106 research outputs found

    SCHEMA: Service Chain Elastic Management with distributed reinforcement learning

    Get PDF
    As the demand for Network Function Virtualization accelerates, service providers are expected to advance the way they manage and orchestrate their network services to offer lower latency services to their future users. Modern services require complex data flows between Virtual Network Functions, placed in separate network domains, risking an increase in latency that compromises the offered latency constraints. This shift requires high levels of automation to deal with the scale and load of future networks. In this paper, we formulate the Service Function Chaining (SFC) placement problem and then we tackle it by introducing SCHEMA, a Distributed Reinforcement Learning (RL) algorithm that performs complex SFC orchestration for low latency services. We combine multiple RL agents with a Bidding Mechanism to enable scalability on multi-domain networks. Finally, we use a simulation model to evaluate SCHEMA, and we demonstrate its ability to obtain a 60.54% reduction of average service latency when compared to a centralised RL solution.Peer ReviewedPostprint (author's final draft

    Resource Orchestration of 5G Transport Networks for Vertical Industries

    Get PDF
    The future 5G transport networks are envisioned to support a variety of vertical services through network slicing and efficient orchestration over multiple administrative domains. In this paper, we propose an orchestrator architecture to support vertical services to meet their diverse resource and service requirements. We then present a system model for resource orchestration of transport networks as well as low-complexity algorithms that aim at minimizing service deployment cost and/or service latency. Importantly, the proposed model can work with any level of abstractions exposed by the underlying network or the federated domains depending on their representation of resources.This work has been partially funded by the EU H2020 5G-Transformer Project (grant no. 761536)

    Definition and specification of connectivity and QoE/QoS management mechanisms – final report

    Get PDF
    This document summarizes the WP5 work throughout the project, describing its functional architecture and the solutions that implement the WP5 concepts on network control and orchestration. For this purpose, we defined 3 innovative controllers that embody the network slicing and multi tenancy: SDM-C, SDM-X and SDM-O. The functionalities of each block are detailed with the interfaces connecting them and validated through exemplary network processes, highlighting thus 5G NORMA innovations. All the proposed modules are designed to implement the functionality needed to provide the challenging KPIs required by future 5G networks while keeping the largest possible compatibility with the state of the art

    Dynamic Prioritization and Adaptive Scheduling using Deep Deterministic Policy Gradient for Deploying Microservice-based VNFs

    Full text link
    The Network Function Virtualization (NFV)-Resource Allocation (RA) problem is NP-Hard. Traditional deployment methods revealed the existence of a starvation problem, which the researchers failed to recognize. Basically, starvation here, means the longer waiting times and eventual rejection of low-priority services due to a 'time out'. The contribution of this work is threefold: a) explain the existence of the starvation problem in the existing methods and their drawbacks, b) introduce 'Adaptive Scheduling' (AdSch) which is an 'intelligent scheduling' scheme using a three-factor approach (priority, threshold waiting time, and reliability), which proves to be more reasonable than traditional methods solely based on priority, and c) a 'Dynamic Prioritization' (DyPr), allocation method is also proposed for unseen services and the importance of macro- and micro-level priority. We presented a zero-touch solution using Deep Deterministic Policy Gradient (DDPG) for adaptive scheduling and an online-Ridge Regression (RR) model for dynamic prioritization. The DDPG successfully identified the 'Beneficial and Starving' services, efficiently deploying twice as many low-priority services as others, reducing the starvation problem. Our online-RR model learns the pattern in less than 100 transitions, and the prediction model has an accuracy rate of more than 80%

    Design, development and orchestration of 5G-ready applications over sliced programmable infrastructure

    Get PDF
    5G networks design and evolution is considered as a key to support the introduction of digital technologies in economic and societal processes. Towards this direction, vertical industries' needs should be considered as drivers of 5G networks design and development with high priority. In the current manuscript, MATILDA is presented, as a holistic 5G end-to-end services operational framework tackling the overall lifecycle of design, development and orchestration of 5G-ready applications and 5G network services over programmable infrastructure, following a unified programmability model and a set of control abstractions

    Enabling Scalable and Sustainable Softwarized 5G Environments

    Get PDF
    The fifth generation of telecommunication systems (5G) is foreseen to play a fundamental role in our socio-economic growth by supporting various and radically new vertical applications (such as Industry 4.0, eHealth, Smart Cities/Electrical Grids, to name a few), as a one-fits-all technology that is enabled by emerging softwarization solutions \u2013 specifically, the Fog, Multi-access Edge Computing (MEC), Network Functions Virtualization (NFV) and Software-Defined Networking (SDN) paradigms. Notwithstanding the notable potential of the aforementioned technologies, a number of open issues still need to be addressed to ensure their complete rollout. This thesis is particularly developed towards addressing the scalability and sustainability issues in softwarized 5G environments through contributions in three research axes: a) Infrastructure Modeling and Analytics, b) Network Slicing and Mobility Management, and c) Network/Services Management and Control. The main contributions include a model-based analytics approach for real-time workload profiling and estimation of network key performance indicators (KPIs) in NFV infrastructures (NFVIs), as well as a SDN-based multi-clustering approach to scale geo-distributed virtual tenant networks (VTNs) and to support seamless user/service mobility; building on these, solutions to the problems of resource consolidation, service migration, and load balancing are also developed in the context of 5G. All in all, this generally entails the adoption of Stochastic Models, Mathematical Programming, Queueing Theory, Graph Theory and Team Theory principles, in the context of Green Networking, NFV and SDN
    corecore