7 research outputs found

    Efficient Encoding of Wireless Capsule Endoscopy Images Using Direct Compression of Colour Filter Array Images

    Get PDF
    Since its invention in 2001, wireless capsule endoscopy (WCE) has played an important role in the endoscopic examination of the gastrointestinal tract. During this period, WCE has undergone tremendous advances in technology, making it the first-line modality for diseases from bleeding to cancer in the small-bowel. Current research efforts are focused on evolving WCE to include functionality such as drug delivery, biopsy, and active locomotion. For the integration of these functionalities into WCE, two critical prerequisites are the image quality enhancement and the power consumption reduction. An efficient image compression solution is required to retain the highest image quality while reducing the transmission power. The issue is more challenging due to the fact that image sensors in WCE capture images in Bayer Colour filter array (CFA) format. Therefore, standard compression engines provide inferior compression performance. The focus of this thesis is to design an optimized image compression pipeline to encode the capsule endoscopic (CE) image efficiently in CFA format. To this end, this thesis proposes two image compression schemes. First, a lossless image compression algorithm is proposed consisting of an optimum reversible colour transformation, a low complexity prediction model, a corner clipping mechanism and a single context adaptive Golomb-Rice entropy encoder. The derivation of colour transformation that provides the best performance for a given prediction model is considered as an optimization problem. The low complexity prediction model works in raster order fashion and requires no buffer memory. The application of colour transformation yields lower inter-colour correlation and allows the efficient independent encoding of the colour components. The second compression scheme in this thesis is a lossy compression algorithm with a integer discrete cosine transformation at its core. Using the statistics obtained from a large dataset of CE image, an optimum colour transformation is derived using the principal component analysis (PCA). The transformed coefficients are quantized using optimized quantization table, which was designed with a focus to discard medically irrelevant information. A fast demosaicking algorithm is developed to reconstruct the colour image from the lossy CFA image in the decoder. Extensive experiments and comparisons with state-of-the-art lossless image compression methods establish the superiority of the proposed compression methods as simple and efficient image compression algorithm. The lossless algorithm can transmit the image in a lossless manner within the available bandwidth. On the other hand, performance evaluation of lossy compression algorithm indicates that it can deliver high quality images at low transmission power and low computation costs

    A low complexity image compression algorithm for Bayer color filter array

    Get PDF
    Digital image in their raw form requires an excessive amount of storage capacity. Image compression is a process of reducing the cost of storage and transmission of image data. The compression algorithm reduces the file size so that it requires less storage or transmission bandwidth. This work presents a new color transformation and compression algorithm for the Bayer color filter array (CFA) images. In a full color image, each pixel contains R, G, and B components. A CFA image contains single channel information in each pixel position, demosaicking is required to construct a full color image. For each pixel, demosaicking constructs the missing two-color information by using information from neighbouring pixels. After demosaicking, each pixel contains R, G, and B information, and a full color image is constructed. Conventional CFA compression occurs after the demosaicking. However, the Bayer CFA image can be compressed before demosaicking which is called compression-first method, and the algorithm proposed in this research follows the compression-first or direct compression method. The compression-first method applies the compression algorithm directly onto the CFA data and shifts demosaicking to the other end of the transmission and storage process. The advantage of the compression-first method is that it requires three time less transmission bandwidth for each pixel than conventional compression. Compression-first method of CFA data produces spatial redundancy, artifacts, and false high frequencies. The process requires a color transformation with less correlation among the color components than that Bayer RGB color space. This work analyzes correlation coefficient, standard deviation, entropy, and intensity range of the Bayer RGB color components. The analysis provides two efficient color transformations in terms of features of color transformation. The proposed color components show lesser correlation coefficient than occurs with the Bayer RGB color components. Color transformations reduce both the spatial and spectral redundancies of the Bayer CFA image. After color transformation, the components are independently encoded using differential pulse-code modulation (DPCM) in raster order fashion. The residue error of DPCM is mapped to a positive integer for the adaptive Golomb rice code. The compression algorithm includes both the adaptive Golomb rice and Unary coding to generate bit stream. Extensive simulation analysis is performed on both simulated CFA and real CFA datasets. This analysis is extended for the WCE (wireless capsule endoscopic) images. The compression algorithm is also realized with a simulated WCE CFA dataset. The results show that the proposed algorithm requires less bits per pixel than the conventional CFA compression. The algorithm also outperforms recent works on CFA compression algorithms for both real and simulated CFA datasets

    Novel hybrid framework for image compression for supportive hardware design of boosting compression

    Get PDF
    Performing the image compression over the resource constrained hardware is quite a challenging task. Although, there has been various approaches being carried out towards image compression considering the hardware aspect of it, but still there are problems associated with the memory acceleration associated with the entire operation that downgrade the performance of the hardware device. Therefore, the proposed approach presents a cost effective image compression mechanism which offers lossless compression using a unique combination of the non-linear filtering, segmentation, contour detection, followed by the optimization. The compression mechanism adapts analytical approach for significant image compression. The execution of the compression mechanism yields faster response time, reduced mean square error, improved signal quality and significant compression ratio performance

    Development of electronics for microultrasound capsule endoscopy

    Get PDF
    Development of intracorporeal devices has surged in the last decade due to advancements in the semiconductor industry, energy storage and low-power sensing systems. This work aims to present a thorough systematic overview and exploration of the microultrasound (µUS) capsule endoscopy (CE) field as the development of electronic components will be key to a successful applicable µUSCE device. The research focused on investigating and designing high-voltage (HV, < 36 V) generating and driving circuits as well as a low-noise amplifier (LNA) for battery-powered and volume-limited systems. In implantable applications, HV generation with maximum efficiency is required to improve the operational lifetime whilst reducing the cost of the device. A fully integrated hybrid (H) charge pump (CP) comprising a serial-parallel (SP) stage was designed and manufactured for > 20 V and 0 - 100 µA output capabilities. The results were compared to a Dickson (DKCP) occupying the same chip area; further improvements in the SPCP topology were explored and a new switching scheme for SPCPs was introduced. A second regulated CP version was excogitated and manufactured to use with an integrated µUS pulse generator. The CP was manufactured and tested at different output currents and capacitive loads; its operation with an US pulser was evaluated and a novel self-oscillating CP mechanism to eliminate the need of an auxiliary clock generator with a minimum area overhead was devised. A single-output universal US pulser was designed, manufactured and tested with 1.5 MHz, 3 MHz, and 28 MHz arrays to achieve a means of fully-integrated, low-power transducer driving. The circuit was evaluated for power consumption and pulse generation capabilities with different loads. Pulse-echo measurements were carried out and compared with those from a commercial US research system to characterise and understand the quality of the generated pulse. A second pulser version for a 28 MHz array was derived to allow control of individual elements. The work involved its optimisation methodology and design of a novel HV feedback-based level-shifter. A low-noise amplifier (LNA) was designed for a wide bandwidth µUS array with a centre frequency of 28 MHz. The LNA was based on an energy-efficient inverter architecture. The circuit encompassed a full power-down functionality and was investigated for a self-biased operation to achieve lower chip area. The explored concepts enable realisation of low power and high performance LNAs for µUS frequencies

    VLSI Implementation of a Cost-Efficient Loeffler-DCT Algorithm with Recursive CORDIC for DCT-Based Encoder

    Get PDF
    This paper presents a low-cost and high-quality; hardware-oriented; two-dimensional discrete cosine transform (2-D DCT) signal analyzer for image and video encoders. In order to reduce memory requirement and improve image quality; a novel Loeffler DCT based on a coordinate rotation digital computer (CORDIC) technique is proposed. In addition; the proposed algorithm is realized by a recursive CORDIC architecture instead of an unfolded CORDIC architecture with approximated scale factors. In the proposed design; a fully pipelined architecture is developed to efficiently increase operating frequency and throughput; and scale factors are implemented by using four hardware-sharing machines for complexity reduction. Thus; the computational complexity can be decreased significantly with only 0.01 dB loss deviated from the optimal image quality of the Loeffler DCT. Experimental results show that the proposed 2-D DCT spectral analyzer not only achieved a superior average peak signal–noise ratio (PSNR) compared to the previous CORDIC-DCT algorithms but also designed cost-efficient architecture for very large scale integration (VLSI) implementation. The proposed design was realized using a UMC 0.18-μm CMOS process with a synthesized gate count of 8.04 k and core area of 75,100 μm2. Its operating frequency was 100 MHz and power consumption was 4.17 mW. Moreover; this work had at least a 64.1% gate count reduction and saved at least 22.5% in power consumption compared to previous designs

    Lower Bounds on the Redundancy of Huffman Codes with Known and Unknown Probabilities

    Full text link
    In this paper we provide a method to obtain tight lower bounds on the minimum redundancy achievable by a Huffman code when the probability distribution underlying an alphabet is only partially known. In particular, we address the case where the occurrence probabilities are unknown for some of the symbols in an alphabet. Bounds can be obtained for alphabets of a given size, for alphabets of up to a given size, and for alphabets of arbitrary size. The method operates on a Computer Algebra System, yielding closed-form numbers for all results. Finally, we show the potential of the proposed method to shed some light on the structure of the minimum redundancy achievable by the Huffman code

    VLSI Implementation of a Cost-Efficient Near-Lossless CFA Image Compressor for Wireless Capsule Endoscopy

    No full text
    corecore