthermore, even if these values are physically accurately set, the
simplified model can be made to perform better if they are adaptively tuned or completely
identified.

Mostmodels in literature are either derived fromfirst principles or generatedwithmulti-
body techniques. Structured identification, also referred to as grey-box parametrisation
can then be employed to identify one or more parameters of this perfectly known mathe-
matical or multibody structure. Models based on Neural Networks are also found [3], but
these are black-box and have the disadvantage of not giving any engineering insight into
the system.

Common identification tools include the Least Squares, Maximum Likelihood, and
Recursive Prediction Error method [4]. And the well-known Kalman Filter [5] which pre-
vails in a large portion of literature, principally in its nonlinear form, the extended Kalman
filter (EKF). Several authors have successfully employed EKF to identify a limited number
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of model parameters, which are concatenated to the state vector and estimated simultane-
ouslywith the true states [6,7]. This approach has later been extended towholly concentrate
on parameter estimation [8] and recent findings suggest that Kalman filter methods can
be applied to identify all the parameters of any well-conditioned model structure [9]. The
Unscented Kalman filter (UKF) has emerged in the last two decades as themain alternative
to EKF. First developed for nonlinear state estimation by researchers at Oxford University
[10], it is based on the idea that approximating a nonlinear statistical distribution is easier
and more accurate than linearising a nonlinear function, as done by the EKF. It avoids the
need to calculate Jacobians and is computationally less expensive and easier to implement.
It is also easily extended to system identification and dual estimation problems [11,12],
in a similar fashion to the EKF. An example of adaptive parameter estimation in vehicle
dynamics has been developed in [13] and a recent study [14] includes tyre parameter esti-
mation, though this is carried out using simulation only.Other recentUKF studies consider
state estimation only. The particle filter (PF) belongs to the group of recursiveMonte Carlo
methods and is particularly suited to harsh nonlinearities and non-Gaussian applications
[15]. It approximates the posterior probability density function (pdf) of the state vector
in a similar way to the UKF, but uses a much larger set of samples, which are randomly
selected from an initial uniform distribution. In certain applications the PF has proven to
be a promising alternative to gradient-based Kalman Filters [16], since the sampling rep-
resentation of the pdf is in general a better approximation of non-Gaussian distributions
caused by nonlinear model functions. However, examples in literature usually rely on high
computational power and low sampling rates, especially for real-time solutions [17].

The focus of this paper is on grey-box automotive parameter identification and three
of the most common and promising identification methods are used for the purpose: the
EKF, the UKF and the PF. Several past publications have considered the identification of
individual parameters of a vehicle model, particularly for tyre and friction coefficient esti-
mation [6,18]. Longitudinal, lateral and vertical dynamics have been considered separately,
to estimate a different parameter from each model [19]. And in [20] a method is presented
for simultaneous identification of a larger set of parameters, though this method relies on
a-priori knowledge of Pacejka tyre coefficients. Here we extend the findings in [21], iden-
tifying all the independent parameters of a whole vehicle handling model simultaneously,
including longitudinal, yaw and roll freedoms, and with independent combined-slip load
dependent tyres. We consider data collected from a test vehicle carrying out medium to
high magnitude manoeuvres including wheel-spin and terminal understeer, in order to
build a model which is valid over the whole range of the tyres.

In the next sections each filter is first introduced and described in its identifying form.
A simplified case is then presented – identification of the front and rear tyre stiffness of a
linear single-track model, based on test vehicle data. This example serves as an immediate
and straightforward comparison of the different techniques, illustrating how they are tuned
for performance and efficiency. Themajor study of identification and validation of themore
complex four degree of freedom full vehicle handling model then completes the paper.

2. Identifying EKF

The standard state estimating EKF operates on nonlinear system and sensor models f
and h, which relate the state vector x, measured sensor set y, known inputs u and model
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parameters θ through

ẋ = f(x,u, θ) + ω, (1)

y = h(x, u, θ) + υ, (2)

ω represents state propagation and modelling error, υ is the sensor error, and an optimal
filter can be derived using estimates or expectations of the error covariance matrices:

Q = E(ωωT) R = E(υυT). (3)

The EKF also requires model Jacobians to be evaluated at each time step, defined

F = ∂f(x, u, θ)
∂x

H = ∂h(x,u, θ)
∂x

. (4)

For further details of the full EKF see [6].
The identifying EKF (IEKF) takes advantage of the fact that f andh are general nonlinear

functions of x and θ, defining an extended state vector zwith extended state derivatives set
zero for the parameter states:

ż =
[
ẋ
θ̇

]
=
[
f(z,u)

0

]
. (5)

It is computed using a sequence of equationswhich develop a time-varying estimate of state
error covariance, Pk and Kalman gain Kk; at each time step of the recorded time histories,
compute

Kk = PkHT
k [HkPkHT

k + R]−1,

P∗
k = [I − KkHk]Pk,

Pk+1 = P∗
k + T[FkP∗

k + P∗
kF

T
k + Q],

ẑk+1 = ẑk + Tfk + Kk(yk − hk).

(6)

The final equation in set (6) combines Euler integration of the system using time step T
with state and parameter adaptation driven by the output error (known as the innovation
sequence).

3. Unscented Kalman filter

The UKF identifies its own error statistics at each iteration, and hence avoids the need
to use Jacobians. According to Julier and Uhlmann [10] and Wu et al. [22], a sample of
(2n+ 1) so called sigma points χ are selected around the nth order state vector, at each
instant k in time:

χ0k = x̂k,

χik = x̂k + {
√

(n + κ)Pk}i,
χ(i+n)k = x̂k − {

√
(n + κ)Pk}i.

(7)

where {√(n + κ)Pk}i is the ith column of the matrix square root of (n + κ)Pk (obtained
here using Cholesky decomposition) and Pk is the current estimate of state error covari-
ance. These sigma points are propagated by the model, here as for IEKF, using Euler
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approximation:

χi(k+1) = Tf(χik,uk, θ) (8)

and intermediate estimates for the propagated state and covariance matrix are computed
by weighted averages:

x̂∗
k+1 =

∑
i=0−2n

Wiχi(k+1),

P*k+1 =
∑

i=0−2n
Wi{χi(k+1) − x̂(k+1)}{χi(k+1) − x̂(k+1)}T + TQ.

(9)

WithW0 = κ/(n + κ) and for all other i,Wi = 1/2(n + κ)

Similarly, average outputs are obtained according to the output model:

ϒi(k+1) = h(χik,uk, θ),

ŷk+1 =
∑

i=0−2n
Wiϒi(k+1).

(10)

The UKF then propagates output error covariance according to the transformed sigma
points:

Pyy =
∑

i=0−2n
Wi{ϒi(k+1) − ŷ(k+1)}{ϒi(k+1) − ŷ(k+1)}T + R (11)

and uses this together with a cross correlation estimate

Pxy =
∑

i=0−2n
Wi{χi(k+1) − x̂(k+1)}{ϒi(k+1) − ŷ(k+1)}T (12)

to find the Kalman gain by

Kk+1 = PxyP−1
yy .

State and covariance estimates are then updated using the innovation sequence, in a similar
way to IEKF:

Pk+1 = P∗
k+1 − Kk+1PyyKT

k+1,

x̂k+1 = x̂∗
k+1 + Kk+1(yk+1 − ŷk+1).

(13)

The above UKF derivation is common to all implementations of state and parameter esti-
mation, so the simple substitution of x in the above, with z from Equation (5) provides the
identifying filter.

4. Particle filter

The PF is a recursive Bayesian estimator based on Monte-Carlo simulations. According
to Gustafsson et al. [15] and Gordon et al. [17], the posterior density of the state vector
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is approximated through a set of np so called particles, initially generated from a uniform
distribution on a finite interval [a,b]:

χi0 ∈ u[a, b] i = 1 . . . np. (14)

So each particle χi0 is an nth order state vector at time k = 0 with each of its elements
selected on a uniform distribution with range [aj, bj] selected appropriate to the minimum
and maximum expected value of that state. Each particle is propagated by the process and
output models at every instant k, according to:

χi(k+1) = χik + Tf(χik,uk, θ), (15)

ϒik = h(χik,uk, θ), (16)

where Euler integration is used in Equation (15), as for IEKF/UKF.
A weight Wi is then assigned to each of the particles, based on the error between the

propagated output (16) and the true output of the system. These errors are assumed to have
a known distribution and zero mean, hence:

Wi =
∏

j=1−ny

ϕj(yk(j) − ϒik(j)|0, σj2), (17)

where ny is the number of outputs and ϕj is the assumed pdf of the jth output innova-
tion sequence, with zero mean and variance σ j. Here we assume a normal distribution of
innovations and hence use

Wi =
∏

j=1−ny

1√
2σ 2

j π
e−(yk(j)−ϒik(j))2/

√
2σ 2

j π . (18)

The weights are normalised so that their sum equals unity:

Wi = Wi

/ ∑
i=1−np

Wi. (19)

State and output estimates are then computed by a weighted sum of the propagated
particles:

x̂k =
∑

i=1−np

Wiχik, (20)

ŷk =
∑

i=1−np

Wiϒik. (21)

The filter then resamplesnp particles from the original set usingWi as the probability of res-
election. In this way, where a new full set of np particles is generated, these include repeated
instances of successful particles and exclude low-weighted particles. The new set of parti-
cles for the next iteration is then finalised by randomising the state combinations from
the pool of these resampled particles. Equations (15)–(21) are then recursively repeated
through the data points.
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The PF is typically used for state estimation, for which all np particles are necessarily
propagated, weighted and resampled at least once at each time step k. For identification this
has the disadvantage that convergence occurs over a very short section of data (though np
is typically high – around 105 – so the process is still computationally intensive). To enable
parameter optimisation over amore representative, longer section of identification data (or
for continuous identification in real-time) it is sensible to propagate just one particle per
time step (i = k). Since the PF operates without a state covariance estimate there is then
a further advantage that the true states, x need not be included in the identification set.
In converting the PF for identification we therefore select χ ≡ θ so Equations (15)–(16)
become

x̂k+1 = x̂k + Tf(x̂k,uk,χi+1), (22)

ϒi+1 = h(x̂k+1,uk+1,χi+1). (23)

Identification using batch data then progresses in an obvious way, using multiple passes
through the available data to exercise all np particles.Weighting and resampling operations
occur after each np time steps as in the original method.

5. Implementation in a simplified case – identification of a linear model

Test data were obtained from a ’08 MY Jaguar XF equipped with an OXTS 3200 inertial
navigation (IN) device, driven on a dry proving ground. A range of high and low magni-
tude, separated and combined slipmanoeuvreswere conducted, exciting both dynamic and
steady-state vehicle responses. The controller area network (CAN) data was inter-sampled
at a constant 100Hz to match the IN (setting T = 0.01) and all data was then digitally fil-
tered at 10Hz to remove higher frequency noise; this is necessary to prevent instability in
the filters, as they are propagated by Euler integration. Although here we perform a batch
data process, the identifying filters are designed to work equally well in real-time, and real-
time parameter tuning could easily be achieved using a combination of dynamic low pass
filters and/or higher sampling interval T.

To illustrate execution, convergence and computational effort of the filters, consider first
the identification of a linear bicycle handling model with states x = [V, r]T

ẋ =
[−(Cαf + Cαr)/(MU) (bCαr − aCαf )/(MU) − U
(bCαr − aCαf )/(IzzU) −(a2Cαf + b2Cαr)/(IzzU)

]
x +

[
Cαf /M
aCαf /Izz

]
u (24)

60 s of lowmagnitude random steer data from a constant speed test is applied to each filter
using the recorded steer as input, and yaw rate as output

u = δ, y = r

to identify front and rear axle cornering stiffnesses

θid = [Cαf ,Cαr]

with other model parameters fixed through knowledge/approximation of the vehicle and
test speed, as

θfix = [a = 1.38, b = 1.53,M = 1855, Izz = 2000,U = 12.9].
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Identification is achieved iteratively by ‘rinsing’ the data repeatedly through each filter,
starting with an initial, nominal parameter set. Both Kalman filters require covariance
estimates and here Q is fixed throughout as Q = ρI. ρ is the only tuning parameter in
both Kalman filters; it weighs the expectation of accuracy of the model f, and particularly
the assumption θ̇ = 0, so it controls the variation rate of the parameters (see [9] for more
detail). For any given estimate θ̂ of the identified parameters, R can be obtained numeri-
cally from the covariance ofυ usingEquation (2); here,R is recomputed after each iteration.
Finally, P0 = Q, and for the UKF κ = 1. Convergence and accuracy of the PF is affected
by the choice of np.

Figure 1 shows the effect on accuracy and computational effort of varying these core
tuning parameters ρ and np (upper plots). The lower plots then show the convergence

Figure 1. Tuning and comparing the filters on a simple identification case (left = Kalman,
right = particle).
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of the identified parameters and their corresponding accuracy for a single optimisation
using suitable choices, ρ = 10−8 and np = 106. Accuracy here is quantified by percentage
explanation of any model time history ŷ estimating measurement y:

E =
(
1 −

∑N
k=1 (yk − ŷk)2∑N

k=1 y
2
k

)
× 100. (25)

Interestingly, both Kalman Filter methods yield identical results (and we will see indis-
tinguishable difference in the more complex full vehicle case later). Although computed
using different techniques, both state covariance and parameter estimates match within a
few seconds of filtered data. As the method of computation varies however, so does the
processing time; 100 cycles of data takes the UKF 23 s whereas the EKF takes just 9 s (on
the mid-range PC used here). The Kalman filters also converge smoothly and definitively
at all settings of ρ. E does not rise for ρ < 10−8 and even at extremely low ρ, these filters
yield the best possible accuracy from this data, E = 98.0% in under 3min.

The PF is effective at optimising Cα , achieving E = 97.9% in all cases where np is suffi-
ciently high. However, convergence of the parameters is less definitive, Figure 1(d), and the
computational cost becomes high as performance reaches acceptable levels. The final result
for np = 105 takes 10min to converge, and the illustrated np = 106 case takes 90minutes.
For such a small unknown parameter set these are disappointing results; although the PF is
effective, it is not competitive with either Kalman filter at delivering well converged, timely
results.

6. Full vehicle model

For full vehicle and tyre identification a suitably complexmodel structure is thewell-known
three degree of freedom handling model, simulating yaw, roll, and sideslip using a load
dependent, combined-slip Pacejka tyre model. A fourth, longitudinal degree of freedom is
required to exercise both longitudinal and lateral tyre slip regimes. This model structure
was previously employed in [23]; the principal equations of motion are

longitudinal : MU̇ =
∑
i=1−4

Fxi + MrV + Mhrp, (26)

lateral : MV̇ + Mhṗ =
∑
i=1−4

Fyi − MUr, (27)

yaw : Izzṙ = a
∑
i=1,2

Fyi − b
∑
i=3,4

Fyi + c
∑
i=1,3

Fxi − c
∑
i=2,4

Fxi, (28)

roll : MhV̇ + Ixxṗ = −MhUr + Mghφ − h0
∑
i=1−4

Fyi + c
∑
i=1,3

Fz − c
∑
i=2,4

Fz, (29)

roll kinematics : φ̇ = p. (30)

Standard SAE axes are used, fixed relative to the vehicle wheelbase, and the wheels are
labelled (1–4) in ascending order as (front-left, front-right, rear-left, rear-right). Equal half-
track c is assumed, with axles separated distances a and b from the front and rear axles,
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respectively, and vertical suspension geometry is based on fixed roll centres hR(f ,r) and CG
height hG such that

h0 = hRf + Wr

Mg
(hRr − hRf ) h = hG − h0. (31)

The forces controlling the vehicle body motion (Fx i, Fy i) allow for large steer angles

Fx1,2 = F∗
t x1,2 cos δ − F∗

t y1,2 sin δ Fx 3,4 = F∗
t x3,4

Fy1,2 = F∗
t y1,2 cos δ − F∗

t x1,2 sin δ Fy 3,4 = F∗
t y3,4

(32)

based on lagged tyre forces, where each of the 8 elements are lagged to simulate relaxation
within the tyre

Ḟ∗
tx/y,i = τ−1(Ftx/y,i − F∗

tx/y,i). (33)

The tyre forces (Ft x i, Ft y i) are modelled according to a slightly simplified Pacejka magic
formula

P(|k|) = D sin
(
Ctan−1

( |k|
C

− E
( |k|

C
− tan−1 |k|

C

)))
(34)

using normalised slip and isotropic similarity scaling [24,25]. The normalised slip vector
is

k =
(
kx
ky

)
= Cα

μFz

(
KxSi
tanαi

)
, (35)

where S is the longitudinal slip ratio, and α is the slip angle at each tyre contact patch,

Si = rrωi − Uxi

Uxi
tanαi = −Uyi

Uxi
(36)

based on wheel-oriented velocities

Uxi = U∗
xi cos δi + U∗

yi sin δi

Uyi = U∗
yi cos δi − U∗

xi sin δi
(37)

and

U∗
x1,3 = U + cr U∗

x2,4 = U − cr,

U∗
y1,2 = V + ar U∗

y3,4 = V − br.
(38)

The resulting tyre force vector is then(
Ftx
Fty

)
= P(|k|)μFz|k|

(
kx
ky

)
. (39)

Vertical tyre loads Fz are calculated from static weight distribution, modified to accommo-
date lateral load transfer using separate front/rear distributions according to:


latFz(f/r) =
∑

Fy(f/r)hR(f/r) + Kφ(f/r)φ + Bφ(f/r)p
2c

(40)
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and longitudinal load transfer, according to a rigid, zero pitch approximation,


longFz =

∑
i=1−4

FxihG

(a + b)
. (41)

7. Full vehicle identification

For full vehicle and tyre identification, input data is comprised of steer angle and the four
wheel speeds; the outputs are CG longitudinal and lateral accelerations and body roll rate,
modelled as

u = [δ,ω1,ω2,ω3,ω4]T,

y =
[
1
M

∑
i=1−4

Fxi,
1
M

∑
i=1−4

Fxi, p

]T
.

(42)

All the above measurements with the exception of body roll rate were taken from the vehi-
cle CAN; although roll was measured using the IN, this sensor may already be available in
other CAN sets, or would be cheap to add. IN measured vehicle speed, roll angle, yaw rate
and lateral velocity are also used for validation of the identifiedmodel. One 100 second test
including dynamic and steady-state excitations of steering, brake and acceleration inputs
was used as the identification set. This test employed random steer inputs carried out on a
circuit of the proving ground track, including some extreme high slip inputs in combina-
tion and separated from medium to high acceleration and braking applications. A variety
of other tests using combined and separated slip were recorded for validation.

The only difficult task is the decision of which parameters to adapt in the identifi-
cation, and which to fix. The filters can identify any number of parameters, but if they
are not independent in their influence on the recorded outputs, the parameters will
diverge. After various trials the following identification set was established as theminimum
non-divergent set:

θid = [hG, Izz,Kφ ,Bφ ,Kxf ,Kxr,Cαf ,Cαr,Cf ,Df ,Ef ,Cr,Dr,Er].

This allows full identification of separate front and rear individual tyre-suspension models
but with roll stiffness and damping applied at a constant ratio, known from manufacturer
supplied data. The remaining fixed parameters constrain the weight balance, roll inertia
and essential geometry (L = wheelbase), and are set

θfix = [Wf = 9567,Wr = 8635, Ixx = 696, hRf = 0.08, hRr = 0.125, c = 0.79, L = 2.91].

Friction is identified via the tyre D parameters, so we set μ = 1. To illustrate the effect
of identifying too many parameters, we will also consider the case of adding roll centre
heights hRf and hRr to the identified set; these are referred to below as the h+ case.

Attempts to identify this full vehicle case using the PFwere unsuccessful.Despite lengthy
optimisations with high np the larger set of parameters proved impossible to identify.
Results with both Kalman filters are encouraging however; Figure 2(a–c) illustrate the con-
vergence behaviour of IEKF, UKF and h+ (IEKF) for ρ = 10−8 over 200 cycles (iterations)
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Figure 2. Identification convergence and resulting tyre.
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of the identification data. Note how all 14 parameters converge completely in Figure 2(a),
as do the values for performance and trace(Pk), in plot (c). The standard IEKF and UKF
results are almost identical; it is just possible to make out tiny differences in the param-
eters as they converge in Figure 2(a). Final parameter values are given in Table 1 and
the tyre/suspension model is illustrated in terms of pure slip, in Figure 2(d); note that
the absence of suspension derivatives in the simplified model means that the tyre model
here is actually mapping the combined tyre/suspension characteristic. All values are in the
expected range; the front tyre has a lower stiffness and quicker saturation than the rear,
which is consistent with expected front steer compliance seen in an earlier study on the
same vehicle [26]. Although it achieves slightly higher output explanations – Figure 2(c),
the h+ case results in a less well-conditionedmodel, with unphysical negative hRf and high
Kφ and hG. Note that the result in Table 1 is a snapshot at the 200th iteration; Figure 2(b)
highlights the divergent parameters.

As these results optimise parameters for the given simplifiedmodel structure, we are not
seeking parameters which exactly match manufacturer’s data for the test vehicle. However
it is a test of model conditioning that the identified parameters appear to be feasible, so
manufacturer’s vehicle data is also given in Table 1 where direct comparison is meaningful.
The only significant difference is in yaw inertia; interestingly the identified model employs
a lower front/right difference in tyre forces coupled with lower than expected yaw inertia.
A further validation check of steady-state metrics also shows a good match; the model roll
rate is 5.2 deg/g comparedwithmanufacturers data of 4.5 deg/g and linear range understeer
gradient is 4.9 deg/g which compares favourably with separate steady-state tests carried out
on this vehicle found in the range 5–7 deg/g.

Figure 3 shows a section of data from the identification set, illustrating the final perfor-
mance explanations achieved on each of the three output variables. The range of amplitudes
in the inputs is also clear here; seeking to characterise the full range of the tyre, over the
100 s longitudinal accelerations range from −7 to +4m/s2, occasionally inducing wheel-
spin, and lateral accelerations of ±8m/s2 cover the full range through saturation. Note
also the inclusion of lower amplitudes and the combination of dynamic and steady-state
inputs.

Table 1. Identified parameters and selected vehicle parameters.

Parameter IEKF UKF h+ Vehicle

hG (m) 0.533 0.532 0.633 0.530
hRf (m) (0.08) (0.08) −0.344 0.08
hRr (m) (0.125) (0.125) 0.223 0.125
Izz (×1000 kgm2) 2.069 2.086 2.214 3.596
Kφ (×100 kNm/rad) 1.152 1.147 1.692 1.325
Bφ (×10 kNms/rad) 0.615 0.608 1.010 –
Kx f 3.299 3.291 3.116 –
Kx r 0.966 0.966 1.036 –
Cα f (×100 kN/rad) 0.625 0.627 0.665 –
Cα r (×100 kN/rad) 1.283 1.286 1.311 –
Cf 2.042 2.043 1.801 –
Df 1.103 1.102 1.051 –
Ef 0.630 0.632 0.724 –
Cr 1.653 1.652 1.085 –
Dr 0.954 0.955 1.155 –
Er 0.720 0.714 0.711 –
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Figure 3. Model fit to measured, fitted identification data.

Evidence of success in the identification is then given in Figure 4 which shows the
response of four additional model outputs not included in the identification filter, over
the same section of data. We would expect the excellent longitudinal velocity match, since
wheel speeds are inputs to the model, but well matched roll angle and in particular lateral
velocity histories show that the parameters actually capture the tyre/suspension and roll
modes very well.

The standard, physically appropriatemodel is also validated using independent test data
in Figures 56–7. Note that in earlier testing [21], poorly calibrated instrumentation meant
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Figure 4. Model fit to unfitted measurements in the identification data.



VEHICLE SYSTEM DYNAMICS 17

Figure 5. Identified model fit to combined brake/steer validation test.
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Figure 6. Model fit to straight-line brake/accel validation test.

that lateral velocity drift was present. These validation results were therefore generated
after recalibration of the INS, 6 months after the original identification tests, on the same
track and in similar weather conditions. These results thus also demonstrate repeatability
and robustness of the identified model, over time.

Figure 5 shows the result of a step steer manoeuvre which is held while heavy braking
is applied approx one second later. Again in addition to accurate results in the identified
acceleration outputs, the model is also capable of matching roll angle and lateral velocity
very well.
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Figure 7. Model fit to constant speed, random steer validation test.

Finally, Figures 6 and 7 show further positive results, validating the combined-slip
tyre/suspensionmodel in single-slip tests. Figure 6 shows accurate results for a straight line
braking and acceleration test under zero steer. The modelled longitudinal acceleration is
indistinguishable from themeasured data throughout, despite the high kx excursion caused
by wheel-spin around 10 s; lateral accelerations track correctly at zero. Finally, Figure 7
sees high accuracy in the single slip lateral case of a constant speed, random steer manoeu-
vre. Both of these tests explore the tyre in low to medium magnitude and also in over-slip
saturation conditions.
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Both IEKF and UKF identified the same successful model here, so the decision over
which filter is ‘better’ depends only on computational efficiency and complexity of code.
UKF has the advantage that Jacobians are not required, so it is simpler to code, thoughMat-
lab’s Symbolic toolbox means this overhead in complexity is slight. For the simple model
in Section 5 the IEKF was clearly faster, but here processing times are only slightly differ-
ent and the order is reversed; each IEKF iteration takes 266 s whereas each UKF iteration
takes 212 s.

The longer processing times are not simply due to the more complex model. As the
number of parameters increases, the UKF has more sigma points to process at each time
step. Conversely the IEKF has become slower due to the computation of Jacobians F andH;
these become highly complex here due to the Pacejka combined slip tyre model. The ‘best’
Kalman filter in applications on other model structures and for on-line use will therefore
depend on the relative complexity of the Jacobians. Provided the number of parameters to
be identified is not excessive, the UKF may be quicker to run and is certainly simpler to
implement.

In the specific context of on-line application, where the inputs would certainly be less
aggressive than considered here and full parameter identification is no longer the objective,
a subset of parameters could easily be adapted. For example, even without modification of
the sampling time or model conplexity, the UKF will run faster than real-time on the mid-
range desktop PC used here; if the number of parameters is reduced from 14 to 8, 100 s of
data is processed in 84 s.

8. Conclusions

Three alternative filteringmethods have been adapted for system identification and applied
to the identification of vehicle handling models. Although effective at identifiying near-
optimal parameters for a simplified model, the PF is very slow to converge and could not
be used to carry out full vehicle and tyre identification.

Both UKF and EKF were found to be effective at identifying both simple and complex
vehicle models. Although they use different methods for parameter error covariance esti-
mation, both techniques have identical convergence characteristics and yield near-identical
models. In applications such as this, where model Jacobians are complex and a relatively
small number of model parameters is identified, the UKF is simpler to implement and
slightly faster to run. Both Kalman filters can identify a simple linear handling model in
under 5min, while the featured four-dof full vehicle and tyre model takes around 10–15 h
to converge fully, depending on the filter used.

A full set of the independent parameters of the nonlinear handling model were iden-
tified, including combined-slip tyre/suspension characteristics identified over their full
range up to and beyond saturation. This was done using only commonly available CG
acceleration and roll rate measurements. The selection of identified parameters and their
resulting conditioning has also been considered. The choice of which parameters to iden-
tify and which to fix can be critical, but the convergence behaviour of the identified param-
eters in the running filter make it easy to determine unphysical and/or under-determined
combinations.

The resulting full vehiclemodel has been tested on identification data from a test vehicle
and also on independent validation test vehicle data. It was found to be very accurate in
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matching the measurements used for identification and also in explaining variables that
are not readily measured, such as lateral velocity and roll angle. High quality results were
seen over a range of validation tests, considering combined and separated longitudinal and
lateral slip, at both high and low magnitudes.
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